
1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2603068, IEEE
Transactions on Circuits and Systems for Video Technology

1

Abstract—A new 2D convolution-based filter is presented

specifically designed to improve Visual Search applications. It

exploits a new radix-3 partitioning method of integer numbers,

derived from the weight partition theory, which allows

substituting multipliers with simplified floating-point adders,

working on 32 bits floating point filter coefficients. The memory

organization allows elaborating the incoming data in raster scan

order, as those directly provided by an acquisition source,

without frame buffers and additional aligning circuitry.

Compared to the existent literature, build around conventional

arithmetic circuitry, the proposed design achieves state-of-the-art

performances in the reduction of the mapped physical resources

and elaboration velocity, achieving a critical path delay of about

4.5 ns both with a Xilinx Virtex 7 FPGA and CMOS 90nm

std_cells.

Index Terms—Visual Search, Interest Point Detection, Field

programmable gate arrays, Gaussian filter, Multiplier.

I. INTRODUCTION

WO dimensional (2D) convolution-based filtering is

widely used in Visual Search (VS) applications. The

increment of VS functionalities and the growing demand for

very high quality multimedia applications have led to the

exponential growth of the computational complexity of the

dedicated Hardware/Software (HW/SW) systems. On the other

hand, the growing usage of such applications in hand-held and

portable devices gives rise to incompatible constrains in terms

of elaboration speed and number of instantiated physical

resources [1]. Although this is an actual problem of all the

algorithms that locally work on portions of a frame [2], [3],

the huge number of calculations required to extract features

from an image for recognizing and classifying its content [4],

makes VS applications by far the most demanding ones. In

such cases, 2D convolution-based Gaussian filters are largely

employed, in order to remove high frenquency noise, as well

as to construct a Difference-of-Gaussian (DoG) scale-space

pyramid from a number of downsampled, blurred specimens

of an input image [5]. A number of HW solutions have been

proposed to compensate for the inadequate performances of

SW implementations [5]-[7], mainly hindered by the large

number of floating points (FP) Multiply-ACcumulation

(MAC) operations and the large quantity of memory for frame

buffering [8]. However, for the fullfillment of severe

constrains, also HW implementations need of a number of

simplifications that gave rise to less complex alternatives to

Gaussian filtering [9], [10]. With reference to the recent

literature, we observed that the optimized HW solutions have

been essentially addressed to the improvement of memory

architectures and the search for the optimal strategy for

exchanging data with the datapath circuitries. The bufferless

solution in [11] preserves a high degree of accuracy by using a

custom coding and a partial serialization of the filtering, in

order to reduce the number of mapped physical resources. The

design, however, is very tailored for DoG, since it exploits the

separability of Gaussian kernels, and it can be hardly

generalized to generic VS methods. In [12], the design does

not exploit the separability of Gaussian kernels but proposes a

complex arrangement of SRAMs to implement sliding

window and row-shuffling operation by means of a switching

network whose complexity increases with the filter

dimensions. On the other hand, very few optimizations have

been addressed to the arithmetic units, which are usually

simplified by recurring to fixed-point (FI) codes in place of 32

bits floating-point (FP32), with impact on the accuracy of the

overall VS systems. Additionally, almost all published HW

solutions use surrogates of the SW conterparts, as in the case

of DoG calculations that work on a reduced number of scales

and octaves [13] with respect to the optimal one [5] or with

Gaussian kernels having reduced standard deviations [14].

With the purpose to provide a 2D convolution-based filter

that can improve VS applications in terms of area, power

constrains and elaboration velocity, in this work a new design

is proposed, which is capable to outperform existent FP32

implementation of 2D filters, by exploiting a new partitioning

method of the operands [15], in the case that one of that

assumes multiple constant values. The design works on a

continuous stream of data, directly provided by the input

source, and avoids the use of frame buffers by means of a

careful organization of small intermediate buffers. The

accuracy of the elaborated results is ensured by the use of

FP32 coding, while its compactness is given by the complete

absence of multiplier circuits. Although the proposed design

can work with a large number of filter kernels, in this work it

has been addressed to Gaussian filtering, in order to

demonstrate its advantages in one of the most diffused and

computational demanding application. Implementation of the

2D filter on a high-end FPGA returns a total delay path of 4.7

ns to produce an IEEE-754 FP32 result, starting from a

window of 3x3 pixels, while std_cell implementation with

TSMC CMOS 90 nm technology, returns 4.4 ns, both in

slow/slow corner.

Gian Domenico Licciardo, Member, IEEE, Carmine Cappetta, Student Member, IEEE, Luigi Di
Benedetto, Member, IEEE, Alfredo Rubino, Rosalba Liguori

Multiplier-less Stream Processor for 2D
Filtering in Visual Search Applications

T

 All the authors are with the Department of Industrial Engineering (D.I.In.),

University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno, Italy.

(e−mails: gdlicciardo@unisa.it, ccappetta@unisa.it, ldibenedetto@unisa.it,

arubino@unisa.it, rliguori@unisa.it).

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2603068, IEEE
Transactions on Circuits and Systems for Video Technology

2

II. THE UNDERLYING METHOD

The proposed partitioning method is based on the ancient
mathematical problem dealing with the least number of pound
weights that can be used on a scale pan to weigh any integer
number of pounds from 1 to 40 inclusive [16]. Recently, this
problem has been resumed and generalized when 40 has been
susbtituted with a generic integer m [17]-[19]. In [17] an
important proposition has been demonstrated:

Every integer weight l with 0 ≤ l ≤ m can be measured on a
two scale balance using weights from the multiset

(){ }2 1 2 1: 1,3,3 , ,3 , 1 3 3 3n n

m
W m

− −
= − + + + +… … .

In particular, if m=0.5(3n+1−1) then Wm is the only and the
smallest multiset of weights that satisfies the above Bachet
problem. Considering a partition of a positive integer m,
defined as an ordered sequence of positive integers that sum to

m: 0 1 n
m λ λ λ= + + +… with 0 1 n

λ λ λ≤ ≤ ≤… , this is called a

Bachet partitions if:
1. every integer 0 ≤ l ≤ 2m (or 0 ≤ l ≤ m) can be written as

0

n

i ii
l C λ

=
=∑ where { }0,1, 2

i
C ∈ (or { }1,0,1

i
C ∈ −);

2. there not exists another partition of m satisfying 1. with
fewer parts than n+1.

Such partitions are also called minimal 2-complete

partitions [18]. The existance and the minimum number of
parts composing a Bachet partition are demonstrated by the
following results [18], [19]:

• Lemma: If 0 1 2 n
m λ λ λ λ= + + + +… is a 2-complete

partition then λ0=1 and ()0 1 11 2
i i

λ λ λ λ
−

≤ + + + +… for

every i.

• Corollary: If 0 1 2 n
m λ λ λ λ= + + + +… is a 2-complete

partition then 3i

i
λ ≤ .

• Theorem 1: a Bachet partition of a positive integer m has

precisely ()3log 2 1m +   parts.

• Theorem 2: the partition 0 1 2 n
m λ λ λ λ= + + + +… is a

Bachet partition if and only if ()3log 2n m=    , λ0=1 and

()0 1 11 2i iλ λ λ λ −≤ + + + +… for every i.

The uniqueness of the Bachet partition has been finally
demonstrated in [20]. The principal conclusions of the above
mathematical derivations that turn useful in our design, can be
summarized as follows:

• Given a range of integers [0;r], it is possible to define a set

of integer values, called parts, 0 1 2 1{ , , ,..., , }r n nS λ λ λ λ λ−=

of cardinality 31 log (2) 1n r+ = +   , such that all the

values in the range could be obtained by a combination of

λi.

• The parts are given by the first n powers of 3 plus

0 1 2 1(3 3 3 ... 3)n
R r

−
= − + + + + , namely,

0 1 2 1
0 1 2 1{ , , ,..., , } : {3 ,3 ,3 ,...,3 , }n

r n nS Rλ λ λ λ λ −
−= = .

• The partition is unique and does not exist another partition

of [0;r] satisfying the aforementioned conditions composed

by fewer parts than n+1.

From the above results it follows that, defined the

coefficients set : { 1,0,1}C = − , every term []0;q r∈ can be

rewritten as the superposition of the minimum number of
parts:

0

n

i i

i

q C λ
=

=∑ (1)

Table I shows the application of the proposed partitioning

method. For example: for an 8 bits input, the parts are

{ }0,1,3,9,27,81,134 ; the input 23 can be rewritten as 23=(-

1)1+(-1)3+(0)9+(+1)27+(0)81+(0)134, namely the set of

values from Table I will be { }1, 1,0, 1,0,0− − + .

Eq. (1) can be employed to partition a generic 2D-
convolution between a kernel F, having K K× dimensions,
and an input matrix I(x,y). The filtered output, O(x0,y0), at the
point (x0,y0), can be calculated as:

() ()

()

()

1 1

0 0 0 0

0 0

1 1

0 0

0 0 0

1 1

0 0

0 0 0

1 1
, , ,

2 2

1 1
, ,

2 2

1 1
, ,

2 2

K K

h j

K K n

i i

h j i

K K n

i i

h j i

K K
O x y F h j I x h y j

K K
F h j C x h y j

K K
F h j C x h y j

λ

λ

− −

= =

− −

= = =

− −

= = =

− − 
= + − + − = 

 

− − 
= + − + − = 

 

− − 
=   + − + −  

 

∑∑

∑∑ ∑

∑∑∑

(2)

where F(h,j) and Ci(h,j) are the kernel coefficient and the sign
coefficient at the generic position (h,j), respectively.
Considering that typical VS applications work on integer
inputs coded with a small number of bits (e.g. 8 bits for Luma
and Chroma) and that the coefficients of the filters are a priori

known once that the filter dimensions have been defined, the

values of the n inner products between F and iλ can be

precalculated for each input value. Therefore, (2) can be
simplified in a summation of precalculated coefficients, P(h,j):

 ()
1 1

0 0 0 0
0 0

1 1
, ,

2 2

K K

h j

K K
O x y P x h y j

− −

= =

− − 
= + − + − 

 
∑∑ (3)

TABLE I
APPLICATION OF THE PROPOSED PARTITION METHOD

Input
Partition

30 31 32 33 34 ... λλλλn

0 0 0 0 0 0 ... 0

1 +1 0 0 0 0 ... 0

2 -1 +1 0 0 0 ... 0

3 0 +1 0 0 0 ... 0

4 +1 +1 0 0 0 ... 0

5 -1 -1 +1 0 0 ... 0
...

q C0 C1 C2 C3 C4 ... Cn

...

r +1 +1 +1 +1 +1 ... +1

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2603068, IEEE
Transactions on Circuits and Systems for Video Technology

3

It is worth to note that the proposed partitioning method is
similar but substantially different from the Distributed
Arithmetic (DA) method. DA, indeed, simplifies the
calculations by recurring to a power of two partitioning, which
substitutes multiplications with shifts and additions; on the
contrary, the computational complexity of (3) is simplified by
the smaller number of coefficients ensured by the lower
number of parts of the proposed method. A radix-2 DA
partitioning, for example, requires that I in (2) is decomposed

as
1

0

2
s

i
i

i

I b

−

=

=∑ , where {0,1}ib ∈ represents the sign digit.

Namely, (2) can be DA partitioned as:

()

()()

0 0

1 1 1

0 0

0 0 0

,

1 1
 , 2 ,

2 2

K K s
i

i

h j i

O x y

K K
F h j b x h y j

− − −

= = =

=

− − 
= + − + − 

 
∑∑∑

 (4)

Although the use of bi in place of Ci contributes to reduce
some “glue” logic to implement (4), the value of s in (4)
linearly increases with the codelength of the input. Therefore,
the number of operators to implement the inner products in (4)
rapidly overcomes that of (2), where n increases with a log3
slope. For example, in the case of 8 bit inputs, s=8 and n=5.
Anyway, considering that the DA-related literature offers
several optimized implementations, the proposed filter has
been implemented with Modified Booth (MB) multipliers,
selected as one of the best exponent of the DA-related
arithmetic. Results are reported in Table III.

III. ARCHITECTURE DESIGN

The block diagram of the proposed architecture is shown in
Fig. 1. It has been divided in two sequential modules,
following the data flow: the memory module that codes the
input data according to the proposed partitioning method and
manages the elaboration flow, and the filtering module that
calculates (3). Input pixels, coded as m bits unsigned integers
(Uint-m), can be acquired in raster scan order directly from an
image source (e.g. image sensor), without any additional
caching apparatus other than that provided by the source itself.

The output is an IEEE-754 compliant, FP32 filtered value,
sequentially provided with a throughput coherent with the
input acquisition rate. Depending on the VS algorithm used in
conjunction with the proposed design, optional serdes circuitry
can be added with the purpose to align the filtered pixels in a
parallel fashion.

A. Memory Module

The operation principle of the memory module is
schematized in Fig. 1. Input pixels are acquired by the
Coeff_Gen component, essentially composed by a ROM
implementing Table I, by which data are coded in a sequence

of ternary sign coefficients, { 1,0,1}iC ∈ − . Considering that

each Uint-m input must be partitioned in
1

31 log (2) 1m
n

+ + = + 
 parts, and that 2 bits are needed to

code each sign, the length of the resulting code is
1

32 log (2) 2m
Cl

+ = + 
; namely, if m=8 bits, lC=12 bits. In

turn, the original value of the pixel is no more necessary for
the subsequent calculus.

Coded data are fed in a SIPO (Serial-Input Parallel-Output)
buffer, which serially stores the 1D filtered rows and outputs a
K×K matrix of data to be convolved with a kernel having the
same dimensions. Since input pixels are received in raster scan
order, the SIPO is, in principle, folded like a stripe buffer of
dimensions K×W, in order to store the first K rows of the
image to be processed, having width W. When K-1 rows and
the first K values of the Kth row are serially pushed into the
buffer, the rightmost K columns of the buffer can be filtered in
parallel.

It is important to note that, the above organization allows
that, each time a new value is pushed into the buffer, all data
shifts so that those to be filtered are “naturally” aligned in the
rightmost columns, without auxiliary circuitry to realize row-
shuffling operations [12]. Although a straightforward
implementation of the stripe buffer, by using registers, is
technically possible, it is strongly deterred for the large
amount of physical resources required. For example, with
reference to an 8 bits VGA image (W = 640), the stripe of a
kernel with K=25 would store 640×25=16’000 values, each
coded with 12 bits, corresponding to 188 kbits. A much more
suitable solution consists in using SRAM to “emulate” the
SIPO behavior of the buffer. Given the availability of
embedded SRAM modules, both in standard cell technology
and FPLs, this solution enables the implementation of the
processor in both kind of target platforms. In order to enable
the writing and reading of data during the same clock cycle,
each row of the stripe buffer has been implemented by a dual-

port SRAM of dimensions lC×(W−K) to store almost a
complete frame row. The parallel reading of the rightmost
K×K data has been implemented by completing each SRAM
row with K registers, connected like in Fig. 1, in order to
preserve the shift operations needed by the stream of data. It is
worth to note that, due to the casual access of SRAMs, it
makes no more sense to speak of the shifting operation of
data, but a correct generation of addresses emulates the shift of
the stored values and their alignment. It is worth to underline
that the proposed solution is always advantageous, in terms of
total memory requirement, with respect to a frame buffer-

Fig. 1: Block diagram of proposed design. The Memory Module,
enclosed in the dashed square, is detailed in its components.

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2603068, IEEE
Transactions on Circuits and Systems for Video Technology

4

based implementation, since it requires a fraction of the
memory of a complete frame.

B. Filtering Module

Fig. 2 shows the block diagram of the Filtering Module,
representing the organization and interconnections of the
equivalent K×K multipliers. The K small LUTs store the (n+1)
parts pre-multiplied by the K coefficients of the filter,

(),
i

F h j λ in (2), coded with length lS, calculated in the

following. In order to simplify the adder structure, the K LUTs
are used to store also the 2’s complement of the pre-multiplied

coefficients, which are selected when Ci=−1, without
additional overhead. Therefore, each LUT has dimensions

()2 1 Sn l+ × . The structure of a single equivalent multiplier is

shown in Fig. 3. It has been substituted by n adders distributed

along a 2log (1)n+   depth tree, which calculates (3) by using

the pre-multiplied coefficients, selected by a multiplexer bank,
and the Ci coefficients provided by the stripe buffer.

Even if the adders should have, in principle, a FP32
architecture, a custom coding has been adopted for partial
results, achieving a reduction of the adders’ complexity,
without altering the accuracy of the multiplication. Starting
from the standard IEEE-754 coding, all the exponents of the
pre-multiplied coefficients have been increased to that of the
greatest one, the significands have been shifted accordingly
and their length has been increased to include the shifted
codes without truncations. In particular, if Fmin and Fmax are
the minimum and maximum kernel coefficients, respectively,
the codelength of the significands is increased to a number of
bits:

max

2 min

0

23 log n

S

F
l

F

λ

λ

  
= +  
   

 (5)

where 23 bits is the length of the standard FP32 significand.
Therefore, the normalization of the mantissa after every

intermediate addition is avoided and the exponent, as well as
the devoted circuitry, can be omitted. A normalization stage
has been introduced at the end of the overall computation to
normalize the output in a standard FP32 format.

IV. SYNTHESIS AND RESULTS

In order to contextualize the proposed design in a typical
VS scenario and make the derived results comparable with the
existent literature related to VS applications, the processor has
been implemented with a 2D symmetric Gaussian kernel,

() ()

2 2

21 2 4, , 2

x y

G x y e σσ π σ
+

−− −
= working with Uint-8 inputs. A

“building block” kernel with K=3 has been implemented, since
it is the minimum usable dimension for VS applications. The
range of input values that can be represented is r=256,

therefore, the number of parts is 31 log (2) 1 6n r+ = + =   ,

given by {1,3,9,27,81,134}rS = , and lc=12 bits.

Considering that:

() ()
1max 20,0, 2G G σ π σ

− −
= = ,

() () ()

2

2

18
1 1min 2 2 923,3, 2 2G G e e

σ

σσ π σ π σ
−− −− − −

= = = , 134nλ =

and 0 1λ = , from (4) the length of the significands must be

()9
223 log 44S nl e bitsλ = + =

 
. An example of the above

recoding is shown in Table II. Derived results can be easily
generalized to greater dimensions by using curves in Fig. 4, by
which only the dimensions of Coeff_Gen have been omitted
since they depend only on the input coding.

The design has been targeted to a Xilinx Virtex 7
XC7V2000tflg1925-1, as part of the proFPGA DUO ASIC
prototyping board [21] and to TSMC CMOS 90nm std_cells.
Synthesis results have been reported in Table III and
compared with implementations of the filter using
conventional FP32 and MB multipliers, all targeted to the
same FPGA and std_cells. In order to present a fair
comparison and as much reproducible and comparable results

Fig. 3: Block diagram of multiplier, implemented with the proposed
partitioning method.

Fig. 2: Block diagram of Filtering Module, representing the way the
“equivalent” multipliers are interconnected.

TABLE II
CUSTOM CODING APPLIED TO THE SMALLEST PRE-MULTIPLIED COEFFICIENT

WITH UINT-8 INPUTS AND σ=4

Smallest

Coeff.
r λn FP32 coding of 1.228x10-6

1.1x10-3

 134

00110101101001001100001101010100

256 Modified coding of 1.228x10-6

 00000000000000000000101001001100001101010100

*from (3) the significand must be enlarged of 21bits.

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2603068, IEEE
Transactions on Circuits and Systems for Video Technology

5

as possible, IPs provided by Xilinx for the adders and the
multipliers, both configured with a 3-stage pipeline, have been
used as building components of the proposed design. For the
same reason, we did not impose aggressive constrains: the
most relevant, in the case of FPGA, concerns the exclusion of
embedded DSPs and in the forced use of Block RAMs. In
addition, the flatten hierarchy option has been disabled and a
general synthesis strategy toward speed has been selected. No
particular constrains have been set for std_cell
implementation. The post place&route data in Table III shows
that the FPGA is the most advantageous platform to
implement the proposed multiplier. Indeed, considering that at
regime, one pixel is filtered per clock cycle, the FPGA
implementation exhibits a speed-up of 371% with respect to a
conventional multiplier, whereas the worst path delay reduces
from 17.432 ns to 4.700 ns in the slow/slow corner, and a
speed-up of 215% with respect to an MB multiplier, where the
delay increases to 8.875 ns, also for the absence of DSPs. The
mapped physical resources are approximately lower of 38.6%
than in the conventional case and 44.8% than in the MB-based
filter, while the normalized dissipated power is approximately
25% and 45% lower than the conventional and the MB one,
respectively. The extremely positive results of FPGA
implementation are justified by its very short critical path that,
in the worst case, involves three pipelined adders and two
parallel memory access. Memories have been implemented by
means of Block-RAMs that, in the targeted Virtex 7 with
speed grade -1, present an access time of 2.18 ns. The routing
delay has been reduced by a very low congestioned
floorplanning, allowed by the reduced number of CLBs
mapped for the logic. This is also confirmed by the results of
the std_cell implementation, where it is observed a reduction
of about 24% in area and a speed-up of 94.75% with respect to
a conventional multiplier. The absence of very optimized

memory modules and devoted interconnections reduces the
speed-up of the proposed design, which is quite the same than
that of the MB-based design. The power dissipation is 2.84%
higher than that of the conventional case, mainly due to the
consumption of the memories. In obtaining the data in Table
III, it has been considered that all the LUTs must be read from
all the multipliers on the same clock edge. Although this can
be easily implemented in FPGA, ASICs require a custom
implementation of very small ROMs, developed in a way
similar to the one presented in [22]. However, the amount of
required memory does not represent an actual problem in real
multimedia applications, whereas the memory requirement is
in the order of Mbits because of frame buffering [23], large
tables [24], [25] and partial data storage [26], which makes
negligible the additional area required. A direct comparison of
the results in Table III with the existent literature is very hard,
because the search for the reduction of HW complexity has
lead almost all authors to implement HW designs with fixed-
point arithmetic or floating-point with reduced accuracy.
Therefore, a fair comparison with the existent literature has
been possible only by scaling-down the proposed design with
respect to the results in Table III. Comparison with the 2D
Gaussian filter for SIFT in [12] has been obtained by a
scaling-down to FP24 and a synthesis with TSMC 180nm
std_cell libraries. In turn, comparison with the design in [27]
has been carried out by using the same Xilinx Spartan 6 FPGA
[28] used in the Nexys 3 board and scaling-down the accuracy
to FP16. Results considering the available data are reported in
Table IV. The greater quantity of memory with respect to [12]
is justified by the use of a FP coding and is by far
compensated by the lower number of arithmetic circuits and
the more accurate coding with a reduced amount of additional
physical resources. For example, the adoption of a FP32
coding would require only 21 kbits of additional memory. In
all the comparisons, the proposed design exhibits a much
higher elaboration speed, although the absence of a very
optimized memory path of the lower-end FPGA, reduces the
achievable speed-up.

As a final observation, it is important to underline that the

TABLE III
SYNTHESIS RESULTS OF THE PROPOSED FILTER COMPARED WITH

THOSE BASED ON CONVENTIONAL AND MODIFIED BOOTH MULTIPLIERS

 FPGA Std_cells

 Prop.
Conv.

FP32
MB Prop.

Conv.

FP32
MB

Technology XC7V* XC7V XC7V 90nm 90nm 90nm
LUTs/

Area[mm2]
4750 7732 8606 0.294 0.387 0.51

Mem. [byte] 582 -- 528 582 -- --
Delay**[ns] 4.700 17.432 8.785 4.426 8.717 4.483

Power*** [W] 0.684 0.907 1.226 0.014 0.0136 0.019

*Virtex 7 **1 pixel filtered per clock cycle ***Normalized at 100MHz

Fig. 4: Required resources of the 2D convolution-based filter as a

function of its dimensions, when m=8 bits and W=640 pixels.

TABLE IV
COMPARISON OF THE PROPOSED DESIGN WITH THE RELATED LITERATURE

 Std_cells FPGA

 Prop* Huang [12] Prop***. Cabello [27]

Technology
CMOS
180nm

CMOS
180nm

Spartan 6 Spartan 6

Output Resolution FP24 Fixed 24 bits FP16 FP16
LUTs -- N.A. 2395 5052

Mem. [kbits] 255 224 4 1 BRAM

Max freq.*[MHz] 126 100** 145 100

*scaled to 3 octaves, 6 scales. 3 stage pipeline. **extracted by the overall
system velocity ***3x3 kernel

TABLE V
COMPARISON OF THE PROPOSED DESIGN WITH

A GAUSSIAN AND A WEIGHTED AVERAGE KERNEL

 FPGA Std_cells

 Gaussian W. Aver Gaussian W. Aver

Technology XC7V* XC7V 90nm 90nm
LUTs/

Area[mm2]
4750 4744 0.294 0.293

Mem. [byte] 582 483 582 483
Delay**[ns] 4.700 4.877 4.426 4.669

Power*** [W] 0.684 0.678 0.014 0.010

*Virtex 7 **1 pixel filtered per clock cycle ***Normalized at 100MHz

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2603068, IEEE
Transactions on Circuits and Systems for Video Technology

6

use of a Gaussian filter is the most demanding in term of
resources instantiated by the proposed design. Indeed, the
dimensions of the tables for pre-multiplied coefficients are
strictly related to the kernel dimensions that, in turn, must be
significantly larger than the standard deviation of the kernel.
Therefore, the use of a different kernel generally causes a
significant memory reduction. In turn, the arithmetic
complexity of the filtering remains unchanged, since there are
no multiplications and the number of additions only depends
on the ranges of input values and of kernel coefficients. What
said is confirmed from the results in Table V where the
proposed Gaussian-based implementation of Table III has
been compared with a 2D weighted average filter, having
FP32 coded real weights, taken as representative of large
number of VS filters [10]. The only notable difference is in the
reduction of about 17% of the memory required for
coefficients. Naturally, this percentage increases with the
kernel dimensions.

V. CONCLUSION

In this paper, a new HW architecture has been presented for
2D convolution-based filtering of images and video-frames. It
is particularly useful for VS applications, where performances
strongly contrast with the number of arithmetic operators and
required memory. Both the memory and the arithmetic
apparatus have been design in order to improve the throughput
and the amount of mapped resources. The memory
compartment has been designed to elaborate images in raster
scan order, without internal or external frame buffers. In turn,
a new partitioning method has been used to improve the
arithmetic compartment that substitutes multipliers with
simplified adders and ROMs for storing pre-multiplied
coefficients. The proposed solution obtains state-of-the-art
performances in both std_cells and FPGA target platforms. In
addition, power dissipation keeps to values that justify the
employment of the processor for handheld, portable devices.

REFERENCES

[1] J. Luo and G. Oubong, “A comparison of SIFT, PCA-SIFT and SURF”,

International Journal of Image Processing, Vol. 3, No. 4, pp. 143–152,

Aug. 2009.

[2] S. L. Chen, “VLSI implementation of an adaptive edge - enhanced

image scalar for real - time multimedia applications”, in IEEE Trans.

on Circuits and Systems for Video Technology, Vol. 23, No. 9,

pp.1510–1522, Sep. 2013.

[3] M. Basu, “Gaussian-Based Edge-Detection Methods—A Survey”, in

IEEE Trans. on Systems, Man and Cybernetics - Part C: Applications

and Reviews, Vol. 32, No. 3, pp.234–240, Aug. 2002.

[4] D. G. Lowe, “Object Recognition from Local Scale-Invariant

Features”, in Computer Vision, 1999. The Proc. of the Seventh IEEE

International Conf. on, Kerkyra, Vol. 2, pp.1150–1157, Sep. 1999.

[5] D. G. Lowe, “Distinctive image features from scale-invariant key

points”, in International Journal of Computer Vision, vol. 60, no. 2, pp.

91–110, Jan. 2004.

[6] K. Mizuno et al., “A low power real-time SIFT descriptor generation

engine for full hdtv video recognition”, in IEICE Trans. Electron, Vol.

E94-C, No. 4 Apr. 2011.

[7] M. Grabner, H. Grabner, and H. Bischof, “Fast approximated SIFT”, in

Asian Conf. on Computer Vision, Hyderabad, India, 2006.

[8] J. Jiang, X. Li, and G. Zhang, “SIFT Hardware Implementation for

Real-Time Image Feature Extraction”, in IEEE Trans. on Circuit and

Systems for Video Technology, Vol. 24, No. 7, pp. 1209–1220, Jul.

2014.

[9] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk and B.

Girod, “CHoG: Compressed Histogram of Gradients a Low Bit-Rate

Feature Descriptor”, in Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, Miami, FL, pp. 2504–2511,

Jun. 2009.

[10] H. Bay, T. Tuytelaars and L. Van Gool, “SURF: Speeded Up Robust

Features”, in Proc. 9th Eur. Conf. Comput. Vis., 2006, pp. 404–417.

[11] G.D. Licciardo, T. Boesch, D. Pau and L. Di Benedetto, “Frame

Buffer-less Stream Processor for Accurate Real-Time Interest Point

Detection”, in Integration, the VLSI Journal, Vol.54, pp. 10–23, Jun.

2016.

[12] F. C. Huang, S.Y. Huang, J. W. Ker and Y. C. Chen, “High

performance SIFT hardware accelerator for real - time image feature

extraction”, in IEEE Trans. on Circuit and Systems for Video

Technology, Vol. 22, No. 3, pp. 340–351, Mar. 2012.

[13] N. P. Borg, C. J. Debono, D. Zammit-Mangion, “A Single Octave SIFT

Algorithm for Image Feature Extraction in Resource Limited Hardware

Systems”, in Visual Communications and Image Processing Conf.,2014

IEEE, Valletta, pp. 213–216, Dec. 2014.

[14] E. S. Kim and H. J. Lee, “A novel hardware design for SIFT generation

with reduced memory requirement,” J. Semicond. Technol. Sci., Vol.

13, No. 2, pp. 157–169, Apr. 2013.

[15] G. D. Licciardo, C. Cappetta, L. Di Benedetto, M. Vigliar, “Weighted

Partitioning for Fast Multilpier-less Multiple Constant Convolution

Circuit”, IEEE Trans. on Circuits and Systems II: Express Briefs, in-

press, doi: 10.1109/TCSII.2016.2546899.

[16] E. O'Shea, “Bachet's problem: as few weights to weigh them all”,

arXiv: 1010.5486, pp. 1 - 15, Oct. 2008.

[17] G. H. Hardy and E. M. Wright, An introduction to the theory of

numbers (sixth edition), Oxford University Press, 2008.

[18] S. K. Park, “The r-complete partitions”, Discrete Mathematics, No.

183, pp. 293–297, 1998.

[19] Ø. J. Rødseth, “Enumeration of M-partitions”, Discrete Mathematics,

No. 306, pp. 694–698, 2006.

[20] P.A. MacMahon, “Combinatory Analysis”. (vols. 1 & 2)(III Ed.), AMS

Chelsea Publishing, 1984.

[21] Virtex - 7 Family, DS183 (v1.23), Xilinx, San Jose, CA, USA, Jun. 23,

2015.

[22] B. C. Paul, S. Fujita and M. Okajima, “ROM - Based Logic (RBL)

design: a low - power 16 bit multiplier”, in IEEE Journal of Solid -

State Circuits, Vol. 44, No. 11, pp.2935–2942, Nov. 2009.

[23] W. M. Chao and L. G. Chen, “Pyramid architecture for 3840x2160

Quad Full High Definition 30 frames/s video acquisition”, IEEE Trans.

on Circuits and Systems for Video Technology, Vol. 20, No. 11, pp.

1499–1508, Nov. 2010.

[24] G. D. Licciardo and M. Costagliola, "An H.264 Encoder for Real Time

Video Processing Designed for SPEAr Customizable System-on-Chip

Family," Signal Processing and Communications, 2007. ICSPC 2007.

IEEE International Conference on, Dubai, 2007, pp. 824-827. doi:

10.1109/ICSPC.2007.4728446.

[25] G.D. Licciardo, L.F. Albanese, “Design of a context-adaptive variable

length encoder for real-time video compression on reconfigurable

platforms”, IET Image Processing, vol.6, no.4, pp. 301-308, June 2012.

[26] G. D. Licciardo, A. D'Arienzo and A. Rubino, “Stream processor fo

real - time inverse Tone Mapping of Full - HD images”, in IEEE Trans.

on VLSI Systems, Vol.23, No. 11, pp. 2531–2539, Nov. 2015.

[27] F. Cabello, J. Leon, Y. Iano and R. Arthur, “Implementation of a

Fixed-Point 2D Gaussian Filter for Image Processing Based on FPGA”,

in Signal Processing: Algorithms, Architectures, Arrangements and

Applications (SPA), pp. 28–33, Sep. 2015, Poznan.

[28] Spartan - 6 Family, DS160 (v2.0), Xilinx, San Jose, CA, USA, Oct. 25,

2011.

