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Abstract—A new 2D convolution-based filter is presented 

specifically designed to improve Visual Search applications. It 

exploits a new radix-3 partitioning method of integer numbers, 

derived from the weight partition theory, which allows 

substituting multipliers with simplified floating-point adders, 

working on 32 bits floating point filter coefficients. The memory 

organization allows elaborating the incoming data in raster scan 

order, as those directly provided by an acquisition source, 

without frame buffers and additional aligning circuitry. 

Compared to the existent literature, build around conventional 

arithmetic circuitry, the proposed design achieves state-of-the-art 

performances in the reduction of the mapped physical resources 

and elaboration velocity, achieving a critical path delay of about 

4.5 ns both with a Xilinx Virtex 7 FPGA and CMOS 90nm 

std_cells. 

 
Index Terms—Visual Search, Interest Point Detection, Field 

programmable gate arrays, Gaussian filter, Multiplier. 

I. INTRODUCTION 

WO dimensional (2D) convolution-based filtering is  

widely used in Visual Search (VS) applications. The 

increment of VS functionalities and the growing demand for 

very high quality multimedia applications have led to the 

exponential growth of the computational complexity of the 

dedicated Hardware/Software (HW/SW) systems. On the other 

hand, the growing usage of such applications in hand-held and 

portable devices gives rise to incompatible constrains in terms 

of elaboration speed and number of instantiated physical 

resources [1]. Although this is an actual problem of all the 

algorithms that locally work on portions of a frame [2], [3], 

the huge number of calculations required to extract features 

from an image for recognizing and classifying its content [4], 

makes VS applications by far the most demanding ones. In 

such cases, 2D convolution-based Gaussian filters are largely 

employed, in order to remove high frenquency noise, as well 

as to construct a Difference-of-Gaussian (DoG) scale-space 

pyramid from a number of downsampled, blurred specimens 

of an input image [5]. A number of HW solutions have been 

proposed to compensate for the inadequate performances of 

SW implementations [5]-[7], mainly hindered by the large 

number of floating points (FP) Multiply-ACcumulation 

(MAC) operations and the large quantity of memory for frame 

buffering [8]. However, for the fullfillment of severe 

constrains, also HW implementations need of a number of 

simplifications that gave rise to less complex alternatives to 

Gaussian filtering [9], [10]. With reference to the recent 

literature, we observed that the optimized HW solutions have 

been essentially addressed to the improvement of memory 

architectures and the search for the optimal strategy for 

exchanging data with the datapath circuitries. The bufferless 

solution in [11] preserves a high degree of accuracy by using a 

custom coding and a partial serialization of the filtering, in 

order to reduce the number of mapped physical resources. The 

design, however, is very tailored for DoG, since it exploits the 

separability of Gaussian kernels, and it can be hardly 

generalized to generic VS methods. In [12], the design does 

not exploit the separability of Gaussian kernels but proposes a 

complex arrangement of SRAMs to implement sliding 

window and row-shuffling operation by means of a switching 

network whose complexity increases with the filter 

dimensions. On the other hand, very few optimizations have 

been addressed to the arithmetic units, which are usually 

simplified by recurring to fixed-point (FI) codes in place of 32 

bits floating-point (FP32), with impact on the accuracy of the 

overall VS systems. Additionally, almost all published HW 

solutions use surrogates of the SW conterparts, as in the case 

of DoG calculations that work on a reduced number of scales 

and octaves [13] with respect to the optimal one [5] or with 

Gaussian kernels having reduced standard deviations [14].  

With the purpose to provide a 2D convolution-based filter 

that can improve VS applications in terms of area, power 

constrains and elaboration velocity, in this work a new design 

is proposed, which is capable to outperform existent FP32 

implementation of 2D filters, by exploiting a new partitioning 

method of the operands [15], in the case that one of that 

assumes multiple constant values. The design works on a 

continuous stream of data, directly provided by the input 

source, and avoids the use of frame buffers by means of a 

careful organization of small intermediate buffers. The 

accuracy of the elaborated results is ensured by the use of 

FP32 coding, while its compactness is given by the complete 

absence of multiplier circuits. Although the proposed design 

can work with a large number of filter kernels, in this work it 

has been addressed to Gaussian filtering, in order to 

demonstrate its advantages in one of the most diffused and 

computational demanding application. Implementation of the 

2D filter on a high-end FPGA returns a total delay path of 4.7 

ns to produce an IEEE-754 FP32 result, starting from a 

window of 3x3 pixels, while std_cell implementation with 

TSMC CMOS 90 nm technology, returns 4.4 ns, both in 

slow/slow corner.  
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II. THE UNDERLYING METHOD 

The proposed partitioning method is based on the ancient 
mathematical problem dealing with the least number of pound 
weights that can be used on a scale pan to weigh any integer 
number of pounds from 1 to 40 inclusive [16]. Recently, this 
problem has been resumed and generalized when 40 has been 
susbtituted with a generic integer m [17]-[19]. In [17] an 
important proposition has been demonstrated: 

Every integer weight l with 0 ≤ l ≤ m can be measured on a 
two scale balance using weights from the multiset 

( ){ }2 1 2 1: 1,3,3 , ,3 , 1 3 3 3n n

m
W m

− −
= − + + + +… … . 

In particular, if m=0.5(3n+1−1) then Wm is the only and the 
smallest multiset of weights that satisfies the above Bachet 
problem. Considering a partition of a positive integer m,  
defined as an ordered sequence of positive integers that sum to 

m: 0 1 n
m λ λ λ= + + +…  with 0 1 n

λ λ λ≤ ≤ ≤… , this is called a 

Bachet partitions if: 
1. every integer  0 ≤ l ≤ 2m (or 0 ≤ l ≤ m) can be written as 

0

n

i ii
l C λ

=
=∑  where { }0,1, 2

i
C ∈  (or { }1,0,1

i
C ∈ − ); 

2. there not exists another partition of m satisfying 1. with 
fewer parts than n+1. 

Such partitions are also called minimal 2-complete 

partitions [18]. The existance and the minimum number of 
parts composing a Bachet partition are demonstrated by the 
following results [18], [19]: 

• Lemma: If 0 1 2 n
m λ λ λ λ= + + + +…  is a 2-complete 

partition then λ0=1 and ( )0 1 11 2
i i

λ λ λ λ
−

≤ + + + +…  for 

every i. 

• Corollary: If 0 1 2 n
m λ λ λ λ= + + + +…  is a 2-complete 

partition then 3i

i
λ ≤ . 

• Theorem 1: a Bachet partition of a positive integer m has 

precisely ( )3log 2 1m +    parts. 

• Theorem 2: the partition 0 1 2 n
m λ λ λ λ= + + + +… is a 

Bachet partition if and only if ( )3log 2n m=    , λ0=1 and 

( )0 1 11 2i iλ λ λ λ −≤ + + + +…  for every i.  

The uniqueness of the Bachet partition has been finally 
demonstrated in [20]. The principal conclusions of the above 
mathematical derivations that turn useful in our design, can be 
summarized as follows: 

• Given a range of integers [0;r], it is possible to define a set 

of integer values, called parts, 0 1 2 1{ , , ,..., , }r n nS λ λ λ λ λ−=  

of cardinality 31 log (2 ) 1n r+ = +   , such that all the 

values in the range could be obtained by a combination of 

λi.  

• The parts are given by the first n  powers of 3 plus

0 1 2 1(3 3 3 ... 3 )n
R r

−
= − + + + + , namely,

0 1 2 1
0 1 2 1{ , , ,..., , } : {3 ,3 ,3 ,...,3 , }n

r n nS Rλ λ λ λ λ −
−= =  . 

• The partition is unique and does not exist another partition 

of [0;r] satisfying the aforementioned conditions composed 

by fewer parts than n+1. 

From the above results it follows that, defined the 

coefficients set : { 1,0,1}C = − , every term [ ]0;q r∈  can be 

rewritten as the superposition of the minimum number of 
parts: 

 
0

n

i i

i

q C λ
=

=∑  (1) 

 
Table I shows the application of the proposed partitioning 

method. For example: for an 8 bits input, the parts are 

{ }0,1,3,9,27,81,134 ; the input 23 can be rewritten as 23=(-

1)1+(-1)3+(0)9+(+1)27+(0)81+(0)134, namely the set of 

values from Table I will be { }1, 1,0, 1,0,0− − + . 

Eq. (1) can be employed to partition a generic 2D-
convolution between a kernel F, having K K× dimensions, 
and an input matrix I(x,y). The filtered output, O(x0,y0), at the 
point (x0,y0), can be calculated as: 
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λ

λ

− −

= =

− −

= = =

− −

= = =

− − 
= + − + − = 

 

− − 
= + − + − = 

 

− − 
=   + − + −  

 

∑∑

∑∑ ∑

∑∑∑

(2) 

 
where F(h,j) and Ci(h,j) are the kernel coefficient and the sign 
coefficient at the generic position (h,j), respectively. 
Considering that typical VS applications work on integer 
inputs coded with a small number of bits (e.g. 8 bits for Luma 
and Chroma) and that the coefficients of the filters are a priori 

known once that the filter dimensions have been defined, the 

values of the n inner products between F  and iλ  can be 

precalculated for each input value. Therefore, (2) can be 
simplified in a summation of precalculated coefficients, P(h,j): 

 

 ( )
1 1

0 0 0 0
0 0

1 1
, ,

2 2

K K

h j

K K
O x y P x h y j

− −

= =

− − 
= + − + − 

 
∑∑    (3) 

TABLE I 
APPLICATION OF THE PROPOSED PARTITION METHOD 

Input 
Partition 

30 31 32 33 34 ... λλλλn 

0 0 0 0 0 0 ... 0 

1 +1 0 0 0 0 ... 0 

2 -1 +1 0 0 0 ... 0 

3 0 +1 0 0 0 ... 0 

4 +1 +1 0 0 0 ... 0 

5 -1 -1 +1 0 0 ... 0 
... ... ... ... ... ... ... ... 

q C0 C1 C2 C3 C4 ... Cn 

... ... ... ... ... ... ... ... 

r +1 +1 +1 +1 +1 ... +1 
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It is worth to note that the proposed partitioning method is 
similar but substantially different from the Distributed 
Arithmetic (DA) method. DA, indeed, simplifies the 
calculations by recurring to a power of two partitioning, which 
substitutes multiplications with shifts and additions; on the 
contrary, the computational complexity of (3) is simplified by 
the smaller number of coefficients ensured by the lower 
number of parts of the proposed method. A radix-2 DA 
partitioning, for example, requires that I in (2) is decomposed 

as 
1

0

2
s

i
i

i

I b

−

=

=∑ , where {0,1}ib ∈  represents the sign digit. 

Namely, (2) can be DA partitioned as: 

( )

( )( )

0 0

1 1 1

0 0

0 0 0

,

1 1
 , 2 ,

2 2

K K s
i

i

h j i

O x y

K K
F h j b x h y j

− − −

= = =

=

− − 
= + − + − 

 
∑∑∑

    (4)                   

Although the use of bi in place of Ci contributes to reduce 
some “glue” logic to implement (4), the value of s in (4) 
linearly increases with the codelength of the input. Therefore, 
the number of operators to implement the inner products in (4) 
rapidly overcomes that of (2), where n increases with a log3 
slope. For example, in the case of 8 bit inputs, s=8 and n=5. 
Anyway, considering that the DA-related literature offers 
several optimized implementations, the proposed filter has 
been implemented with Modified Booth (MB) multipliers, 
selected as one of the best exponent of the DA-related 
arithmetic. Results are reported in Table III. 

III. ARCHITECTURE DESIGN 

The block diagram of the proposed architecture is shown in 
Fig. 1. It has been divided in two sequential modules, 
following the data flow: the memory module that codes the 
input data according to the proposed partitioning method and 
manages the elaboration flow, and the filtering module that 
calculates (3). Input pixels, coded as m bits unsigned integers 
(Uint-m), can be acquired in raster scan order directly from an 
image source (e.g. image sensor), without any additional 
caching apparatus other than that provided by the source itself. 

The output is an IEEE-754 compliant, FP32 filtered value, 
sequentially provided with a throughput coherent with the 
input acquisition rate. Depending on the VS algorithm used in 
conjunction with the proposed design, optional serdes circuitry 
can be added with the purpose to align the filtered pixels in a 
parallel fashion. 

A. Memory Module 

The operation principle of the memory module is 
schematized in Fig. 1. Input pixels are acquired by the 
Coeff_Gen component, essentially composed by a ROM 
implementing Table I, by which data are coded in a sequence 

of ternary sign coefficients, { 1,0,1}iC ∈ − . Considering that 

each Uint-m input must be partitioned in 
1

31 log (2 ) 1m
n

+ + = + 
 parts, and that 2 bits are needed to 

code each sign, the length of the resulting code is 
1

32 log (2 ) 2m
Cl

+ = + 
; namely, if m=8 bits, lC=12 bits. In 

turn, the original value of the pixel is no more necessary for 
the subsequent calculus. 

Coded data are fed in a SIPO (Serial-Input Parallel-Output) 
buffer, which serially stores the 1D filtered rows and outputs a 
K×K matrix of data to be convolved with a kernel having the 
same dimensions. Since input pixels are received in raster scan 
order, the SIPO is, in principle, folded like a stripe buffer of 
dimensions K×W, in order to store the first K rows of the 
image to be processed, having width W. When K-1 rows and 
the first K values of the Kth row are serially pushed into the 
buffer, the rightmost K columns of the buffer can be filtered in 
parallel.  

It is important to note that, the above organization allows 
that, each time a new value is pushed into the buffer, all data 
shifts so that those to be filtered are “naturally” aligned in the 
rightmost columns, without auxiliary circuitry to realize row-
shuffling operations [12]. Although a straightforward 
implementation of the stripe buffer, by using registers, is 
technically possible, it is strongly deterred for the large 
amount of physical resources required. For example, with 
reference to an 8 bits VGA image (W = 640), the stripe of a 
kernel with K=25 would store 640×25=16’000 values, each 
coded with 12 bits, corresponding to 188 kbits. A much more 
suitable solution consists in using SRAM to “emulate” the 
SIPO behavior of the buffer. Given the availability of 
embedded SRAM modules, both in standard cell technology 
and FPLs, this solution enables the implementation of the 
processor in both kind of target platforms. In order to enable 
the writing and reading of data during the same clock cycle, 
each row of the stripe buffer has been implemented by a dual-

port SRAM of dimensions lC×(W−K) to store almost a 
complete frame row. The parallel reading of the rightmost 
K×K data has been implemented by completing each SRAM 
row with K registers, connected like in Fig. 1, in order to 
preserve the shift operations needed by the stream of data. It is 
worth to note that, due to the casual access of SRAMs, it 
makes no more sense to speak of the shifting operation of 
data, but a correct generation of addresses emulates the shift of 
the stored values and their alignment. It is worth to underline 
that the proposed solution is always advantageous, in terms of 
total memory requirement, with respect to a frame buffer-

Fig.  1: Block diagram of proposed design. The Memory Module, 
enclosed in the dashed square, is detailed in its components. 
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based implementation, since it requires a fraction of the 
memory of a complete frame.  

B. Filtering Module 

Fig. 2 shows the block diagram of the Filtering Module, 
representing the organization and interconnections of the 
equivalent K×K multipliers. The K small LUTs store the (n+1) 
parts pre-multiplied by the K coefficients of the filter, 

( ),
i

F h j λ  in (2), coded with length lS, calculated in the 

following. In order to simplify the adder structure, the K LUTs 
are used to store also the 2’s complement of the pre-multiplied 

coefficients, which are selected when Ci=−1, without 
additional overhead. Therefore, each LUT has dimensions 

( )2 1 Sn l+ × . The structure of a single equivalent multiplier is 

shown in Fig. 3. It has been substituted by n adders distributed 

along a 2log ( 1)n+   depth tree, which calculates (3) by using 

the pre-multiplied coefficients, selected by a multiplexer bank, 
and the Ci coefficients provided by the stripe buffer.  

Even if the adders should have, in principle, a FP32 
architecture, a custom coding has been adopted for partial 
results, achieving a reduction of the adders’ complexity, 
without altering the accuracy of the multiplication. Starting 
from the standard IEEE-754 coding, all the exponents of the 
pre-multiplied coefficients have been increased to that of the 
greatest one, the significands have been shifted accordingly 
and their length has been increased to include the shifted 
codes without truncations. In particular, if Fmin and Fmax are 
the minimum and maximum kernel coefficients, respectively, 
the codelength of the significands is increased to a number of 
bits:  

 
max

2 min

0

23 log n

S

F
l

F

λ

λ

  
= +  
   

                        (5) 

where 23 bits is the length of the standard FP32 significand. 
Therefore, the normalization of the mantissa after every 

intermediate addition is avoided and the exponent, as well as 
the devoted circuitry, can be omitted. A normalization stage 
has been introduced at the end of the overall computation to 
normalize the output in a standard FP32 format. 

IV. SYNTHESIS AND RESULTS  

In order to contextualize the proposed design in a typical 
VS scenario and make the derived results comparable with the 
existent literature related to VS applications, the processor has 
been implemented with a 2D symmetric Gaussian kernel,

( ) ( )

2 2

21 2 4, , 2

x y

G x y e σσ π σ
+

−− −
=  working with Uint-8 inputs. A 

“building block” kernel with K=3 has been implemented, since 
it is the minimum usable dimension for VS applications. The 
range of input values that can be represented is r=256, 

therefore, the number of parts is 31 log (2 ) 1 6n r+ = + =   , 

given by {1,3,9,27,81,134}rS = , and lc=12 bits.  

Considering that: 

( ) ( )
1max 20,0, 2G G σ π σ

− −
= = ,

( ) ( ) ( )

2

2

18
1 1min 2 2 923,3, 2 2G G e e

σ

σσ π σ π σ
−− −− − −

= = = , 134nλ =  

and 0 1λ = , from (4) the length of the significands must be 

( )9
223 log 44S nl e bitsλ = + =

 
. An example of the above 

recoding is shown in Table II. Derived results can be easily 
generalized to greater dimensions by using curves in Fig. 4, by 
which only the dimensions of Coeff_Gen have been omitted 
since they depend only on the input coding.  

The design has been targeted to a Xilinx Virtex 7 
XC7V2000tflg1925-1, as part of the proFPGA DUO ASIC 
prototyping board [21] and to TSMC CMOS 90nm std_cells. 
Synthesis results have been reported in Table III and 
compared with implementations of the filter using 
conventional FP32 and MB multipliers, all targeted to the 
same FPGA and std_cells. In order to present a fair 
comparison and as much reproducible and comparable results 

 
Fig. 3: Block diagram of multiplier, implemented with the proposed 
partitioning method.  

 
Fig. 2: Block diagram of Filtering Module, representing the way the 
“equivalent” multipliers are interconnected.  

TABLE II 
CUSTOM CODING APPLIED TO THE SMALLEST PRE-MULTIPLIED COEFFICIENT 

WITH UINT-8 INPUTS AND σ=4 

Smallest  

Coeff.  
r λn FP32 coding of  1.228x10-6 

 
1.1x10-3 

 

 

 134 

00110101101001001100001101010100 

256 Modified coding of  1.228x10-6 

 00000000000000000000101001001100001101010100 

*from (3) the significand must be enlarged of 21bits. 
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as possible, IPs provided by Xilinx for the adders and the 
multipliers, both configured with a 3-stage pipeline, have been 
used as building components of the proposed design. For the 
same reason, we did not impose aggressive constrains: the 
most relevant, in the case of FPGA, concerns the exclusion of 
embedded DSPs and in the forced use of Block RAMs. In 
addition, the flatten hierarchy option has been disabled and a 
general synthesis strategy toward speed has been selected. No 
particular constrains have been set for std_cell 
implementation. The post place&route data in Table III shows 
that the FPGA is the most advantageous platform to 
implement the proposed multiplier. Indeed, considering that at 
regime, one pixel is filtered per clock cycle, the FPGA 
implementation exhibits a speed-up of 371% with respect to a 
conventional multiplier, whereas the worst path delay reduces 
from 17.432 ns to 4.700 ns in the slow/slow corner, and a 
speed-up of 215% with respect to an MB multiplier, where the 
delay increases to 8.875 ns, also for the absence of DSPs. The 
mapped physical resources are approximately lower of 38.6% 
than in the conventional case and 44.8% than in the MB-based 
filter, while the normalized dissipated power is approximately 
25% and 45% lower than the conventional and the MB one, 
respectively. The extremely positive results of FPGA 
implementation are justified by its very short critical path that, 
in the worst case, involves three pipelined adders and two 
parallel memory access. Memories have been implemented by 
means of Block-RAMs that, in the targeted Virtex 7 with 
speed grade -1, present an access time of 2.18 ns. The routing 
delay has been reduced by a very low congestioned 
floorplanning, allowed by the reduced number of CLBs 
mapped for the logic. This is also confirmed by the results of 
the std_cell implementation, where it is observed a reduction 
of about 24% in area and a speed-up of 94.75% with respect to 
a conventional multiplier. The absence of very optimized 

memory modules and devoted interconnections reduces the 
speed-up of the proposed design, which is quite the same than 
that of the MB-based design. The power dissipation is 2.84% 
higher than that of the conventional case, mainly due to the 
consumption of the memories. In obtaining the data in Table 
III, it has been considered that all the LUTs must be read from 
all the multipliers on the same clock edge. Although this can 
be easily implemented in FPGA, ASICs require a custom 
implementation of very small ROMs, developed in a way 
similar to the one presented in [22]. However, the amount of 
required memory does not represent an actual problem in real 
multimedia applications, whereas the memory requirement is 
in the order of Mbits because of frame buffering [23], large 
tables [24], [25] and partial data storage [26], which makes 
negligible the additional area required. A direct comparison of 
the results in Table III with the existent literature is very hard, 
because the search for the reduction of HW complexity has 
lead almost all authors to implement HW designs with fixed-
point arithmetic or floating-point with reduced accuracy. 
Therefore, a fair comparison with the existent literature has 
been possible only by scaling-down the proposed design with 
respect to the results in Table III. Comparison with the 2D 
Gaussian filter for SIFT in [12] has been obtained by a 
scaling-down to FP24 and a synthesis with TSMC 180nm 
std_cell libraries. In turn, comparison with the design in [27] 
has been carried out by using the same Xilinx Spartan 6 FPGA 
[28] used in the Nexys 3 board and scaling-down the accuracy 
to FP16. Results considering the available data are reported in 
Table IV. The greater quantity of memory with respect to [12] 
is justified by the use of a FP coding and is by far 
compensated by the lower number of arithmetic circuits and 
the more accurate coding with a reduced amount of additional 
physical resources. For example, the adoption of a FP32 
coding would require only 21 kbits of additional memory. In 
all the comparisons, the proposed design exhibits a much 
higher elaboration speed, although the absence of a very 
optimized memory path of the lower-end FPGA, reduces the 
achievable speed-up.  

As a final observation, it is important to underline that the 

TABLE III 
SYNTHESIS RESULTS OF THE PROPOSED FILTER COMPARED WITH  

THOSE BASED ON CONVENTIONAL AND MODIFIED BOOTH MULTIPLIERS 

 FPGA Std_cells 

 Prop. 
Conv. 

FP32 
MB Prop. 

Conv. 

FP32 
MB 

Technology XC7V* XC7V XC7V 90nm 90nm 90nm 
LUTs/ 

Area[mm2] 
4750 7732 8606 0.294 0.387 0.51 

Mem. [byte] 582  -- 528 582 -- -- 
Delay**[ns] 4.700 17.432 8.785 4.426 8.717 4.483 

Power*** [W] 0.684 0.907 1.226 0.014 0.0136 0.019 

*Virtex 7 **1 pixel filtered per clock cycle    ***Normalized at 100MHz  

 
Fig. 4: Required resources of the 2D convolution-based filter as a 

function of its dimensions, when m=8 bits and W=640 pixels. 

TABLE IV 
COMPARISON OF THE PROPOSED DESIGN WITH THE RELATED LITERATURE 

 Std_cells FPGA 

 Prop* Huang [12] Prop***. Cabello [27] 

Technology 
CMOS 
180nm 

CMOS 
180nm 

Spartan 6 Spartan 6 

Output Resolution FP24 Fixed 24 bits FP16 FP16 
LUTs -- N.A. 2395 5052 

Mem. [kbits] 255 224 4 1 BRAM 

Max freq.*[MHz] 126 100** 145 100 

     

*scaled to 3 octaves, 6 scales. 3 stage pipeline.  **extracted by the overall 
system velocity ***3x3 kernel  

TABLE V 
COMPARISON OF THE PROPOSED DESIGN WITH  

A GAUSSIAN AND A WEIGHTED AVERAGE KERNEL 

 FPGA Std_cells 

 Gaussian W. Aver Gaussian W. Aver 

Technology XC7V* XC7V 90nm 90nm 
LUTs/ 

Area[mm2] 
4750 4744 0.294 0.293 

Mem. [byte] 582  483 582 483 
Delay**[ns] 4.700 4.877 4.426 4.669 

Power*** [W] 0.684 0.678 0.014 0.010 

*Virtex 7 **1 pixel filtered per clock cycle   ***Normalized at 100MHz  
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use of a Gaussian filter is the most demanding in term of 
resources instantiated by the proposed design. Indeed, the 
dimensions of the tables for pre-multiplied coefficients are 
strictly related to the kernel dimensions that, in turn, must be 
significantly larger than the standard deviation of the kernel. 
Therefore, the use of a different kernel generally causes a 
significant memory reduction. In turn, the arithmetic 
complexity of the filtering remains unchanged, since there are 
no multiplications and the number of additions only depends 
on the ranges of input values and of kernel coefficients. What 
said is confirmed from the results in Table V where the 
proposed Gaussian-based implementation of Table III has 
been compared with a 2D weighted average filter, having 
FP32 coded real weights, taken as representative of large 
number of VS filters [10]. The only notable difference is in the 
reduction of about 17% of the memory required for 
coefficients. Naturally, this percentage increases with the 
kernel dimensions. 

V. CONCLUSION 

In this paper, a new HW architecture has been presented for 
2D convolution-based filtering of images and video-frames. It 
is particularly useful for VS applications, where performances 
strongly contrast with the number of arithmetic operators and 
required memory. Both the memory and the arithmetic 
apparatus have been design in order to improve the throughput 
and the amount of mapped resources. The memory 
compartment has been designed to elaborate images in raster 
scan order, without internal or external frame buffers. In turn, 
a new partitioning method has been used to improve the 
arithmetic compartment that substitutes multipliers with 
simplified adders and ROMs for storing pre-multiplied 
coefficients. The proposed solution obtains state-of-the-art 
performances in both std_cells and FPGA target platforms. In 
addition, power dissipation keeps to values that justify the 
employment of the processor for handheld, portable devices. 
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