
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Low-Cost Sorting Network Circuits
Using Unary Processing

M. Hassan Najafi , Student Member, IEEE, David. J. Lilja, Fellow, IEEE,
Marc D. Riedel, Senior Member, IEEE, and Kia Bazargan, Senior Member, IEEE

Abstract— Sorting is a common task in a wide range of
applications from signal and image processing to switching
systems. For applications that require high performance, sorting
is often performed in hardware with application-specified inte-
grated circuits or field-programmable gate arrays. Hardware cost
and power consumption are the dominant concerns. The usual
approach is to wire up a network of compare-and-swap units
in a configuration called the Batcher (or bitonic) network. Such
networks can readily be pipelined. This paper proposes a novel
area-efficient and power-efficient approach to sorting networks,
based on “unary processing.” In unary processing, numbers are
encoded uniformly by a sequence of one value (say 1) followed
by a sequence of the other value (say 0) in a stream of 0’s and
1’s with the value defined by the fraction of 1’s in the stream.
Synthesis results of complete sorting networks show up to 92%
area and power saving compared to the conventional binary
implementations. However, the latency increases. To mitigate
the increased latency, this paper uses a novel time-encoding of
data. The approach is validated with two implementations of an
important application of sorting: median filtering. The result is
a low cost, energy-efficient implementation of median filtering
with only a slight accuracy loss, compared to conventional
implementations.

Index Terms— Low cost design, median filtering, sorting
networks, stochastic computing, time-encoding data, unary
processing.

I. INTRODUCTION

SORTING is an important task in applications rang-
ing from data mining to databases [20], [21], [29],

to ATM and communication switching [1], [14], to scientific
computing [13], to scheduling [47], to artificial intelligence
and robotics [7], to image [28], video [11], [42], and
signal processing [36]. For applications that require high
performance, sorting is often performed in hardware with
application-specified integrated circuits or field-programmable
gate arrays [12]. Based on the target applications, the hardware
sorting units vary greatly in the way that they are configured.
The number of inputs can be as low as nine for some image
processing applications (e.g., median filtering) or as high
as tens of thousands. The data inputs are sometimes binary

Manuscript received November 11, 2017; revised January 31, 2018;
accepted March 13, 2018. This work was supported by the National
Science Foundation under Grant CCF-1408123. (Corresponding author:
M. Hassan Najafi.)

The authors are with the Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
najaf011@umn.edu; lilja@umn.edu; mriedel@umn.edu; kia@umn.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2018.2822300

values, integers, or floating-point numbers ranging from 4- to
256-bit precision.

Hardware cost and power consumption are the dominant
concerns with hardware implementations. The total chip area
is limited in many applications. As fabrication technologies
continue to scale, keeping chip temperatures low is an impor-
tant goal since leakage current increases exponentially with
temperature. Power consumption must be kept as low as
possible. Developing low cost, power-efficient hardware-based
solutions to sorting is an important goal.

The usual approach is to wire up a network of compare-
and-swap (CAS) units in a configuration called a Batcher
(or bitonic) network. Such networks can readily be pipelined.
The parallel nature of hardware-based solutions allows them to
outperform sequential software-based solutions. The hardware
cost and the power consumption depend on the number of
CAS blocks and the cost of each CAS block.

This paper proposes a novel area-efficient and power-
efficient approach to sorting networks based on “unary
processing.” Data are encoded as serial bit streams, with values
represented by the fraction of 1’s in a stream of 0’s and 1’s.
This is an evolution of prior work on stochastic processing.
Our designs inherit the fault tolerance and low-cost design
advantages of stochastic processing while producing com-
pletely accurate and deterministic results. As with stochastic
processing, however, the approach is handicapped in term of
latency. A serial representation is exponentially longer than a
conventional binary positional representation.

To mitigate the long latency issue of unary processing, this
paper adopts a mixed-signal time-encoding approach recently
proposed in [30]. The approach is different to the work on
continuous time mixed-signal designs of [22] and [48] in
the sense that instead of converting data to (from) binary
format using costly analog-to-digital (digital-to-analog) con-
verters and processing in binary domain, the data is encoded
in time using low-cost analog-to-time converters (ATCs) and
processed in unary domain. We represent the data with time-
encoded pulse signals. The proposed approach is validated
with two implementations of an important application of
sorting networks: median filtering. Median filtering has been
also used in [31] as a case study for processing time-encoded
values but no result or discussion on the power consump-
tion and energy efficiency of the designs is presented. Our
synthesis results show up to 92% area and power savings
compared to conventional weighted binary implementations.
Time-encoding the data provides a significant improvement in

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4655-6229

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. Schematic symbol of a CAS block. (a) Ascending. (b) Descending.

Fig. 2. CAS network for an 8-input bitonic sorting [17].

the latency and energy consumption with only a slight loss in
accuracy.

II. BACKGROUND

A. Sorting Networks

A sorting network is a combination of CAS blocks that
sorts a set of input data. Each CAS block compares two input
values and swaps the values at the output, if required. There
are two variants: 1) an “ascending” type and 2) a “descending”
type. Fig. 1 shows their schematic symbols. In a conventional
design, each CAS block consists of an M-bit comparator and
two M-bit multiplexers, where M is the data width of the
inputs.

Sorting networks are fundamentally different from software
algorithms for sorting such as quick sort, merge sort, bubble
sort, etc. since the order of comparisons is fixed in advance;
the order is not data dependent as is the case with software
algorithms. The bitonic and odd–even merge sorting networks
proposed by Batcher [6] are the two popular configurations
of sorting networks [24], [26]. They have the lowest known
latency for hardware-based sorting [2], [17].

Bitonic sort uses a key procedure called bitonic
merge (BM). Given two equal size sets of input data, sorted in
opposing directions, the BM procedure will create a combined
set of sorted data. It recursively merges an ascending and
a descending set of size N /2 to make a sorted set of size
N [19]. Fig. 2 shows the CAS network for an 8-input bitonic
sorting network made up of ascending and descending BM
units. The total number of CAS blocks in an N-input bitonic
sorting is N × log2(N) × (log2(N) + 1)/4. Thus, 8-input,
16-input, 32-input, and 256-input bitonic sorting networks
require 24, 80, 240, and 4608 CAS blocks, respectively [17].

An odd–even merge sorting network recursively merges two
ascending sequences of length N /2 to make a sorted sequence
of length N . Odd–even merge sorting units require fewer

Fig. 3. Time-based versus digital-stream unary representation.

CAS blocks than bitonic sorting units, but often have more
complex wiring [17]. Due to their simpler structure, in this
paper, we will present designs based on bitonic sort networks.
The proposed design approach, however, is applicable to
any sorting network topology, including odd–even sorting
networks; it will accrue the same advantages.

B. Unary Processing

Weighted binary radix has been the dominant format for
representing numbers in the field of computer engineering
since its inception. The representation is compact; however,
computing on this representation is relatively complex, since
each bit must be weighted according to its position. Also,
the representation is very susceptible to noise: a flipped bit
can introduce a large error (if it is a significant bit in the
representation.)

Poppelbaum et al. [39] and Gaines [18] introduced
stochastic processing based on uniformly distributed random
bit streams. All digits have the same weight in this computing
paradigm. Numbers are limited to the [0, 1] interval and
encoded by the probability of obtaining a one versus a zero
in the stream. To represent a real number with a resolution of
2−M , a stream of 2M bits is required. Beginning in 2001,
Brown and Card [8], [9], and in 2008, Qian et al. [41]
reintroduced the concept of stochastic processing to the com-
puter engineering community.

Clearly, a stochastic representation is much less compact
than conventional weighted binary; this translates to high
latency. However, complex functions can be computed with
remarkably simple logic, e.g., multiplication can be performed
using a single AND gate. Also, the representation can tolerate
high clock skew [33], timing errors [3], and soft logic errors
(i.e., bit flips) [27], [34], [40].

A recent evolution of the idea of stochastic computing
has been to perform the processing completely deterministi-
cally [23], [30], [31]. If properly structured, computation on
deterministic bit streams can be performed with same circuits
as are used in stochastic computing. The results are completely
accurate with no random variations; furthermore, the latency is
greatly reduced. The idea of unary (or burst) processing was
first introduced in 1980s [37], [38] as a hybrid information
processing technique that has characteristics common to both
conventional binary and to stochastic processing. It is deter-
ministic, but borrows the concept of averaging from stochastic
methods. In this paper, we apply unary processing to problem
of desiging low cost, power-efficient sorting networks.

1) Unary Streams: In unary processing, numbers are
encoded uniformly by a sequence of one value (say 1) followed
by a sequence of the other value (say 0) (see Fig. 3). This
uniform sequence of bits is called a unary stream. In the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAJAFI et al.: LOW-COST SORTING NETWORK CIRCUITS USING UNARY PROCESSING 3

Fig. 4. Example of performing the maximum and minimum operations on
unary streams.

literature, this method of encoding is also called pulsewidth
encoding [15]. As with stochastic streams, all the bits have
equal weight. This property provides the immunity to noise.
Multiple bit flips in a long unary stream produce small and
uniform deviations from the nominal value. In stochastic
processing, only real-valued numbers can be represented: num-
bers in the [0, 1] interval with the unipolar format and numbers
in the [−1, 1] interval with the bipolar format. In contrast, with
unary streams both real-valued and integer numbers can be
represented. In representing real-value numbers, the number
of ones divided by the length of stream determines the value.
In representing integer values, the number of ones directly
determines the value. For example, when using unary streams
in the real domain, the streams 1000 and 11000000 are both
representations of the value 0.25. In the integer domain, on the
other hand, these streams represent one and two, respectively.
Similar to the bipolar format for stochastic streams, negative
numbers can also be represented with unary streams using a
simple linear transformation [4].

2) Unary Operations: The maximum (Max) and minimum
(Min) value functions are two useful functions with simple and
low-cost unary implementation. In a weighted binary design,
data-width-dependent comparator and multiplexer units must
be used to implement these functions. In unary process-
ing, individual gates can synthesize these functions: an AND

gate gives the minimum of two unary streams when two
equal-length unary streams are connected to its inputs; an
OR gate gives the maximum value when its inputs are fed
with two equal-length unary streams. These gates showed a
similar functionality when fed with correlated stochastic bit
streams [5].

Fig. 4 shows an example of finding the minimum and max-
imum values in unary processing. An important advantage of
unary processing is that synthesizing a function is independent
of the resolution of data (length of streams). The same core
logic is used for processing 128-bit unary streams that is
used for processing 256-bit unary streams. While developing
a general method for synthesizing all operations with unary
processing is still a work in progress, recent work has shown
absolute value subtraction (using an XOR gate), comparison
(using a D-type flip-flop) [31], and multiplication (using an
AND gate) [23], [30] of unary streams.

3) Time-Based Unary Streams: The representation of num-
bers in unary processing is not limited to purely digital
bit streams. A time-based interpretation of numbers is also
possible using pulse modulation of data [30]. Fig. 3 shows both
approaches. While both approaches can operate on the same

Fig. 5. Hardware implementation of a CAS block. (a) Conventional binary
design. (b) Unary design.

unary logic, the time-based representation offers a seamless
solution to the increasing number of time-based sensors and,
as we will show, can be exploited in addressing the long
latency problem of unary circuits.

III. COMPLETE SORT SYSTEM

In this section, we discuss the hardware implementation
of complete sort networks. We first discuss the conventional
binary design of the complete sorting networks and then
present the synthesis approach based on unary processing.

A. Conventional Design

As discussed in Section II, sorting networks are made of
CAS blocks. The hardware cost of a sorting network is,
therefore, a direct function of the number of CAS blocks and
the cost of each block. As shown in Fig. 5(a), in a weighted
binary design with a data-width of M bits, each CAS block
consists of one M-bit comparator and two M-bit multiplexers.
Thus, by increasing the resolution of data, the complexity of
the design will also be increased. Increasing the complexity of
the design directly affects the cost of the hardware implemen-
tation, latency, power, and as a result, energy consumption.
Another issue with the conventional binary design is noise
immunity and fault tolerance. In a noisy environment, faults
due to bit flips on high-order bits can produce large errors.
Thus, additional fault-tolerance techniques must be used if the
goal is to design a noise tolerant system.

B. Unary Design

The essential operations in CAS blocks are the maximum
and minimum functions. This makes unary processing a good
fit for hardware implementation of CAS blocks and sorting
networks. As shown in Fig. 5, instead of data-width-dependent
complex logic, one AND gate and one OR gate are sufficient
to synthesize the CAS block in unary domain. The sorting
networks can, therefore, be synthesized regardless of the
resolution of the input data. While the synthesized circuit will
be much less costly than the circuit synthesized in the binary
approach, additional overhead must be incurred for conversion
units which are required to convert the data between the binary
and the unary formats and a longer operation time due to
performing the operation on 2M -bit long streams.

Assuming that the input data is given in binary format and
the result must again be in binary, a unary stream generator
is required to convert the data from binary to unary and a
counter is required to count the number of ones in the final

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE I

SYNTHESIS RESULTS OF COMPLETE BITONIC SORT NETWORKS (NONPIPELINED)

Fig. 6. Unary stream generator.

unary stream and convert the result back into binary. Fig. 6
shows the design of a unary stream generator responsible for
converting the data from binary to unary. For each input data,
one unary stream generator; and for each output, one counter
is required. A significant cost saving in implementing the
CAS blocks, particularly for large-scale sorting circuits, will
compensate for the overhead of converters in unary designs.
Note that while the converters are data-width dependent,
the CAS blocks synthesized with the unary approach are
independent of data resolution.

C. Design Evaluation

In order to evaluate the costs and benefits of the proposed
design approach, we developed Verilog hardware descriptions
of complete bitonic sorting networks for 8, 16, 32, 64, 128, and
256 data inputs, for both the conventional binary and for the
proposed unary approaches. For the unary approach, the archi-
tectures include the required conversion units from/to binary.
The developed designs are synthesized using the Synopsys
Design Compiler vH2013.12 and a 45-nm standard cell library.
We report synthesis results for three different data widths of 8,
16, and 32 bits. In order to find the minimum hardware cost
and also the maximum speed of the developed architectures,
we synthesized a nonpipelined and also a pipelined version of
each architecture.

1) Nonpipelined Design: Table I gives the synthesis results
for the nonpipelined implementations. As can be seen,
the unary approach could save the hardware cost of the

implemented sort networks up to 91%. For small networks
like the 8-input sort networks, the cost overhead of unary
stream generators and the output converters was comparable
to the saving due to using a low-cost CAS implementation and
so lower savings are achieved. By increasing the number of
inputs and so the number of CAS blocks, the savings dominate
the overheads and a hardware area saving of around 91% is
achieved when implementing the 256-input sorting network
with the unary approach.

The total (dynamic plus static) power consumption of
the synthesized designs at the maximum feasible working
frequency of each architecture, and also at a constant working
frequency of 50 MHz, are presented in Table I. The static
power or leakage is the dominant power when the system
operates at low frequencies. It is directly proportional to the
hardware cost and so a sort network with a lower hardware cost
will have a lower leakage power. When a system works at its
maximum frequency, dynamic power, which is an increasing
function of the working frequency, is the dominant one.
Thus, although the unary designs would have a much lower
power consumption at low speeds, due to a lower critical path
(CP) latency and so a higher maximum working frequency,
the power numbers reported for unary implementation of the
8-input and 16-input sorting networks are greater than the
power numbers reported for their corresponding binary
implementations. As given in Table I, for larger sorting
networks (32-input and above), the simplicity of the unary
design has led to even a lower power consumption at the
maximum working frequency than the power consumption of
the binary implementation.

Due to a simpler architecture, the CP latency of the designs
synthesized with the unary approach is lower than that of the
conventional binary designs. However, the total latency of the
unary approach which is the product of the CP latency and
2M (the number of clock cycles the system must operates to
generate and process the unary stream), is much more than

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAJAFI et al.: LOW-COST SORTING NETWORK CIRCUITS USING UNARY PROCESSING 5

TABLE II

SYNTHESIS RESULTS OF COMPLETE BITONIC SORT NETWORKS (PIPELINED)

Fig. 7. Normalized area and power (at 50 MHz) cost numbers reported for the nonpipelined and pipelined structures of the implemented complete sort
networks.

the latency of the conventional design (one clock cycle × CP
latency). Although the longer latency of the unary approach is
still acceptable for many applications, a more important issue
is the energy consumption. Energy consumption is evaluated
by the product of the processing time and the total power
consumption. Although the unary implementations of the
sorting networks have often shown lower power consumption
for a fixed frequency, a very long processing time would lead
to higher energy consumption than their conventional binary
counterparts. We will address the long latency and high energy
consumption problem of unary designs in Section IV.

2) Pipelined Design: Table II gives the synthesis results
for a fully pipelined structure (only one CAS block between
pipeline registers) of the developed designs. Although due to
using a large number of pipeline registers, the fully pipelined
structure is significantly more costly than the nonpipelined
structure; a higher working frequency is achieved with the
pipelined one. Designing the sorting network with only one
CAS block between pipeline registers leads to a higher latency
and total area than the case with more number of CAS
blocks between pipeline registers. However, the one CAS
block approach (fully pipelined) results in a higher sorting
throughput [17]. Thus, choosing the number of CAS blocks
between pipeline registers is a tradeoff between the total area
and latency, and the throughput, and is a design decision.

As can be seen in Table II, the hardware area cost of
the pipelined unary designs are 61%–92% lower than the
hardware cost of the pipelined binary designs. Observing a
high saving in the area of the small-scale sorting circuits,
such as the 8-input sorting network (61% for 8-bit data),
is due to using simpler pipeline registers (1-bit instead of
M-bit) in the pipelined unary design compared to the pipelined
binary design. Fig. 7 shows normalized diagrams for area and
power cost numbers of the synthesized architectures. In each
configuration, the results are normalized to the value of the
conventional design with that configuration.

CP latency of the unary design in the pipelined structure
of small sorting networks was slightly lower than that of
the binary designs. The reason was a simpler CAS block
between the pipeline registers in the unary approach. For large
networks (e.g., 128 input, 256 input), however, the CP latency
of binary design was lower than the unary implementation.
Although in these designs still the CAS blocks of the unary
approach are simpler, a more complex unary stream generator
and a larger output counter limit the performance of the
circuit and increase the CP. The total processing time of
the pipelined binary design is the product of the CP latency
and the number of pipeline stages. The throughput, however,
is higher than the nonpipelined binary design because at each
cycle, a new set of inputs can enter the system and a set

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 8. CAS network for a 3 × 3 median filter made of 19 CAS blocks [28].

of sorted numbers is leaving the system. For pipelined unary
designs, the total latency is the CP latency × number of
pipeline stages × 2M , where M is the data-width. Thus, similar
to the nonpipelined structure, the total latency of the pipelined
unary implementations is much higher than the total latency
of their conventional binary counterparts. This long latency,
further, makes the total energy consumption higher than the
energy consumption of the binary designs. We will address
this issue in the next section by time-encoding of data using a
mixed-signal design of sorting network-based median filtering.

IV. HIGHLY EFFICIENT MEDIAN FILTERS

A median filter is a popular nonlinear filter widely used in
image, speech, and signal processing applications. It replaces
each input data with the median of all the data in a local
neighborhood. This results in filtering out impulse noise and
smoothing of the image while preserving important properties
such as the edge information [35]. In real-time image and
video applications, the digital image data are affected by
noise resulting from image sensors or transmission of images.
A hardware implementation of the median filter is, therefore,
required for denoising. The high computational complexity of
median filters, however, makes their hardware implementation
expensive and inefficient for many applications. In this section,
we first propose a low-cost implementation of median filters
similar to the unary sorting networks introduced in Section III.
We then exploit a time-based representation of input data using
pulsewidth modulation to address the long latency problem of
the implemented circuits.

A. Circuit Design

There are a variety of methods for hardware implementation
of median filters [25], [44]. Sorting network-based architec-
tures [10] consisting of a network of CAS blocks are one of
the most common approaches. The incoming data is sorted as
it passes the network. The middle element of the sorted data
is the median. As the sorting network can be easily pipelined,
the approach provides the best performance [35]. The local
neighborhood in median filtering is often a 3 × 3 or 5 × 5
window with the target input data at the center. Figs. 8 and 9
show the sorting networks for a 3 × 3 and a 5 × 5
median filters, respectively. We developed a nonpipelined and
a pipelined structure of these median filters with both the

Fig. 9. CAS network for a 5×5 median filter made of 246 CAS blocks [46].

conventional binary and the proposed unary design approach
with 8-bit input data resolution. The CAS blocks presented
in Fig. 5 were used in the developed architectures. A separate
unary stream generator was used for converting each input
data and a counter was used for converting the output median
stream back to binary form in the unary designs.

Table III shows the synthesis results for the developed
architectures. For now, let us ignore the rows representing
the unary-time-based designs, they will be discussed in
Section IV-B2. The overhead in pipelined designs includes
pipeline registers and for unary designs include the required
converters from/to binary. Similar to the results reported for
the complete sort networks, the unary implementation of
the median filters significantly improves the hardware cost,
up to 90% for the 5 × 5 median filter architecture. The
pipelined implementations have a higher working frequency
and a higher throughput. Comparing the power consumption
of the pipelined implementations show that, for the same
working frequency, the unary designs have a significantly
lower power consumption. For applications in which hardware
cost and power consumption are the main priorities, the pro-
posed unary designs outperform the conventional weighted
binary designs. However, for high-performance low-energy
applications, the binary design can be a better choice. In
Section IV-B, we exploit the concept of near sensor processing
and time-based representation of data to improve the latency
and energy consumption of the unary-based median filtering
designs at the cost of a slight accuracy loss.

B. Time-Based Unary Design

1) Overview: Image sensors convert the light intensity to
an analog voltage/current. The conventional approach for
processing these sensed data is to first convert the analog data
to digital binary form using a conventional analog-to-digital
converter and then process the binary data using digital logic.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAJAFI et al.: LOW-COST SORTING NETWORK CIRCUITS USING UNARY PROCESSING 7

TABLE III

SYNTHESIS RESULTS OF THE SORTING NETWORK-BASED MEDIAN FILTERS FOR DATA-WIDTH = 8

Fig. 10. Near-sensor processing with unary circuits.

In unary processing, this binary data is first converted to a
unary bit stream and then processed using unary circuits.
Processing of image pixels with 8-bit resolution requires
running the unary circuit for 256 cycles. Even with a higher
working frequency, due to a large number of clock cycles
running the circuit, the total latency of the processing using
unary circuit is more than that of processing with the binary
design.

Near-sensor image processing (NSIP) [16] is an interesting
concept that suggests integrating some of the processing
circuits (i.e., median filter circuit) with the sensing circuit.
This can potentially improve the power consumption, size,
and costs of vision chips. With more and more sensors
providing time-encoded outputs and ways to convert signals
from voltage or current to time signals [43], the sensed data
in the form of time-encoded signals can directly be fed to
unary circuits. Inspired from the NSIP concept and based on
the idea of time-encoding data introduced in [30], we time-
encode the sensed input data to address the long latency of
processing using unary circuits. Fig. 10 depicts a simple flow
of the method. Assuming that the output of the sensing circuit
is in voltage or current form, an ATC (i.e., low-cost circuit
shown in Fig. 11) is used to convert the sensed data to a time-
encoded pulse signal. The converted signal is processed using
the unary circuit and the output is converted back to a desired
analog format using a time-to-analog converter (TAC) (i.e.,
a voltage integrator).

2) Evaluation: Table III gives the area, latency, power,
and energy consumption of the implemented median filter-
ing circuits synthesized with the conventional binary, dig-
ital bit-stream-based unary, and the proposed time-based
unary approaches. The low-cost pulsewidth modulator, shown
in Fig. 11, was used as the ATC and a Gm-C active inte-
grator [45] was used as the TAC to convert the output signal
back to analog form in the time-based unary designs. While

Fig. 11. Low-cost ATC proposed in [30]. The reset pulse defines the
frequency of the output signal and is generated using the clock signal.

a pulsewidth modulator generates a periodic signal with a
specific duty cycle and frequency, only one period of the
generated signal will be sufficient for processing the data
using the unary designs [31]. The duty cycle of the generated
signal is determined by the dc level of the sensed data. The
hardware cost and the energy consumption of the implemented
ATC and TAC are a function of the target working frequency.
We extracted the area and energy numbers from [30] and
report them as the overhead of the time-based unary design
in Table III.

A separate ATC is used for time-encoding each input data
(nine ATCs for 3 × 3 median filter circuit). For each time-
based unary design, the reported overhead numbers are for
a working frequency equal to the inverse of the CP latency
of the circuit. Assuming that the clock signal that drives the
ATC is available in the system, a lower working frequency
translates to a lower area and energy overhead. As can be seen
in Table III, the total area of the time-based designs including
the overhead of ATCs and TAC is lower than the area cost of
the digital bit stream-based nonpipelined version of the unary
design. The total latency and the energy consumption of the
time-based unary designs are better than those of the pipelined
and nonpipelined structures of the unary design and also lower
than those of the binary designs. A lower CP latency in the
time-based unary designs in comparison to the nonpipelined
unary design is due to not using unary stream generator and
counter in the time-based approach.

The down side of the time-based unary design, however, is a
slight accuracy loss. The working frequency of the ATC affects

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE IV

AVERAGE ERROR RATE OF PROCESSING THE SAMPLE IMAGE USING THE
TIME-BASED UNARY CIRCUITS

the effective number of bits in representing and processing
data, hence the accuracy of computation. To evaluate the per-
formance of the median filtering unary designs when working
with time-encoded input signals, we developed SPICE netlists
of both 3×3 and 5×5 median filtering circuits and simulated
their operation on a 128×128 noisy soldier image. The sample
input image is shown in Fig. 12. Simulations were carried out
using a 45-nm standard cell library in HSPICE. Table IV gives
the average output error rates for the images produced using
the time-based unary designs. Image pixel intensities were
converted to pulse signals using the ATC shown in Fig. 11 and
also using the HSPICE built-in pulse generator (an ideal ATC).
In Table IV, these two methods correspond to the rows “ATC
of [30]” and “Ideal ATC,” respectively. Comparing the output
images with the expected output image (produced using a
software-based implementation of the algorithm in MATLAB),
the mean of the output error rates was calculated as follows:

Average Error Rate =
∑W

i=1
∑H

j=1 |Pi, j − Ei, j |
255 · (W × H)

× 100

where Ei, j is the expected value for location (i, j) in the
output image, Pi, j is the pixel value for the same location
produced using the circuit, and W and H are the dimensions
of the image. As can be seen in Table IV, increasing the length
of the input signal (a lower working frequency) leads to a
higher accuracy in the time-based approach. An average error
rate of less than 1% is achieved in the 3 × 3 median filtering
circuit with 1 ns and in the 5 × 5 circuit with 5-ns processing
time. The inherent inaccuracy in converting the values with
the ATC of [30] resulted in a slightly higher error rates when
comparing to the error rates where using idea ATC.

3) Sources of Inaccuracy: Error in generating pulse signals
(analog value to time conversion), error in measuring the
output signal (time to analog conversion), and error due to
skew noise [30] are the main sources of errors in the time-
based unary processing. A different gate delay for AND and
OR gates, particularly, can be a main source of skew in the
unary sorting networks. Such a skew is negligible for small
sorting networks (e.g., 3 × 3 median filtering). However, for
large sorting networks (e.g., 5 × 5 median filtering), the skew
in each stage is propagated to the next stage, resulting a
considerable skew error. With careful gate sizing and adjusting
gate delays, or simply increasing the length of the input
signals, we can mitigate this source of inaccuracy in the time-
based unary design.

Fig. 12. (a) Sample input image, and comparison of the noise-tolerance capa-
bility of (b) conventional binary versus (c) proposed unary implementation for
the 3 × 3 median filtering circuit for different noise injection rates.

V. NOISE-TOLERANT BEHAVIOR

To evaluate the noise tolerance of the proposed unary
designs in comparison to that of the corresponding con-
ventional binary implementations, we randomly injected soft
errors, i.e., bit flips, for 0%, 1%, 5%, and 10% noise injection
rates on the inputs of CAS blocks of the 3×3 median filtering
circuits and measured the corresponding average output error
rates. A noise injection rate of 10% means that 10% of
the total bits in the inputs of CAS blocks are randomly
chosen and flipped. The sample image shown in Fig. 12 was
used as the input to the circuits. For the conventional binary
implementation, the data-width was fixed at 8 bits and bit
streams of length 256 were used to represent values in the
unary designs.

Fig. 12 shows the performance of the implemented circuits
at various noise injection rates. As can be seen, the proposed
unary implementation has shown a higher noise tolerance
compared to the conventional binary implementation. For
injection rates higher than 1%, the quality of the output image
produced by the binary design degrades drastically leading to
a useless image for injection rates higher than 5%. This noise
immunity observed in the unary design is mainly due to its data
encoding approach, a common property between the unary and
the stochastic processing. Bits are equally weighted in unary
streams and so bit flips produce small and uniform deviation
from the nominal value.

VI. CONCLUSIONS AND FUTURE WORK

Batcher sorting networks have been widely used in differ-
ent applications. Their regular structure makes them popular
for signal processing systems and communication switching
networks. However, a conventional weighted binary-based
implementation of a large sorting network is costly considering
the large number of CAS units that such a network entails. The
VLSI cost increases significantly with increasing resolution of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAJAFI et al.: LOW-COST SORTING NETWORK CIRCUITS USING UNARY PROCESSING 9

the input data. The high hardware cost and the high power
consumption of such networks restrict their application.

This paper proposes an area and power-efficient implemen-
tation of sorting networks based on unary processing. The core
processing logic consists of simple gates and is independent
of the resolution of data. The only overhead in the approach,
the cost of converting data from/to binary, is small. More than
90% area and power savings are observed when compared to
the costs of a conventional weighted binary implementation.

The penalty is latency. Processing digital unary streams,
requires a relatively long running time, e.g., more than
100 ns to process each set of input data. Although this is a
100× increase in latency over conventional weighted binary,
this increase may be tolerable for many applications. For
example, ten gray-scale high-definition (HD) (1280 × 720)
images or four gray-scale full HD (1920 × 1080) images can
be processed per second with the proposed scheme for a task
such as median filtering, when operating on 256-bit long unary
streams. In spite of the latency, a 90% decrease in power
consumption might often make this a winning proposition.

To mitigate the latency of the approach, we further devel-
oped a time-based unary design approach in which the input
data is encoded in time and represented with pulse signals.
The result is a significant improvement in the latency and
energy consumption, at the cost of a slight loss in accuracy. For
example, more than 1000 gray-scale HD images or 400 gray-
scale full HD images can be processed per second with the
proposed time-based unary implementation of the 3×3 median
filtering at the cost of only 1% loss in accuracy.

In the future work, we will explore other applications of
sorting based on unary processing, for instance, in hardware
implementations of weighted and adaptive median filters.
We will also explore applications in communications and
coding.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommenda-
tions expressed in this paper are those of the authors and
do not necessarily reflect the views of the National Science
Foundation. A perliminary version of this paper appeared
as [32].

REFERENCES

[1] J. P. Agrawal, “Arbitrary size bitonic (ASB) sorters and their applications
in broadband ATM switching,” in Proc. IEEE 15th Annu. Int. Phoenix
Conf. Comput. Commun., Mar. 1996, pp. 454–458.

[2] S. W. A.-H. Baddar and B. A. Mahafzah, “Bitonic sort on a chained-
cubic tree interconnection network,” J. Parallel Distrib. Comput., vol. 74,
no. 1, pp. 1744–1761, Jan. 2014.

[3] A. Alaghi, W.-T. J. Chan, J. P. Hayes, A. B. Kahng, and J. Li, “Trading
accuracy for energy in stochastic circuit design,” J. Emerg. Technol.
Comput. Syst., vol. 13, no. 3, p. 47, May 2017.

[4] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Trans. Embedded Comput. Syst., vol. 12, no. 2s, pp. 92:1–92:19, 2013.

[5] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time
image-processing applications,” in Proc. 50th ACM/EDAC/IEEE DAC,
May 2013, pp. 1–6.

[6] K. E. Batcher, “Sorting networks and their applications,” in Proc.
Apr. 30–May 2, 1968, Spring Joint Comput. Conf. (AFIPS), New York,
NY, USA, 1968, pp. 307–314.

[7] V. Brajovic and T. Kanade, “A VLSI sorting image sensor: Global
massively parallel intensity-to-time processing for low-latency adaptive
vision,” IEEE Trans. Robot. Autom., vol. 15, no. 1, pp. 67–75, Feb. 1999.

[8] B. D. Brown and H. C. Card, “Stochastic neural computation.
I. Computational elements,” IEEE Trans. Comput., vol. 50, no. 9,
pp. 891–905, Sep. 2001.

[9] B. D. Brown and H. C. Card, “Stochastic neural computation. II. Soft
competitive learning,” IEEE Trans. Comput., vol. 50, no. 9, pp. 906–920,
Sep. 2001.

[10] C. Chakrabarti, “Sorting network based architectures for median filters,”
IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 40,
no. 11, pp. 723–727, Nov. 1993.

[11] C. Chakrabarti and L.-Y. Wang, “Novel sorting network-based architec-
tures for rank order filters,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 2, no. 4, pp. 502–507, Dec. 1994.

[12] R. Chen and V. K. Prasanna, “Computer generation of high throughput
and memory efficient sorting designs on FPGA,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 11, pp. 3100–3113, Nov. 2017.

[13] A. Colavita, E. Mumolo, and G. Capello, “A novel sorting algorithm and
its application to a gamma-ray telescope asynchronous data acquisition
system,” Nucl. Instrum. Methods Phys. Res. Section A: Accel., Spec-
trometers, Detectors Associated Equip., vol. 394, no. 3, pp. 374–380,
1997.

[14] A. A. Colavita, A. Cicuttin, F. Fratnik, and G. Capello, “SORTCHIP:
A VLSI implementation of a hardware algorithm for continuous data
sorting,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1076–1079,
Jun. 2003.

[15] K. Cushon, C. Leroux, S. Hemati, S. Mannor, and W. J. Gross, “A min-
sum iterative decoder based on pulsewidth message encoding,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 11, pp. 893–897,
Nov. 2010.

[16] J. E. Eklund, C. Svensson, and A. Astrom, “VLSI implementation of
a focal plane image processor—A realization of the near-sensor image
processing concept,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 4, no. 3, pp. 322–335, Sep. 1996.

[17] A. Farmahini-Farahani, H. J. Duwe, III, M. J. Schulte, and K. Compton,
“Modular design of high-throughput, low-latency sorting units,” IEEE
Trans. Comput., vol. 62, no. 7, pp. 1389–1402, Jul. 2013.

[18] B. Gaines, “Stochastic computing systems,” in Advances in Informa-
tion Systems Science. New York, NY, USA: Springer-Verlag, 1969,
pp. 37–172.

[19] B. Gedik, R. R. Bordawekar, and P. S. Yu, “Cellsort: High performance
sorting on the cell processor,” in Proc. 33rd Int. Conf. Very Large Data
Bases (VLDB), 2007, pp. 1286–1297.

[20] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “GPUterasort:
High performance graphics co-processor sorting for large database man-
agement,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, New York,
NY, USA, 2006, pp. 325–336.

[21] G. Graefe, “Implementing sorting in database systems,” ACM Comput.
Surv., vol. 38, no. 3, Sep. 2006, Art. no. 10.

[22] N. Guo et al., “Energy-efficient hybrid analog/digital approximate com-
putation in continuous time,” IEEE J. Solid-State Circuits, vol. 51, no. 7,
pp. 1514–1524, Jul. 2016.

[23] D. Jenson and M. A. Riedel, “A deterministic approach to stochastic
computation,” in Proc. 35th Int. Conf. Comput.-Aided Design (ICCAD),
New York, NY, USA, 2016, p. 102:1–102:8.

[24] K. Kantawala, “Design, analysis, and evaluation of concurrent checking
sorting networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 5, no. 3, pp. 338–343, Sep. 1997.

[25] M. Karaman, L. Onural, and A. Atalar, “Design and implementation of a
general-purpose median filter unit in CMOS VLSI,” IEEE J. Solid-State
Circuits, vol. 25, no. 2, pp. 505–513, Apr. 1990.

[26] S.-Y. Kuo and S.-C. Liang, “Design and analysis of defect tolerant
hierarchical sorting networks,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 1, no. 2, pp. 219–223, Jun. 1993.

[27] B. Li, M. H. Najafi, and D. J. A. Lilja, “Using stochastic computing to
reduce the hardware requirements for a restricted Boltzmann machine
classifier,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays
(FPGA), New York, NY, USA, 2016, pp. 36–41.

[28] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams digital image processing case studies,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 3, pp. 449–462,
Mar. 2014.

[29] B. A. Mahafzah, “Performance assessment of multithreaded quicksort
algorithm on simultaneous multithreaded architecture,” J. Supercomput.,
vol. 66, no. 1, pp. 339–363, Oct. 2013.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[30] M. H. Najafi, S. Jamali-Zavareh, D. J. Lilja, M. D. Riedel, K. Bazargan,
and R. Harjani, “Time-encoded values for highly efficient stochastic
circuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25,
no. 5, pp. 1–14, May 2017.

[31] M. H. Najafi and D. J. Lilja, “High-speed stochastic circuits using
synchronous analog pulses,” in Proc. 22nd ASP-DAC, Jan. 2017,
pp. 481–487.

[32] M. H. Najafi, D. J. Lilja, M. Riedel, and K. Bazargan, “Power and area
efficient sorting networks using unary processing,” in Proc. IEEE 35th
Int. Conf. Comput. Design (ICCD), Nov. 2017, pp. 125–128.

[33] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Polysyn-
chronous clocking: Exploiting the skew tolerance of stochastic circuits,”
IEEE Trans. Comput., vol. 66, no. 10, pp. 1734–1746, Oct. 2017.

[34] M. H. Najafi and M. E. Salehi, “A fast fault-tolerant architecture for
sauvola local image thresholding algorithm using stochastic computing,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 2,
pp. 808–812, Feb. 2016.

[35] E. Nikahd, P. Behnam, and R. Sameni, “High-speed hardware implemen-
tation of fixed and runtime variable window length 1-D median filters,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 5, pp. 478–482,
May 2016.

[36] D. S. K. Pok, C.-I. H. Chen, J. J. Schamus, C. T. Montgomery, and
J. B. Y. Tsui, “Chip design for monobit receiver,” IEEE Trans. Microw.
Theory Techn., vol. 45, no. 12, pp. 2283–2295, Dec. 1997.

[37] W. J. Poppelbaum, “Burst processing: A deterministic counterpart to
stochastic computing,” in Proc. 1st Int. Symp. Stochastic Comput. Appl.,
1978, pp. 1–30.

[38] W. J. Poppelbaum, A. Dollas, J. B. Glickman, and C. O’Toole, “Unary
processing,” Adv. Comput., vol. 26, pp. 47–92, 1987. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0065245808600054,
doi: https://doi.org/10.1016/S0065-2458(08)60005-4.

[39] W. J. Poppelbaum, C. Afuso, and J. W. Esch, “Stochastic computing ele-
ments and systems,” in Proc. Joint Comput. Conf. (AFIPS), New York,
NY, USA, 1967, pp. 635–644.

[40] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An archi-
tecture for fault-tolerant computation with stochastic logic,” IEEE Trans.
Comput., vol. 60, no. 1, pp. 93–105, Jan. 2011.

[41] W. Qian and M. Riedel, “The synthesis of robust polynomial arith-
metic with stochastic logic,” in Proc. 45th ACM/IEEE Design Autom.
Conf. (DAC), 2008, pp. 648–653.

[42] K. Ratnayake and A. Amer, “An FPGA architecture of stable-sorting on
a large data volume: Application to video signals,” in Proc. 41st Annu.
Conf. Inf. Sci. Syst., Mar. 2007, pp. 431–436.

[43] V. Ravinuthula, V. Garg, J. G. Harris, and J. A. B. Fortes, “Time-mode
circuits for analog computation,” Int. J. Circuit Theory Appl., vol. 37,
no. 5, pp. 631–659, 2009.

[44] D. S. Richards, “VLSI median filters,” IEEE Trans. Acoust., Speech
Signal Process., vol. 38, no. 1, pp. 145–153, Jan. 1990.

[45] W. Sansen. Analog Design Essentials (The International Series in
Engineering and Computer Science), vol. 859, 1st ed. New York, NY,
USA: Springer, 2006, p. VIII, 778, doi: 10.1007/b135984.

[46] J. Scott, “Analysis of two-dimensional median filter hardware imple-
mentations for real-time video denoising,” M.S. thesis, Dept. Comput.
Sci. Eng., Pennsylvania State Univ., State College, PA, USA, Dec. 2010.

[47] D. C. Stephens, J. C. R. Bennett, and H. Zhang, “Implementing schedul-
ing algorithms in high-speed networks,” IEEE J. Sel. Areas Commun.,
vol. 17, no. 6, pp. 1145–1158, Jun. 1999.

[48] Y. Tsividis, “Continuous-time digital signal processing,” Electron. Lett.,
vol. 39, no. 21, pp. 1551–1552, Oct. 2003.

M. Hassan Najafi (S’15) is currently working
toward the Ph.D. degree at the Laboratory for
Advanced Research in Computing Technology and
Compilers, Department of Electrical and Computer
Engineering, University of Minnesota, Twin Cities,
Minneapolis, MN, USA.

He is also a Research Assistant with the Labo-
ratory for Advanced Research in Computing Tech-
nology and Compilers, Department of Electrical and
Computer Engineering, University of Minnesota.
His current research interests include stochastic and

approximate computing, computer-aided design of integrated circuits, low-
power design, and designing fault tolerant systems.

Dr. Najafi received the Doctoral Dissertation Fellowship from the University
of Minnesota and the Best Paper Award from the 2017 35th IEEE International
Conference on Computer Design.

David J. Lilja (F’06) received the B.S. degree in
computer engineering from Iowa State University,
Ames, IA, USA, and the M.S. and Ph.D. degrees in
electrical engineering from the University of Illinois
at Urbana–Champaign, Champaign, IL, USA.

He served ten years as the Head of the ECE
Department, University of Minnesota, Minneapo-
lis, MN, USA, and he was a Research Assistant
with the Center for Supercomputing Research and
Development, University of Illinois. He served as
a Development Engineer with Tandem Computers

Inc., Cupertino, CA, USA. He is currently the Schnell Professor of Electrical
and Computer Engineering with the University of Minnesota, where he also
serves as a member of the Graduate Faculties in Computer Science, Scien-
tific Computation, and Data Science. His current research interests include
computer architecture, parallel processing, computer systems performance
analysis, approximate computing, and storage systems.

Prof. Lilja was elected as a fellow of the American Association for the
Advancement of Science.

Marc D. Riedel (SM’12) received the B.Eng. degree
in electrical engineering from McGill University,
Montreal, QC, Canada and the M.Sc. and Ph.D.
degrees in electrical engineering from the California
Institute of Technology (Caltech), Pasadena, CA,
USA.

From 2004 to 2005, he was a Lecturer of Compu-
tation and Neural Systems at Caltech. He was with
Marconi Canada, Montreal, QC, CAE Electronics,
Montreal, QC, Toshiba, Tokyo, Japan, and Fujitsu
Research Labs, Kawasaki, Japan. He is currently

an Associate Professor of Electrical and Computer Engineering at the
University of Minnesota, Minneapolis, MN, USA, where he is a Mem-
ber of the Graduate Faculty of Biomedical Informatics and Computational
biology.

Dr. Riedel was a recipient of the Charl H. Wilts Prize for the Best Doctoral
Research in Electrical Engineering from Caltech, the Best Paper Award from
the Design Automation Conference, and the U.S. National Science Foundation
Career Award.

Kia Bazargan (SM’07) received the B.Sc. degree
in computer science from Sharif University, Tehran,
Iran, and the M.S. and Ph.D. degrees in electri-
cal and computer engineering from Northwestern
University, Evanston, IL, USA, in 1998 and 2000,
respectively.

He is currently an Associate Professor at the
Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN, USA.

Dr. Bazargan is a Senior Member of the IEEE
Computer Society. He was a recipient of the U.S.

National Science Foundation Career Award in 2004. He was a Guest Co-Editor
of the ACM Transactions on Embedded Computing Systems Special Issue on
Dynamically Adaptable Embedded Systems in 2003. He was on the Technical
Program Committee of a number of the IEEE/ACM-sponsored conferences,
including Field Programmable Gate Array, Field Programmable Logic, Design
Automation Conference (DAC), International Conference on Computer-Aided
Design, and Asia and South Pacific DAC. From 2005 to 2012, he was
an Associate Editor of the IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS.

http://dx.doi.org/10.1007/b135984

