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Area–Delay–Energy Efficient VLSI Architecture for
Scalable In-Place Computation of FFT on Real Data
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Abstract— Efficient computation of real-valued fast Fourier
transform (RFFT) has received significant attention in recent
years due to its several applications in conventional digital
signal processing and other emerging areas. In-place RFFT
architectures are gaining popularity due to their lower hardware
complexity compared with pipeline architectures. But the scaling
of in-place RFFT architecture for higher lengths and higher
throughput is a challenging issue due to increasing memory access
conflict and higher memory bandwidth requirement. In this
paper, a design approach is presented to develop an area-delay
and energy-efficient architecture for in-place RFFT. Generally,
an in-place fast Fourier transform (FFT) structure consists of
a butterfly block which performs a set of butterfly operations in
every clock cycle. From complexity analysis we find that in-place
FFT structures with larger butterfly blocks are more efficient
in terms of area-time complexity and energy consumption. The
resolution of memory access conflict is however more challenging
for higher butterfly block sizes. Therefore, we have analyzed
the data-flow and memory footprint of in-place RFFT archi-
tectures for different throughput requirements, and based on
that, we have proposed here a strategy to partition the storage
unit into several banks of smaller sizes (without increasing the
overall memory size) to resolve the memory access conflicts by
concurrent data-swapping between the banks. Synthesis result
shows that the proposed structure with butterfly block of size
4 and 8 involves (∼44% and ∼57%) less area-delay product
and (∼54% and ∼57%) less energy per sample than those of
existing similar structure on average for different FFT lengths,
respectively.

Index Terms— Fast Fourier transform, in-place computation,
real-valued FFT.

I. INTRODUCTION

FAST Fourier transform (FFT) is widely used in several
applications such as spectral estimation, speech and audio

processing, image processing, digital communication, wireless
sensor network (WSN), radar signal processing, bio-medical
signal processing and many more. Due to increasing demand
for real-time and high data-rate multimedia services, the data-
rate of wireless communication systems has been steadily
increasing. In these applications, FFT computation is per-
formed on sequences of wide range of lengths and sampling
rates. FFT size vary from 64 to 32768 and the sampling rate
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generally vary from a few Mega-samples/s to Giga-samples/s
in different applications. It is therefore, necessary to have com-
putation of FFT of large sizes with adequately high-throughput
according to the requirement of the applications.

Realization of FFT of larger sizes in resource con-
strained environment and providing high-throughput rate is
a challenging task. FFT architectures are broadly of two
contrasting categories: pipeline architecture (i.e., single-path
delay feedback (SDF) based structures [1] and multi-path
delay commutator (MDC) based structures [2], [4]–[6]) and
processor-memory (PM)-based folded in-place structures [9].
In general, all these structures consist of three main func-
tional units namely, the: (i) butterfly computation unit (BCU),
(ii) storage unit (SU), and (iii) twiddle factor generation unit
(TFU). The MDC-based structures are mostly preferred for
pipeline computation of FFT due to their regular data-flow and
higher utilization efficiency of BCU at the cost of marginally
higher memory requirement than the SDF-based structures.
In the PM-based structures, intra and/or inter butterfly stages
of computations are folded in the BCU and take advantage
of in-place FFT for low-complexity realization. Pipeline and
PM-based in-place architectures are two main variants of FFT
structures with contrasting features and the choice of one of
these two categories of architectures largely depends on the
space-time constraints of the target application. Therefore, sev-
eral pipeline and PM-based architectures have been proposed
for efficient implementation of FFT for different applications.

There are several applications such as speech, audio, image,
and video processing, where FFT of real-valued signals is
used [3]. Efficient realization of FFT of real-valued signals
has received further attention now-a-days due to the emer-
gence of biomedical signal processing and wide applications
of real-valued time-series analysis. Some efforts also have
been made to develop specific architectures for real-valued
FFT (RFFT). The data-flow of RFFT algorithm becomes
increasingly disordered for higher FFT sizes and that makes
the in-place RFFT design very challenging due to increas-
ing memory access conflict [9]. Some PM-based in-place
architectures have been proposed for RFFT using special-
ized packing algorithms [7], [8]. An in-place architecture
and conflict-free memory addressing scheme for RAM-based
memory banks have been proposed for continuous process-
ing of RFFT [10], [11]. The SU of N-point in-place RFFT
architecture is implemented using 2N single-port RAM words.
Recently, a register-based SU design is presented in [12] for
in-place RFFT architecture to save the memory footprint.
It is observed that a pair of 2-point butterflies (referred to as
butterfly block of size 2) is used in the existing RFFT designs.
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Due to in-place nature of the computation, the SU complexity
increases linearly only with FFT length and contributes signif-
icantly to the total area for lengths higher than 32. During any
particular clock cycle, the RFFT structure of butterfly-block
size 2 utilizes only 4 memory words out of N words stored
in the SU. This results in low utilization of SU. For small
butterfly blocks the combinational logic is a small fraction of
the storage area and thus the storage is heavily under-utilized.
On the other hand if we increase the butterfly block size, then
with a small increase in overall hardware complexity, not only
the memory can be better utilized but also the throughput,
area-delay product, and power-performance can be improved
substantially. The scaling of in-place RFFT architecture for
higher lengths and higher butterfly block sizes, however, is a
challenging issue due to increasing memory access conflict
and large memory bandwidth requirement.

Conventional storage structures and SU design does not
support higher butterfly block size due to memory access
conflict. We find that the SU could be partitioned into certain
number of banks and suitable scheme for swapping of stored
data across those banks could be developed to avoid memory
access conflict resulting due to larger butterfly blocks. We have
analyzed the SU complexity along with the memory footprint
for different throughput to study the memory access per output
and to identify the design constraint for conflict-free memory
access. Based on that, a design approach is proposed here to
develop area-delay efficient architectures for in-place RFFT
computation. The rest of the paper is organized as follows:
Complexity analysis of in-place RFFT and the proposed design
strategy is presented in Section II. Proposed architecture
for RFFT is presented in Section III. Hardware and time
complexities are discussed in Section IV. Finally conclusions
are presented in Section V.

II. COMPLEXITY ANALYSIS AND DESIGN STRATEGY

In this Section, we analyze the complexity of in-place RFFT
architecture for different throughput rates and FFT lengths to
arrive at the proposed design strategy. The BCU of (L/2)
butterfly block size involves L real-multipliers and (3L/2)
real-adders.1 The SU can be implemented using RAM or
registers. However, we use a register-based design for the
SU for simultaneous read/write operations during the in-place
computation of N-point RFFT. Therefore, the in-place RFFT
structure involves L real multipliers, (3L/2) real-adders, N
registers and computes N-point RFFT in {(N/L) log2 N}
clock cycles. Interestingly, the complexity of BCU is inde-
pendent of FFT size and depends on the butterfly-block
size while the complexity of data-storage unit is independent
of butterfly-block size and depends on the FFT size. The
computation time which increases with the FFT size could
be reduced by increasing the butterfly block size according to
the throughput requirement.

The hardware complexity of the existing register-based in-
place architecture is estimated in terms of multipliers, adders,
registers and computation time in clock cycles for different

1The multipliers and adders of real-valued data are, respectively, refereed
to as real-multipliers and real-adders in this paper.

TABLE I

HARDWARE AND TIME COMPLEXITIES OF IN-PLACE RFFT STRUCTURE

butterfly-block sizes and FFT sizes. The estimated values are
listed in Table I. The memory utilization efficiency2 is also
estimated for different butterfly-block sizes and FFT sizes
and shown in Table I. As shown in Table I, for large size
FFTs, memory complexity is significantly large compared
to multiplier and adder complexity of the structure having
small butterfly-block sizes. The in-place structure has low
memory utilization efficiency for small butterfly block sizes
and large FFT sizes. Interestingly, the memory complexity is
independent of butterfly block sizes. Consequently, the mem-
ory utilization efficiency increases for higher butterfly block
sizes which is maximum for L = N (full-parallel design).
Therefore, the in-place FFT structures have the potential to be
more area-delay efficient for higher butterfly block sizes.

We have used CMOS transistor count to estimate the area
complexity, where radix-4 Booth multiplier of [13] is used
to implement the multiplier, carry propagate adder (CPA) to
implement adder and D-flip-flops to implement register. The
multipliers, adders and registers required by different designs
listed in Table I are implemented using standard cells {2-input
XOR/XNOR, 2-input AND, 2-input OR, NOT gate, 2:1 MUX,
half-adder, (HA), full-adder (FA) and D-FF}. Area complexity
is estimated using the formula:

MU La = 12Nx + 6Na + 6No + 2Nn + 12Nm

+ 18.Nh + 28N f (1a)

C P Aa = 12Nx + 18.Nh + 28N f (1b)

REGa = 24Nd (1c)

where, Nx , Na , No, Nn , Nm , Nh , N f and Nd represents
standard cell counts of {2-input XOR/XNOR, 2-input AND,
2-input OR, NOT gate, 2:1 MUX, half-adder, (HA) and

2memory utilization efficiency = (number of memory words read per clock
cycle (L) / memory complexity (N ))× 100
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TABLE II

AREA AND TIME COMPLEXITIES OF IN-PLACE RFFT STRUCTURE IN TERMS OF CMOS TRANSISTOR COUNT AND COMPUTATION TIME

full-adder (FA), D-FF}, respectively and the multiplying con-
stants {12, 6, 6, 2, 12, 18, 28, and 24} represent the CMOS
transistor counts of standard cells {2-input XOR, 2-input
AND, 2-input OR and NOT}, respectively, according to the
TSMC 65nm GPLUS standard cell library data sheet. The
area complexities of {multiplier (MU La ), adder (C P Aa),
and register (REGa)} for bit-width w = 8, 12, 16 are esti-
mated according to (1a) as {2034, 214, 192}, {4532, 326, 288},
{8030, 438, 384}, respectively, in terms of CMOS transistors
count. Using the complexity estimates given in Table I the
area complexity of butterfly unit (BCU) and storage-unit
(SU) are also calculated in terms of transistor count. The
estimated area-delay product (ADP) of all the designs are
listed in Table II for discussion.

Multiplier complexity increases nearly 4 times when
bit-width doubles while adder and register complexity
increases proportionately. Consequently, the BCU and SU
complexity increases by (2.13 times and 3.69 times) and
(1.5 times 2 times), respectively, for bit-width 12 and 16 than
those of bit-width 8. The SU complexity is independent of
butterfly block size and changes proportionately with the FFT
size while the BCU complexity changes proportionately with
butterfly block size and independent of FFT size. The area
complexity of the overall FFT structure does not change
proportionately with the throughput requirement (and the
butterfly block size). Further, relative increase in total area
with the butterfly block sizes marginally increase with change
in bit-width. Therefore, the use of larger butterfly block in the
in-place FFT design could be more area-delay efficient and
energy efficient. Also, it can be observed from Table II that
for a given FFT size, the in-place FFT structure offers more
saving of ADP when the butterfly block size doubles. We find
that when the SU and BCU complexity are relatively close to

each other for a given FFT size, the use of higher butterfly
block size can offer relatively higher ADP saving than other
cases. This complexity analysis reveals that larger butterfly
block sizes (4 and 8) should be used to develop in-place FFT
structures for FFT lengths more than 16 and 32. However,
butterfly block sizes 16 could be used for FFT sizes higher
than 256 to get higher ADP saving.

We observe that when butterfly block-size doubles, each
memory bank is split into two parts which form two separate
banks with reduced size. However, the bank memory-address
need not be split into two separate sets. Consequently, when
the memory banks are split into two separate banks then
those two banks share a common set of memory addresses.
Therefore, the addressing mechanism of memory-banks could
be simplified when the number of banks increases. Due to
reduction in bank size, the memory access delay is also
reduced. This is an interesting feature which could be exploited
in the proposed register-based storage design.

The SU comprises of L banks. Each butterfly stage of
the FFT flow-graph produces N intermediate outputs and
these intermediate outputs are consumed immediately by the
next butterfly stage. However, a butterfly stage receives the
intermediate outputs in an order different from the order in
which they are produced. Bank conflict arises due to the
necessary reordering of data during the computation of sub-
sequent different stages. Accordingly, data swapping between
a pair of memory-banks is performed before and after the
memory-write and memory-read operations to resolve the
access conflict. As discussed in [12], data swapping between
two pairs of banks are performed to resolve the bank conflict
of in-place DIT-FFT for butterfly block-size 2. The number of
banks are doubled when the butterfly block-size is doubled.
For example, the number of banks is 8 and 16, respectively,
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for butterfly block-size 4 and 8. The memory access conflict
arises in 8 banks for butterfly block-size 4 and in case of
butterfly block-size 8, it arises in 16 banks. To resolve these
conflicts, data swapping need to be performed between 4 pairs
of banks for butterfly block-size 4, and in case of butterfly
block-size 8, data swapping need to be performed between
8 pairs of banks. Therefore, more data-swapping between the
banks need to be performed to resolve the conflicts when
block size increases. The design of suitable data-swapping
circuits and memory banks to support the desired bandwidth
are important to develop efficient hardware structures for
in-place RFFT computation with higher block-sizes. To design
the data-swapping unit detail, the data-flow analysis of storage
unit of RFFT computation for a given butterfly block-size
for different butterfly stages need to be performed to identify
all the bank conflict instances and to note the data-swapping
between the banks. Based on these observations, we present
here a design approach to develop the proposed architecture
for in-place RFFT.

1) The combinational logic complexity and I/O pins
increases proportionately with the butterfly block-size;
and the SU complexity is independent of butterfly block-
size. According to the available resources and I/O pins,
butterfly block size should be chosen suitably to design
in-place RFFT structures.

2) A data-flow analysis of memory unit for the given
block-size need to be under taken to identify the
instances of memory access conflicts which could
be used for the design of memory structure and
data-swapping unit in order to resolve the access con-
flicts.

3) A multi-channel register-based memory bank structure
need to be designed to achieve the desired feasibility of
multiple read and write in a given clock cycle.

Following the aforementioned approach, in the next Section,
we present the proposed register-based storage unit for in-place
DIT-RFFT with butterfly block-sizes 4 and 8. A parallel
structure of in-place DIT-RFFT is then derived using the
proposed storage unit and the data swapping unit.

III. PROPOSED ARCHITECTURE

The SU consists of L register-banks of depth P words each
for butterfly block size (L/2), where P = N/L, L is the
input block size and N is the FFT size. During every clock
cycle, a block of L data is read from L banks for parallel
computation of (L/2) 2-point butterfly, and stores one block
of L outputs back into the same banks. The reordering of
intermediate data has no effect when the entire computation
of a butterfly stage is performed in one clock cycle (referred
to as full-parallel structure). Consequently, the SU of the
full-parallel structure is comprised of N banks where each
bank stores only one sample. When butterfly computations of a
particular butterfly stage are folded and performed in different
clock cycles then the SU of folded structure need to be split
into L banks where each bank stores (P = N/L) intermediate
values. We can find that (P = 2 f ), where f is the folding
factor. The reordering of intermediate data could result in
access conflict when a bank stores more than one intermediate

data. It is observed that the number of reordering of data
increases from the first stage to the final butterfly stages.
The bank conflict associated with the butterfly computation
of different stages depends on the folding factor ( f ). The
bank conflict starts from {S − ( f − 1)}-th butterfly stage to
{S}-th butterfly stage, where S = log2 N . Therefore, the access
conflict arises early in the butterfly stages for higher folding
factor and late in the butterfly stages for smaller folding
factor. To avoid these access conflicts, data-swapping between
the banks is performed before writing data into the banks.
Moreover, it is observed that the data read from the SU are
not in the order as required by a particular butterfly stage and
they need to be reordered. Therefore, data-swapping need to
be performed before and after the memory operations on the
banks. Input-output data-flow analysis of the SU for different
butterfly stages of RFFT need to be performed to identify the
necessary data-swapping instances for resolving bank access
conflict.

A. Data-Flow Analysis of Storage Unit
The BCU for butterfly block size (L/2) takes (N/L) clock

cycles to complete the computations of one butterfly stage and
takes (N/L) log2 N clock cycles to complete all the butterfly
operations for N-point FFT. We have taken butterfly block
size (L/2) = 4 and FFT size N = 32 as an example
to analyze the input-output data-flow resulting in memory
access conflicts and necessary data-swapping instances. The
input-output data-flow of other butterfly block sizes can also be
undertaken in similar manner. Computations of each butterfly
stages of 32-point FFT is performed in a set of 4 succes-
sive clock cycles and the entire computation is performed
in 20 clock cycles. During the first 16 clock cycles of a period
of 20 clock cycles, the BCU performs butterfly operations
to produce an 8-point intermediate output-data-block which is
written back into the SU. During the last 4 clock cycles of a
period of 20 clock cycles the FFT components are computed
out as output of the BCU while samples of the next input
sequence are stored in the SU during the same period.

The SU pertaining to butterfly block size 4 is com-
prised of 8 memory banks (B1, B2, B3, B4, B5, B6,
B7, and B8), so that a block of 8 words can be retrieved/stored
from/in the 8 banks in each clock cycle using a common
address for reference. The output data-flow from/into the SU
for the computations of different stages of two successive
32-point input vectors x1 = {x(0), x(1), · · · , x(31)} and
x2 = {x(32), x(17), · · · , x(63)} is given in Table III for
20 clock cycles.

During the clock cycles CC1.1 to CC1.20 the FFT of
input-vector x1 is computed. The input-vector x1 is accessed
from the register-banks during the clock cycles CC1.1 to CC1.4
and the 32-point intermediate data-vectors r1 corresponding
to butterfly stage-1 is loaded into the SU. During clock cycles
CC1.5 to CC1.8, CC1.9 to CC1.12, and CC1.13 to CC1.16,
intermediate data-vectors r1, u1 and v1 are accessed from
the storage unit for computation of stage-2, stage-3, and
stage-4 butterfly computations of 32-point RFFT. During
CC1.17 to CC1.20, the intermediate data-vector w1 is accessed
from the storage unit to perform the butterfly operation of
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TABLE III

OUTPUT DATA-FLOW FROM THE STORAGE-UNIT FOR DIFFERENT
BUTTERFLY STAGES OF IN-PLACE RFFT FOR BUTTERFLY

BLOCK SIZE L = 4 AND FFT SIZE N = 32

stage-5 and deliver the output corresponding to the FFT of
input sequence x1. During the same period, the next input
sequence x2 is loaded into the storage unit. For in-place FFT
computation, the intermediate output values are stored exactly
in the same locations from which the corresponding input
data were read. Therefore, the intermediate output vectors
r1, u1, v1, and w1 are stored exactly in the same memory
locations of input signals x1, r1, u1, and v1, respectively. One
can find from Table III that samples of each input data-block
of stage-2 and stage-3 computation are sourced from
8 different banks and no conflict arises while reading input
data-blocks from different banks. However, during stage-4 of
butterfly computation, 8 samples of each input-block are
read from 4 banks. For example: sample of first input-block
{v1(0), v1(4), v1(2), v1(6), v1(16), v1(24), v1(18), v1(26)}
are read from register-banks, (B1, B3, B5, B7) while
samples of the second input-block {v1(8), v1(12), v1(10),
v1(14), v1(20), v1(28), v1(22), v1(30)} are read from
register-banks (B2, B4, B6, and B8). Similar situation
also arises for other input blocks of stage-4 as well as
stage-5 computations. When more than one data are required
from a particular bank during a clock cycle then an access
conflict occurs. The access conflict can be resolved by
swapping samples of each data-block in pairs before/after
they are stored/read in/from the register-banks simultaneously.

The storage unit uses two data-swapping circuits
(DS1 and DS2) to perform the required data-swapping on
the intermediate data-blocks produced by the BCU to resolve
the bank conflicts and reorder the samples of input-blocks

Fig. 1. Storage unit design of proposed RFFT structure for butterfly
block-size 4 and N = 32.

Fig. 2. Internal structure of multi-channel register bank for butterfly
block-size 4 and N = 32.

retrieved from the register-banks. The input-output data-flow
of DS1 and DS2 is shown in Table IV and Table V for
butterfly block size 4 and FFT size 32.

B. Storage Unit Design

The proposed structure for N-point in-place DIT RFFT
computation is similar to the structure of [12] at the block
level. However, the design of SU as well as the BCU are
different from those of [12]. The design of SU of the proposed
structure for 32-point RFFT and butterfly block-size 4 is
shown in Fig.1. It consists of two multi-channel register-banks
(MCRBs) and two data-selectors. The MCRB implements
multiple memory banks in one unit which uses a common
address decoding logic for all the banks. The MCRB-1
implements register-banks (B1, B2, B5, B6) while MCRB-2
implements register-banks (B3, B4, B7, B8). The internal
structure of MCRB for four bank channels of depth 4 each is
shown in Fig.2. It consists of 16 registers which are arranged
in 4 rows and 4 columns. The four registers of each column
form one bank channel, such that registers (R11, R12, R13, R14)
form Bank-1 and registers (R41, R42, R43, R44) form Bank-4.
A 2:4 decoder is used to decode the 2-bit write-address
(w0, w1) and enable the clock signal C L K for a particular
row of registers belonging to four different banks to write one
block of input-data {x1, x2, x3, x4}. The content of all the four
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TABLE IV

INPUT-OUTPUT DATA-FLOW OF DATA-SELECTOR-1 OF PROPOSED RFFT STRUCTURE WITH BUTTERFLY BLOCK SIZE 4

TABLE V

INPUT-OUTPUT DATA-FLOW OF DATA-SELECTOR-2 OF PROPOSED RFFT STRUCTURE WITH BUTTERFLY BLOCK SIZE 4

registers of each bank are accessed through the multiplexer that
selects one of the registers as specified by 2-bit read address
(r0, r1). During each clock cycle, four data values are read
from four register-banks of one MCRB such that one block
of 8 data are retrieved from MCRB-1 and MCRB-2 to perform
the butterfly operation of the i -th BF stage and the intermediate
outputs are written back into the same locations (registers)
during the next clock transition for the (i + 1)-th stage of
butterfly computations (for 1 ≤ i ≤ log2 N).

The internal structure of DS-1 and DS-2 is shown in Fig.3.
Each input-line (Ii ) or output-line (Oi ) of DS-1 and DS-2
receives/sends a pair of data samples from/to the BCU, for
(0 ≤ i ≤ 3). The data-swapping operation of DS-1 and
DS-2 are controlled by the signal ctr2. The signal ctr1 is set to
‘1’ during swapping operation of DS-1. As shown in Fig.2(b),
{MUX1, MUX2} swap the data among them for reordering
the input-block retrieved from MCRB while {MUX3, MUX4}
and {MUX5, MUX6} swap the data to annul the swapping



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MOHANTY AND MEHER: AREA–DELAY–ENERGY EFFICIENT VLSI ARCHITECTURE 7

TABLE VI

OUTPUT DATA-FLOW FROM THE STORAGE-UNIT FOR IN-PLACE RFFT COMPUTATION WITH BUTTERFLY BLOCK SIZE 8 AND FFT SIZE 32

Fig. 3. (a) Data selector-1 (DS-1). (b) Data selector-2 (DS-2).

Fig. 4. Structure twiddle factor storage unit for FFT size N = 32 and
butterfly block-size 4.

operation of DS-1. The design of BCU for butterfly block
size 4 is identical to arithmetic unit design of [12] except
that it comprises of two complex multipliers and two pairs
of line-changers {LC1 and LC2}.

The design of twiddle factor storage unit (TSU) for the
32-point RFFT structure and butterfly block-size 4 based on
the approach of [12] requires a ROM look-up-table (LUT)

Fig. 5. Structure twiddle factor storage unit for FFT size N = 32 and
block-size 16.

TABLE VII

DATA SWAPPING OPERATIONS OF DATA-SELECTORS OF RFFT
STRUCTURE FOR BUTTERFLY BLOCK-SIZE 8 AND FFT SIZE 32

of 8-words. However, we find that the TSU stores a few
redundant values and that can be avoided to reduce the ROM
size. An optimized TSU design for 32-point RFFT with
block-size 8 is shown in Fig.4. It involves one ROM LUT
of size (5 × 4w), where w is the wordlength of real twiddle
factor constants {cl, sl }. The five BF stages of 32-point FFT are
encoded by a 3-bit word {q4, q3, q2} to generate the control
bits {s1, s0} of the MUX in order to select the lower 2-bit
address of particular BF stage. In general, ROM LUT of size
[(2P−3+1)×4w] is required for N-point RFFT and block-size



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

TABLE VIII

COMPARISON OF THEORETICAL ESTIMATE OF HARDWARE AND TIME COMPLEXITIES

8, where P = log2 N . From Table III, Table IV and Table V,
it can be observed that the data loading and retrieval from
the data-storage unit of proposed 32-point RFFT structure for
block-size 8 is almost identical to those of the existing 16-point
RFFT structure of block-size 4 [12]. Therefore, the control
unit for generation of read/write addresses of the proposed
multi-channel memory banks and control signals for data-
selectors, and select signals of AU can be designed by using
the scheme given in [12].

IV. STORAGE UNIT DESIGN FOR BLOCK-SIZE 16

The SU of RFFT structure for butterfly block-size 8 is
partitioned into 16 memory banks (B1, B2, · · · , B15,
B16), so that a block of 16 words can be retrieved/stored
from/into the 16 banks in each clock cycle using a com-
mon address for reference. The output data-flow from the
register-banks for computation of different stages of FFT
computation of two successive 32-point input vectors x1 =
{x(0), x(1), · · · , x(31)} and x2 = {x(32), x(17), · · · , x(63)}
is given in Table VI for 10 clock cycles to study the access
conflicts.

As shown in Table VI samples of each input data-block of
stage-1, stage-2, stage-3, and stage-4 are read from 16 different
banks where no access conflicts are found to occur. However,
during each clock cycle of stage-5, the input-blocks are
sourced from 8 banks which results in bank conflict. Also
it can be observed from Table VI that the sample orders of
data-blocks of stage-3 and stage-4 are different from those
of stage-2 and stage-3. The data-blocks retrieved from the
banks during stage-3 and stage-4 of computation need to
be reordered before they are sent to the arithmetic unit.
In general, we observe that the access conflict is reduced even
for larger block sizes and the data is read from the storage
unit. Therefore, DS-1 is expected to perform less swapping
while DS-2 need to perform more swapping for higher block
sizes. Data-swapping operations of DS-1 and DS-2 are given
in Table VII for butterfly block-size 8 and FFT size 32.

V. HARDWARE AND TIME COMPLEXITY

The hardware and time complexity of proposed struc-
ture and those of the structures of [10] and [12] are listed
in Table VIII for comparison. The structure of [10] uses RAM
to implement the data storage unit whereas the proposed
structure and the structure of [12] use register-based data-
storage. The structure of [10] involves 4N single-port RAM
words of w-bit width or 2N dual-port RAM words of 2w

TABLE IX

SYNTHESIS RESULTS OF PROPOSED STRUCTURES AND EXISTING
STRUCTURES USING TMSC 65nm CMOS STANDARD CELL LIBRARY

bit-width for N-point in-place RFFT computation where the
storage unit of proposed structure and the structure of [12]
requires N registers. As shown in Table VIII, the proposed
structure for butterfly block-size 4 and 8, respectively, offers
2 times and 4 times higher throughput compared to the
structure of [12] at the cost of 2 times and 4 times more
multipliers and adders, using the same number of registers,
less ROM memory than those required by the other. Compared
with the structure of [10], the proposed structure for butterfly
block-size 8 and 16, respectively, involves the same number of
multipliers and adders, N registers against 4N RAM words,
less ROM and offers higher throughput due to less critical
path delay (CPD). Unlike the structure of [10], the CPD of
the proposed structure does not change much with increase
in butterfly block-size due to reduction in bank-access delay
(TM R). In general, the hardware complexity of the proposed
structure does not increase proportionately with block-size.
Therefore, the area-delay efficiency of proposed structure is
better for higher block-sizes.

We have coded the proposed design in VHDL for butterfly
block sizes {4 and 8}, and RFFT of length 32, 64 and 128.
We have also coded the structures of [10] for the same FFT
sizes and butterfly block size, respectively. We have used
single-port RAM generated by Synopsis DesignWare for the
implementation of storage unit of [10] whereas delay flip-flop
(D-FF) is used for the implementation of register-based
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data storage unit of proposed design. We have taken 8-bit
word-length for the input and the output for all stages
of computation. We have synthesized all the designs using
TSMC 65nm CMOS standard cell library. The area, minimum
cycle period (MCP), and power consumption reported by
Synopsys Design Compiler are listed in Table IX. Power
consumption is estimated at the MCP of respective designs.
As shown in Table IX, for butterfly block-size 4 and 8,
the proposed structure involves nearly (5% and 14%) less
MCP, (40% and 49%) less area, and (52% and 50%) less
power than those of [10] on average for different FFT lengths,
respectively. For the same butterfly block-sizes, the proposed
structure offers (∼ 44% and ∼ 57%) ADP3 saving and
(∼ 54% and ∼ 57%) EPS4 saving than those of [10] on
average for different FFT lengths, respectively.

VI. CONCLUSIONS

We have proposed a design approach to develop efficient
architecture for in-place RFFT which could be scaled for
higher throughput and larger FFT sizes. The proposed struc-
ture for butterfly block size 4 and 8, involves significantly
less EPS than the existing designs. The proposed design for
butterfly block size 16 can meet the throughput requirement
of Ultra wide band (UWB) and WSN applications while the
proposed design for butterfly block sizes 8 can able to meet
the throughput requirement of WSN and medical implantable
devices.
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