This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Feedforward-Cutset-Free Pipelined
Multiply—Accumulate Unit for the
Machine Learning Accelerator

Sungju Ryu, Student Member, IEEE, Naebeom Park, and Jae-Joon Kim"™, Member, IEEE

Abstract— Multiply-accumulate (MAC) computations account
for a large part of machine learning accelerator operations.
The pipelined structure is usually adopted to improve the
performance by reducing the length of critical paths. An increase
in the number of flip-flops due to pipelining, however, generally
results in significant area and power increase. A large number
of flip-flops are often required to meet the feedforward-cutset
rule. Based on the observation that this rule can be relaxed in
machine learning applications, we propose a pipelining method
that eliminates some of the flip-flops selectively. The simulation
results show that the proposed MAC unit achieved a 20% energy
saving and a 20% area reduction compared with the conventional
pipelined MAC.

Index Terms—Hardware accelerator, machine
multiply-accumulate (MAC) unit, pipelining.

learning,

I. INTRODUCTION

ECENTLY, the deep neural network (DNN) emerged as

a powerful tool for various applications including image
classification [1]-[3] and speech recognition [4], [5]. Since an
enormous amount of vector-matrix multiplication computa-
tions are required in a typical DNN application, a variety of
dedicated hardware for machine learning have been proposed
to accelerate the computations [6], [7]. In a machine learning
accelerator, a large number of multiply—accumulate (MAC)
units are included for parallel computations, and timing-critical
paths of the system are often found in the unit.

A multiplier typically consists of several computational
parts including a partial product generation, a column addi-
tion, and a final addition. An accumulator consists of the
carry-propagation adder. Long critical paths through these
stages lead to the performance degradation of the overall
system. To minimize this problem, various methods have
been studied. The Wallace [8] and Dadda [9] multipliers are

Manuscript received May 25, 2018; revised August 18, 2018; accepted
September 22, 2018. This work was supported in part by the
Samsung Research Funding Center of Samsung Electronics under Project
SRFC-TC1603-04 and in part by the Ministry of Science and ICT, South
Korea, through the ICT Consilience Creative Program under Grant IITP-2018-
2011-1-00783 supervised by the Institute for Information and Communica-
tions Technology Promotion. (Corresponding author: Jae-Joon Kim.)

The authors are with the Department of Creative IT Engineering,
Pohang University of Science and Technology, Pohang 37673, South Korea
(e-mail: sungju.ryu@postech.ac.kr; naebeom.park @postech.ac.kr; jaejoon@
postech.ac.kr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2018.2873716

well-known examples for the achievement of a fast column
addition, and the carry-lookahead (CLA) adder is often used to
reduce the critical path in the accumulator or the final addition
stage of the multiplier.

Meanwhile, a MAC operation is performed in the machine
learning algorithm to compute a partial sum that is the accumu-
lation of the input multiplied by the weight. In a MAC unit,
the multiply and accumulate operations are usually merged
to reduce the number of carry-propagation steps from two to
one [10]. Such a structure, however, still comprises a long
critical path delay that is approximately equal to the critical
path delay of a multiplier.

It is well known that pipelining is one of the most popu-
lar approaches for increasing the operation clock frequency.
Although pipelining is an efficient way to reduce the critical
path delays, it results in an increase in the area and the
power consumption due to the insertion of many flip-flops.
In particular, the number of flip-flops tends to be large because
the flip-flops must be inserted in the feedforward-cutset to
ensure functional equality before and after the pipelining. The
problem worsens as the number of pipeline stages is increased.

The main idea of this paper is the ability to relax the
feedforward-cutset rule in the MAC design for machine
learning applications, because only the final value is used
out of the large number of multiply—accumulations. In other
words, different from the usage of the conventional MAC unit,
intermediate accumulation values are not used here, and hence,
they do not need to be correct as long as the final value is
correct. Under such a condition, the final value can become
correct if each binary input of the adders inside the MAC
participates in the calculation once and only once, irrespective
of the cycle. Therefore, it is not necessary to set an accurate
pipeline boundary.

Based on the previously explained idea, this paper proposes
a feedforward-cutset-free (FCF) pipelined MAC architecture
that is specialized for a high-performance machine learning
accelerator. The proposed design method reduces the area and
the power consumption by decreasing the number of inserted
flip-flops for the pipelining.

The remainder of this paper is organized as follows.
Section II reviews the feedforward-cutset rule for general
pipelining. In Section III, the FCF pipelining method is
introduced along with the process regarding the way it is
applied to the accumulator design. In Section IV, the proposed

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5175-8258

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2
x[n] D D
a b % c
4\, “+
(a)
Feedforward Cutset !
x[n] D D 'D
T
a b : c
[}
[}
[}
[}
(H—D
[}
(b)
x[n] D D
a b é c
"+ > D
(c)
Fig. 1. (a) Block diagrams of the three-tap FIR filter [11]. (b) Valid

pipelining. (c) Invalid pipelining. “D” indicates a flip-flop.

scheme is applied to the MAC architecture. An evaluation
of the proposed pipelining method is described in Section V.
Finally, we conclude this paper in Section VI.

II. PRELIMINARY: FEEDFORWARD-CUTSET
RULE FOR PIPELINING

It is well known that pipelining is one of the most effective
ways to reduce the critical path delay, thereby increasing
the clock frequency. This reduction is achieved through the
insertion of flip-flops into the datapath.

Fig. 1(a) shows the block diagram of a three-tap finite-
impulse response (FIR) filter [11]

y[n] = ax[n] + bx[n — 1]+ cx[n — 2]. (1)

Fig. 1(b) and (c) shows pipelining examples regarding
the FIR filter. In addition to reducing critical path delays
through pipelining, it is also important to satisfy functional
equality before and after pipelining. The point at which
the flip-flops are inserted to ensure functional equality is
called the feedforward-cutset. The definitions of cutset and
feedforward-cutset are as follows [11]:

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Cutset: A set of the edges of a graph such that if these
edges are removed from the graph, and the graph becomes
disjointed.

Feedforward-cutset: A cutset where the data move in the
forward direction on all of the cutset edges.

Fig. 1(b) shows an example of valid pipelining. The
two-stage pipelined FIR filter is constructed by inserting two
flip-flops along feedforward-cutset. In contrast, Fig. 1(c) shows
an example of invalid pipelining. Functional equality is not
guaranteed in this case because the flip-flops are not inserted
correctly along the feedforward-cutset.

III. PIPELINED ACCUMULATOR

While the conventional pipelining method is advantageous
because it effectively reduces the critical path delays, it leads
mostly to an increase in the area and the power consumption
due to the insertion of a large number of flip-flops. Moreover,
the constraint that requires the insertion of the flip-flops
according to the feedforward-cutset rule tends to significantly
increase the overhead. This section proposes a method for the
selective elimination of the flip-flops from the conventional
pipeline boundary by exploiting the unique characteristics of
the machine learning algorithm.

A. Proposed FCF Pipelining

Fig. 2 shows examples of the two-stage 32-bit pipelined
accumulator (PA) that is based on the ripple carry
adder (RCA). A[31 : 0] represents data that move from
the outside to the input buffer register. Areg[31 : 0] represents
the data that are stored in the input buffer. S[31 : 0]
represents the data that are stored in the output buffer register
as a result of the accumulation. In the conventional PA
structure [Fig. 2(a)], the flip-flops must be inserted along
the feedforward-cutset to ensure functional equality. Since
the accumulator in Fig. 2(a) comprises two pipeline stages,
the number of additional flip-flops for the pipelining is
33 (gray-colored flip-flops). If the accumulator is pipelined
to the n-stage, the number of inserted flip-flops becomes
33(n—1), which confirms that the number of flip-flops for the
pipelining increases significantly as the number of pipeline
stages is increased.

Fig. 2(b) shows the proposed FCF-PA. For the FCF-PA, only
one flip-flop is inserted for the two-stage pipelining. Therefore,
the number of additional flip-flops for the n-stage pipeline
is n — 1 only.

In the conventional PA, the correct accumulation values
of all the inputs up to the corresponding clock cycle are
produced in each clock cycle as shown in the timing diagram
of Fig. 2(a). A two-cycle difference exists between the input
and the corresponding output due to the two-stage pipeline.
On the other hand, in the proposed architecture, only the final
accumulation result is valid as shown in the timing diagram
of Fig. 2(b).

Fig. 3 shows examples of the ways that the conventional PA
and the proposed method (FCF-PA) work. In the conventional
two-stage PA, the accumulation output (S) is produced two-
clock-cycle after the corresponding input is stored in the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RYU et al.: FCF PIPELINED MAC UNIT FOR THE MACHINE LEARNING ACCELERATOR 3

‘A[IH :0]

Input Buffer
Feedf d : ?
c?ﬁs»?mar { AReg[31:16] Areg[15:0]
-)
Inserted FF Array !
]
— ' |

16-bit Ripple Carry Adder

v

16-bit Ripple Carry Adder

v

]
]
Output Buffer E FF Array
]
S[31:16] i A 4
i Inserted FF Array & | __
Output Buffer
v ‘v S[15:0]

‘5[31 :0]

CLK [| [|
A[31:0] A X A, X 32'd0
S[31:0] Sns X Sha2 X Sh-1 X S,

(a)

‘A[M:O]

Input Buffer
AReg[31:16] AReg[15:0]

— 4 { 1

16-bit Ripple Carry Adder 16-bit Ripple Carry Adder

v ¥

Output Buffer Output Buffer

S[31:16] S[15:0;
) si31:16) (50 @

‘sm :0]

CLK | | [|

A[31:0] A X A, X 32'd0

S[31:0] _Invalid X Invalid X Invalid X S,
(b)

Fig. 2. Schematics and timing diagrams of two-stage 32-bit accumulators.
(a) Conventional PA. (b) Proposed FCF-PA.

input buffer. On the other hand, regarding the proposed struc-
ture, the output is generated one clock cycle after the input
arrives. Moreover, for the proposed scheme, the generated
carry from the lower half of the 32-bit adder is involved in
the accumulation one clock cycle later than the case of the
conventional pipelining. For example, in the conventional case,
the generated carry from the lower half and the corresponding
inputs are fed into the upper half adder in the same clock cycle
as shown in the cycles 4 and 5 of Fig. 3 (left). On the other
hand, in the proposed FCF-PA, the carry from the lower half is
fed into the upper half one cycle later than the corresponding
input for the upper half, as depicted in the clock cycles 3-5 of
Fig. 3 (right). This characteristic makes the intermediate result
that is stored in the output buffer of the proposed accumulator
different from the result of the conventional pipelining case.

< Conventional > < Proposed >

[31:16] [15:0] [31:16] [15:0]
Arg 7325 ABC . Amg 7325 AB2C
s 0000 o000 ~“Y©'°€ S 0000 0000
Areg 4823 F135 . . Arg 4823 F135
s o000 o000 Y S 7325 AB2C
Areg 2823 F432 . . . Areg 2823 F432
s 7325 AB2c Y S BB4819C61
Areg 0000, 0000 o .\ Awsg 0009/ 0000
S BB4919C61 S E36C19093
Arsg 00000000 (1o A 0009/ 0000
S E36D 19093 S E36D 9093

Fig. 3. Two-stage 32-bit pipelined-accumulation examples with the con-

ventional pipelining (left) and proposed FCF-PA (right). Binary number “1”
between the two 16-bit hexadecimal numbers is a carry from the lower half.

The proposed accumulator, however, shows the same final
output (cycle 5) as that of the conventional one. In addition,
regarding the two architectures, the number of cycles from the
initial input to the final output is the same. The characteristic
of the proposed FCF pipelining method can be summarized
as follows: In the case where adders are used to process data
in an accumulator, the final accumulation result is the same
even if binary inputs are fed to the adders in an arbitrary clock
cycle as far as they are fed once and only once.

In the machine learning algorithm, only the final result
of the weighted sum of the multiplication between the input
feature map and the filters is used for the subsequent operation,
so the proposed accumulator would produce the same results
as the conventional accumulator.

Meanwhile, the CLA adder has been mostly used to reduce
the critical path delay of the accumulator. The carry prediction
logic in the CLA, however, causes a significant increase in the
area and the power consumption. For the same critical path
delay, the FCF-PA can be implemented with less area and
lower power consumption compared with the accumulator that
is based on the CLA.

B. Modified FCF-PA for Further Power Reductions

Although the proposed FCF-PA can reduce the area and the
power consumption by replacing the CLA, there are certain
input conditions in which the undesired data transition in the
output buffer occurs, thereby reducing the power efficiency
when 2’s complement numbers are used. Fig. 4 shows an
example of the undesired data transition. The inputs are
4-bit 2’s complement binary numbers. Ageg[7 : 4] is the sign
extension of Ageg[3], which is the sign bit of Ageg[3 : 0].
In the conventional pipelining [Fig. 4 (left)], the accumula-
tion result (S) in cycle 3 and the data stored in the input
buffer (Agreg) in cycle 2 are added and stored in the output
buffer (S) in cycle 4. In this case, the “1” in Ageg[2] in cycle 2
and the “1” in S[2] in cycle 3 are added, thereby generating a
carry. The carry is transmitted to the upper half of the S, and
hence, S[7:4] remains as “0000” in cycle 4.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

< Conventional > < Proposed >

[7:4] [3:0] [7:4] [3:0]
AReg 0000 0111 Cvele 1 AReg 0000 0111
s 0000 o000 “YC'€ S 0000 0000
Areg 1111 1100 . Areg 1111 1100
s o000 oooo Y S 0000 0111
Areg 0000 0000 . . . Ameg 0000 0000
s 0000 o111 Y s [1111]1 0011
Areg 0000, 0000 oo\ 0 Arg oooq/ 0000

S 0000 10011 S 0000 0011
Undesired Data

Transition
Fig. 4. Example of an undesired data transition in the two-stage 8-bit PAs

with 4-bit 2’s complement input numbers. Binary number “1” between the
two 4-bit hexadecimal numbers is a carry from the lower half.

AReg[m'1]

Sign Extension Input Buffer

1t Jﬁ ARegIm-1:0]
RCA [n-1:k] RCA [k-1:0]
0 1
| Output Buffer |
(@)
< MFCF Logic >
I : Ofealm-1] Input Buffer
E 150ps ‘ |
H » . .
E A vSlgn Extension Aeglm-1:0]
------------------ v
CarryFix
RCA [n-1:k] [« — RCA [k-1:0]
* Carry *
| Output Buffer |
Areglm-1]| Carry AFix Ageg[m-1] |~ Carry CarryFix

0 0 0 0 0 0

0 1 0 0 1 1

1 0 1 1 0 0

1 1 0 1 1 0

(b)

Fig. 5. Proposed (a) FCF-PA and (b) MFCF-PA for the improvement of the
power efficiency.

On the other hand, in the FCF-PA [Fig. 4 (right)], Areg[2]
and S[2] are added in cycle 2, thereby generating a carry.
In cycle 3, the generated carry from the lower half is stored
in the flip-flop. The carry is no longer propagated toward
the upper half in this clock cycle. In the next clock cycle
(cycle 4), the carry that is stored in the flip-flop is transferred
to the carry input of the upper half. During the calculation,
it can be observed that S[7 : 4] changes to “1111” in cycle
3 and returns to “0000” in cycle 4. Although this undesired
data transition does not affect the accuracy of accumulation
results, it reduces the power efficiency of the FCF-PA. Fig. 5(a)
shows the structure of the FCF-PA for the 2’s complement
numbers. The binary numbers in the diagram indicate the sign
extension of ARreg[m — 1] and the carry bits for the undesired
data transition case.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Areglk-1]
Sign Extension Bits of Apeg[k-1] Input Buffer
MFCF Apeglk-1:0]
A Logic A 4
RCA [n-1 :m]4—| |e RCA [m-11] <—| |& RCA [IH1:K] b e RCA [k-1:0]

v v v ¥ v

| Output Buffer |

Fig. 6. Block diagram of MFCF-PA.

- e===a Feedforward-
@@ HA @O @ FA [Z=] Freine 77 7% Eegclomar Taraet
rea

Boundary Height
Stage K 4
Stage K+1 3
Stage K+2 ® - 2
(a)
o ceccccncas
Stage K ' E f E 4
’ .
Stage K+1 ! H '3
I - - K '
Stage K+2 \9; .00 % 2
(b)
Fig. 7. Pipelined column addition structure with the Dadda multiplier.

(a) Conventional pipelining. (b) Proposed FCF pipelining. HA: half-adder.
FA: full adder.

To prevent the undesired data transitions, the sign extended
the input number to RCA[n — 1 : k] and the carry out of
RCA[k —1 : 0] must be modified to “0” if both of Ageg[m —1]
and the carry out from RCA[k — 1 : 0] are “1”; therefore,
the undesired data transition can be prevented by detecting
such a condition. Since the critical delay becomes too long
if the upper half-addition needs to wait until the decision
regarding the lower half carry-out condition detection, the
modified version of the FCF-PA (MFCF-PA) is proposed here
as shown in Fig. 5(b). Accordingly, an additional flip-flop was
added between the two RCAs to prevent the formation of a
long critical path. RCA[n — 1 : k] receives both Afjx with
the sign extension and the Carryg;, signals as modified input
values. Afix generates “0” when Areg[m — 1] and Carry are
both “1.” Otherwise, Areg[m — 1] is buffered in Apix as it
is. Similarly, Carryp;, generates “0” when Ageg[m — 1] and
Carry are both “1.” Otherwise, Carry is buffered in Carryg;,
as it is. Although an additional NORI(NOR + INV) gate causes
an additional delay (150 ps at SS corner, 10% supply voltage
drop, 125 °C temperature in our analysis) in the critical path,
the overhead is negligible considering that target clock period
ranges from 1.1 to 2.7 ns (in Section V). In the event that
the accumulator is pipelined to multiple stages, the insertion
of the additional logic into all of the pipeline stages may
increase the area overhead. To reduce the overhead, the
modified structure [Fig. 5(b)] is inserted into only one pipeline
stage. For the rest of the pipeline stages, only the FCF-PA
[Fig. 5(a)] is used. Fig. 6 shows a block diagram of the
MFCF-PA. A good power efficiency is still shown, because the
probability of the sign extension bit becoming “1” is reduced,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RYU et al.: FCF PIPELINED MAC UNIT FOR THE MACHINE LEARNING ACCELERATOR 5

X Y
| Partial Products |

v

| Column Addition Stage 1 |

v

| Pipelining Stage |

v

| Column Addition Stage 2 |

v

| Pipelining Stage |

v

Carry-Save Adder |

v

Final Addition Stage |

MAC
(@)

Fig. 8.

Feedforward-Cutset-Free Area
X Y
Partial Products |

v

| Column Addition Stage 1 |

,,,,,,,,,,,,, v
L 4 v

| Column Addition Stage 2 |

v

Pipelining Stage |
|

Pipelining Stage |

L 2 v

Carry-Save Adder I
Final Addition Stage |
| MFCF-PA

v

MAC
(b)

Block diagrams of pipelined MAC architectures. (a) State-of-the-art merged MAC [12] with pipelining. (b) Proposed FCF-MAC with MFCF-PA.

Dotted box: FCF area where the flip-flops are removed from the conventional pipelined MAC.

and therefore, the chance of the undesired data transitions in
the other RCAs is reduced. Please note that the accuracy of
computation is not affected even if the rare case of undesired
data transition occurs.

IV. PIPELINED MAC UNIT

The column addition in the MAC operation is for the cal-
culation of binary numbers in each addition stage using the
half-adders and/or full adders and then for the passing of the
results to the next addition stage. Since MAC computations are
based on such additions, the proposed pipelining method can
also be applied to the machine learning-specific MAC struc-
ture. In this section, the proposed pipelining method is applied
to the MAC architecture by using the unique characteristic of
Dadda multiplier. The Dadda multiplier performs the column
addition in a similar fashion to the Wallace multiplier which
is widely used, and it has less area and shorter critical path
delay than the Wallace multiplier [13].

Fig. 7 shows the pipelined column addition structures in
the Dadda multiplier. The Dadda multiplier performs the
column addition to reduce the height of each stage. If a
particular column already satisfies the target height for the next
column addition stage, then no operation is performed during
the stage [13]. Using this property, the proposed pipelining
method can be applied to the MAC structure as well. Fig. 7(a)
is an example of pipelining where the conventional method is
used. All of the edges in the feedforward-cutset are subject to
pipelining. On the other hand, in the proposed FCF pipelining
case [Fig. 7(b)], if a node in the column addition stage does not
need to participate in the height reduction, it can be excluded
from the pipelining [the group in the dotted box of Fig. 7(b)].
In other words, in the conventional pipelining method, all the
edges in the feedforward-cutset must be pipelined to ensure

functional equality regardless of a timing slack of each edge
[Fig. 7(a)]. However, in the FCF pipelining method, some
edges in the cutset do not necessarily have to be pipelined if
the edges have enough timing slacks [Fig. 7(b)]. As a result,
a smaller number of flip-flops are required compared with the
conventional pipelining case. On the other hand, in the Wallace
multiplier, as many partial products as possible are involved
in the calculation for each column addition stage. Because
the partial products do not have enough timing slack to be
excluded from pipelining, the effectiveness of the proposed
FCF pipelining method is smaller in the Wallace multiplier
case than in the Dadda multiplier case.

Fig. 8 shows the block diagrams of pipelined MAC archi-
tectures. The proposed MAC architecture [Fig. 8(b)] combines
the FCF-MAC (MAC with the proposed FCF pipelining) for
the column addition and the MFCF-PA for the accumulation.
Instead of pipelining all of the final nodes in the column addi-
tion stage as in Fig. 8(a), the proposed FCF-MAC architecture
is used to selectively choose the nodes for the pipelining. For
the proposed architecture, the merged multiply—accumulation
style is adopted [12]. The final adder is placed in the last
stage of the MAC operation. In general, the final adder is
designed using the CLA to achieve a short critical path delay.
In contrast, the proposed design uses the MFCF-PA style
in the accumulation stage in consideration of the greater
power and the area efficiency of the MFCF-PA, as described
in Section III.

V. RESULTS
A. Experimental Setup

We evaluate the proposed FCF pipelining method in this
section. First, for application of the accumulator-only case,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

OCSA+VMA '« CondSA = CLA =FCF-PA = MFCF-PA

1500 T3
[11.77 1.94 1.96
_ 1300 = =
< 1.70 1.70 1.82
31100 —1
©
g 900 — ;
1 1
700 —1 os0m 0.860.88 0.870.89 10.020.94
500 || l || .l || .2.
1.1 1.5 1.8 2.7
Target Clock Period [ns]
Fig. 9. Comparison of area among CSA + VMA, CondSA, CLA-based

accumulators, proposed FCF-PA, and MFCF-PA. Numbers above bars in the
figures: normalized area to the CLA-based accumulator.

binary-weight-networks [14], [15] are considered. For the
input of the accumulator, the 16-bit 2’s complement number
is used considering that many state-of-the-art DNN hardware
accelerators use the 16-bit as their bit precision [6], [16], [17].
For the accumulator to construct an output feature in
AlexNet [1], 11 extra bits are required to fully accumulate
the input features. Hence, we determine the number of bits
in the accumulator to be [16 (InputFeature) 4+11 (Accumula-
tion) =] 27-bit. For the MAC case, the 16-bit 2’s complement
number is used for both the input feature and weight. In that
case, the number of bits in the final adder is determined to
be [16 x 2 (Multiplication) +11 (Accumulation) =] 43-bit.
The design is synthesized with the gate-level cells in
a 65-nm CMOS technology using Synopsys Design Com-
piler. For some custom designs, “set_dont_touch” command
of Design Compiler is used after the direct instantiation of
the cells in the standard library, rather than the synthesis
of cells using the register-transfer level description. Synop-
sys PrimeTime is used to analyze the area and the power
consumption. For the evaluation of the power consumption,
we run the time-based analysis with a value charge dump file
in the PrimeTime PX. Both the actual input features (ImageNet
data set) and random vectors generated by the pseudorandom
number generator (PRNG) are fed as input data. We design the
CLA by simply describing it as “A + B” in Verilog Hardware
Description Language and by synthesizing/optimizing using
Design Compiler. All simulation results for the area and the
power consumption include input and output buffers. The num-
bers above bars in the figures indicate normalized area/power
to the CLA-based accumulator (accumulator-only case) or
“MAC + CLA” configuration (MAC case).

B. Power and Area Analysis

Fig. 9 shows the area comparison between the conventional
and proposed accumulators. The areas of the accumulators
are compared with each other using the designs that are syn-
thesized for the same target clock period. When synthesized
for the 2.7-ns target, the area of the FCF-PA is 8% smaller
than the area of the CLA-based accumulator. For the 1.1-
ns designs, the area reduction increases to 19%, because the
carry prediction logic of CLA becomes more complicated
for lower target clock period. Meanwhile, a carry-save adder

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

A[n-1] B[n-1] A[1] B[1] A[0] B[0]
iCaySave v vy T ¥ 4 T TyC ""5
tAddeT | FA |ees| FA FA [« Ci

C[n-1] / S[n-1]| C[1] S[1] /C[O] S[0]
Vector Merging Adder
S[n-1:0]
(a)
A[n-1:0] B[n-1:0]
— T
n-bit Adder [«0 n-bit Adder [«1
\ Multiplexer /— Cin
S[n-1:0]

(b)

Fig. 10. Block diagrams of (a) CSA + VMA and (b) CondSA.

(CSA)-based accumulator [Fig. 10(a)] itself does not expe-
rience carry propagation because each digit of the addition
result is composed of 2-bit, thereby achieving both the shorter
latency and lower area/power. However, carry propagation
in vector merging adder (VMA) is necessary to convert the
2-bit digit into the 1-bit digit, before the final accumula-
tion result is transferred to another functional block. The
area of the CSA + VMA-based accumulator is 85%—104%
larger than the CLA-based accumulator. The conditional-sum
adder (CondSA)-based accumulator [Fig. 10(b)] requires
a 70%-82% larger area than the CLA-based accumulator,
because the CondSA requires extra adders to precalculate the
expected sum values for both “0” and “1” of carry-in values
and requires extra muxes to select one of the precalculated
sum values.

Fig. 11 shows that the proposed accumulators consume less
power than the conventional accumulators. When the target
clock period is 2.7 ns, the power consumption of the FCF-PA
is 4% smaller that of the CLA-based accumulator, and 13%
smaller with the 1.1-ns target. Moreover, MFCF-PA saves
more power than FCF-PA as expected. Compared with the
CLA-based accumulator, MFCF-PA consumes 12% less power
at the 2.7-ns clock period and 19% less power at the 1.1-ns
period, respectively. The area overhead for the conversion of
the FCF-PA to the MFCF-PA is approximately 2%. In addition,
CSA + VMA- and CondSA-based accumulators experience an
increase in power consumption by 60%—-78% and 18%—78%,
respectively, compared with the CLA-based accumulator due
to the extra adders and multiplexers. The power dissipation of
the accumulator is similar in both the cases when the random
values generated from the PRNG are fed and when the actual
ImageNet data set is fed.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RYU et al.: FCF PIPELINED MAC UNIT FOR THE MACHINE LEARNING ACCELERATOR 7

OCSA+VMA ' CondSA =CLA =FCF-PA mMFCF-PA

1500

2 <ImageNet >
1.64
1.69
1.43
Lo. 9°o 84

093088
II 1 0970 90

Target Clock Period [ns]

1.60
§- 1.32 < Random Number >
1.66
= 1000 . 1.59
o 0.879 81 43
g 500 03005 1 0.910.85 s
o II II U 10.96 .83
o U i L
1.1 18 27
Fig. 11.

in the figures: normalized power to the CLA-based accumulator.

TABLE I

EXTRA CLOCK CYCLES FOR THE PROPOSED ACCUMULATORS.
BOTH CONVOLUTIONAL AND FULLY CONNECTED LAYERS
OF ALEXNET ARE CONSIDERED. BASELINE IS
CLA-BASED ACCUMULATOR

Extra Clock Cycles
Target Clock Period | (% of Accumulation Cycles)
FCF-PA | MFCF-PA
1.1 5 (0.07%) 6 (0.08%)
1.5 3 (0.04%) 4 (0.05%)
1.8 2 (0.03%) 3 (0.04%)
2.7 1 (0.01%) 2 (0.03%)
OMAC + CLA MAC + MFCF-PA
mFCF-MAC + CLA m FCF- MAC + MFCF-PA
7000
EL. 6000 096 .04
8 5000 |:| ° 90 I
<
4000 V) '5\ \\ [N} q.\ W\
AR AR QA A Al \ A
N »\0« 2N A0 NG AG
et Ve ! o’
Fig. 12. Comparison of MAC area between conventional and proposed

pipelining methods. (a,b,c) along the x-axis implies that the MAC unit consists
of an “a”-stage column addition and a “b”-stage final addition. The MAC unit

TRt}

is composed of the “c”-stages in total. Numbers above bars in the figures:
normalized area to the “MAC + CLA” configuration.

Table I shows additional clock cycles required to com-
pute the final result when the CLA-based accumulator is
changed to the proposed PAs. The FCF-PA requires additional
1-5 clock cycles depending on the target clock periods. The
MFCF-PA requires one additional clock cycle compared with
the FCF-PA (Section III-B). Considering the average number
of accumulations [363 (ConvLayerl) +1200 (ConvLayer2)
+2304 (ConvLayer3) +2 x 1728 (ConvLayer4,5) +43264
(FCLayerl) +2 x 4096 (FCLayer2,3)/8 = 7347] for the
computation of convolutional and fully connected layers of
AlexNet, the extra clock cycle overhead is 0.01%-0.08%,
which is negligible.

Figs. 12 and 13 show the area and power consump-
tion of the MAC units with the conventional and proposed
pipelining methods. The baseline is the MAC architecture
with the conventional pipelining and the CLA for the final
adder (MAC + CLA). When the accumulator is changed
to MFCF-PA in the four-stage pipelined MAC configuration

Comparison of power dissipation among CSA 4+ VMA, CondSA, CLA-based accumulators, proposed FCF-PA, and MFCF-PA. Numbers above bars

TABLE I

EXTRA CLOCK CYCLES FOR THE PROPOSED MAC UNITS.
BOTH CONVOLUTIONAL AND FULLY CONNECTED
LAYERS OF ALEXNET ARE CONSIDERED.
BASELINE IS MAC + CLA

Extra Clock Cycles
Pipeline Stages (% of Accumulation Cycles)
in Baseline MAC | FCF-MAC FCF-MAC
+ CLA + MFCF-PA
2 0 5 (0.07%)
3 0 8 (0.11%)
4 0 13 (0.18%)

(MAC + MFCF-PA), the area and the power consump-
tion are reduced by 8% and 3%, respectively. Applying
the FCF pipelining method to the column addition archi-
tecture in the MAC, and using the CLA as the final adder
(FCF-MAC + CLA), the area and the power consumption
decreased by 13% and 17%, respectively. When the proposed
scheme is applied to both the column addition and accumula-
tion stages (FCF-MAC + MFCF-PA), the area and the power
consumption are reduced by 20% and 19%, respectively,
compared with the baseline design. FCF pipelining method is
very helpful for power saving, because the power consumed by
the clock network and the flip-flops occupies a large portion of
the total power consumption. For example, in the four-stage
“MAC + CLA” configuration, the power consumed by the
clock network and the flip-flops is 70% of the total power,
and the proposed scheme removes 28% of the total flip-flops.
As with the accumulator-only case, the power dissipation
of the MAC is similar in both the cases when the random
values generated from the PRNG are fed and when the actual
ImageNet data set is fed.

Table II shows additional clock cycles required for
the final result when the conventional MAC architecture
(MAC + CLA) is converted to the proposed MAC archi-
tectures. When the MAC architecture is configured as
“FCF-MAC + CLA,’ the same number of clock cycles is
required to compute the final MAC result compared with the
baseline design. When the MFCF-PA is used as an accumu-
lator (FCF-MAC 4 MFCF-PA), it requires 5—13 more clock
cycles compared with the baseline. The number of additional
clock cycles, however, is only 0.07%-0.18% of the average
total clock cycles for the MAC operation in the convolutional
and fully connected layers of AlexNet.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

OoMAC + CLA MAC + MFCF-PA = FCF-MAC + CLA mFCF-MAC + MFCF-PA
7000 1 0.98
E 0.83 .59 0.82 ¢go
& 5000
5 |:|093 092 |:|°96 0.92 ¢ g7
3000
N ADAD \ »\‘\\ r\%\) (\\ AD »\‘\\ » »\9\ BN AN
'Ls OINOMS W > A0 0 2 ‘\0 TG (30 AL
\ @ \s0) \ \ \q,, O o > 7 & e & o

< Random Number >

< ImageNet >

Fig. 13. Comparison of MAC power consumption between conventional and proposed pipelining methods. (a,b,c) along the x-axis implies that the MAC unit

“q”

consists of an
figures: normahzed power to the “MAC + CLA” configuration.

VI. CONCLUSION

We introduced the FCF pipelining method in this paper.
In the proposed scheme, the number of flip-flops in a pipeline
can be reduced by relaxing the feedforward-cutset constraint,
thanks to the unique characteristic of the machine learning
algorithm. We applied the FCF pipelining method to the
accumulator (FCF-PA) design, and then optimized the power
dissipation of FCF-PA by reducing the chance of undesired
data transitions (MFCF-PA). The proposed scheme was also
expanded, and applied to the MAC unit (FCF-MAC). For the
evaluation, the conventional and proposed MAC architectures
were synthesized in a 65-nm CMOS technology. The proposed
accumulator showed the reduction of area and the power con-
sumption by 17% and 19%, respectively, compared with the
accumulator with the conventional CLA adder-based design.
In the case of the MAC architecture, the proposed scheme
reduced both the area and power by 20%. We believe that the
proposed idea to utilize the unique characteristic of machine
learning computation for more efficient MAC design can be
adopted in many neural network hardware accelerator designs
in the future.

REFERENCES

[1]1 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097-1105.

[2] K. Simonyan and A. Zisserman. (2014). “Very deep convolutional
networks for large-scale image recognition.” [Online]. Available:
https://arxiv.org/abs/1409.1556

[3] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1-9.

[4] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2013, pp. 6645-6649.

[5] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Proc. Adv. Neural
Inf. Process. Syst., 2015, pp. 577-585.

[6] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
Jan. 2017.

[71 B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envi-
sion: A 0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm
FDSOL,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC),
Feb. 2017, pp. 246-247.

-stage column addition and a “b”-stage final addition. The MAC unit is composed of the

“o”

-stages in total. Numbers above bars in the

[8] C.S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Electron.
Comput., vol. EC-13, no. 1, pp. 14-17, Feb. 1964.

[9] L. Dadda, “Some schemes for parallel multipliers,”
vol. 34, no. 5, pp. 349-356, Mar. 1965.

[10] P.F. Stelling and V. G. Oklobdzija, “Implementing multiply-accumulate
operation in multiplication time,” in Proc. 13th IEEE Symp. Comput.
Arithmetic, Jul. 1997, pp. 99-106.

[11] K. K. Parhi, VLSI Digital Signal Processing Systems:
Implementation. New Delhi, India: Wiley, 1999.

[12] T. T. Hoang, M. Sjalander, and P. Larsson-Edefors, “A high-speed,
energy-efficient two-cycle multiply-accumulate (MAC) architecture and
its application to a double-throughput MAC unit,” /EEE Trans. Circuits
Syst. I, Reg. Papers, vol. 57, no. 12, pp. 3073-3081, Dec. 2010.

[13] W.J. Townsend, E. E. Swartzlander, and J. A. Abraham, “A comparison
of Dadda and Wallace multiplier delays,” Proc. SPIE, Adv. Signal
Process. Algorithms, Archit., Implement. XIII, vol. 5205, pp. 552-560,
Dec. 2003, doi: 10.1117/12.507012.

[14] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 3123-3131.

[15] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis. Springer, 2016, pp. 525-542.

[16] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
in Proc. 22nd Int. Conf. Archit. Support Program. Lang. Oper. Syst.,
2017, pp. 751-764.

[17] A. Parashar et al, “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. 44th Annu. Int. Symp. Comput.
Archit., Jun. 2017, pp. 27-40.

Alta Frequenza,

Design and

Sungju Ryu (S’16) received the B.S. degree in
electrical engineering from Pusan National Univer-
sity, Busan, South Korea, in 2015. He is currently
working toward the Ph.D. degree at the Department
of Creative IT Engineering, Pohang University of
Science and Technology, Pohang, South Korea.

His current research interests include low-
power machine learning hardware accelerator, adap-
tive/resilient circuits, and near-threshold voltage
circuit design.

http://dx.doi.org/10.1117/12.507012

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Naebeom Park received the B.S degree in electrical
engineering from the Pohang University of Science
and Technology, Pohang, South Korea, in 2016,
where he is currently working toward the Ph.D.
degree in creative IT engineering.

His current research interests include neural
network data flow and accelerator.

RYU et al.: FCF PIPELINED MAC UNIT FOR THE MACHINE LEARNING ACCELERATOR 9

Jae-Joon Kim (M’04) received the B.S. and M.S.
degrees from Seoul National University, Seoul,
South Korea, in 1994 and 1998, respectively, and
the Ph.D. degree from Purdue University, West
Lafayette, IN, USA, in 2004.

From 2004 to 2013, he was a Research Staff
Member with the IBM T. J. Watson Research
Center, contributing to POWER6 and POWER7
microprocessor design. He is currently an Associate
Professor at the Department of Creative IT Engineer-
ing and Electrical Engineering, Pohang University
of Science and Technology, Pohang, South Korea, where he is involved in
neuromorphic circuits, machine learning hardware accelerator, and flexible
device/circuits. His research interests included 3-D VLSI integration, robust
SRAM cache memory design, and low-voltage circuit designs.

