
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 7, JULY 2019 1601

RTHS: A Low-Cost High-Performance Real-Time
Hardware Sorter, Using a Multidimensional

Sorting Algorithm
Amin Norollah , Danesh Derafshi, Hakem Beitollahi , and Mahdi Fazeli

Abstract— This paper proposes a novel hardware-based mul-
tidimensional sorting algorithm and its respective architec-
ture, called real-time hardware sorter (RTHS), for emerging
data intensive processing applications where performance and
resource conservation are serious concerns. The basic idea behind
RTHS is to reduce the hardware complexity of parallel hardware
sorting architectures (PHSAs) through a high-performance scal-
able matrix-based sorting method. The proposed method can
also be used for implementing Min/Max queues or finding the
largest/smallest records exclusively in the big data application.
Implementing the RTHS design on a Virtex-7 field-programmable
gate array (FPGA) reveals that the number of lookup tables
(LUTs) of the proposed method has decreased by 66.3% and
87.3% compared to the conventional Bitonic sorting network
(CBSN) and the state-of-the-art PHSA, respectively. In addition,
the number of required registers for the proposed method has
decreased by 94.8% compared to the state-of-the-art PHSA.

Index Terms— Bitonic sorting network, field-programmable
gate array (FPGA), hardware accelerator, low-cost design, par-
allel sorting, real-time sorter, sorting algorithm, sorting network.

I. INTRODUCTION

SORTING is one of the fundamental operations in applica-
tions such as search [1], [2], database operations [3], [4],

radio networks [5], artificial intelligence and robotics [6],
scheduling [7], [8], image processing [9], data compres-
sion [10], and scientific computing [11]. Sorting has a sig-
nificant impact on the execution time of the entire system
for big data processing [12]. Common sorting algorithms,
implemented in software, require a large number of iterations
and operating cycles to run on general-purpose processors.
By increasing the number of input records, the execution
time will be increased as well. A number of sorting tech-
niques have sped up their performance by exploiting the
parallelism of multicore processors [2], [13] or GPUs [14].
In recent years, designers have taken interest in design-
ing hardware accelerators using field-programmable gate
arrays (FPGAs) [15]–[20]. A sorting hardware unit requires
minimal resources to implement, but the number of input

Manuscript received October 25, 2018; revised February 4, 2019; accepted
March 29, 2019. Date of publication May 8, 2019; date of current version
June 26, 2019. (Corresponding author: Hakem Beitollahi.)

The authors are with the Department of Computer Engineering,
Iran University of Science and Technology, Tehran 16846-13114, Iran
(e-mail: a_norollah@alumni.iust.ac.ir; derafshi_danesh@comp.iust.ac.ir;
beitollahi@iust.ac.ir; m_fazeli@iust.ac.ir).

Digital Object Identifier 10.1109/TVLSI.2019.2912554

records and the width of each record will excessively increase
the required resources. Input records are sometimes in the form
of binary values, integers, or floating point numbers.

It is important to know the worst case execution time of sort-
ing tasks in hard real-time systems. The success of executing
a real-time task depends not only on computational results
but also on completion of the task before its deadline [21].
Constant response time is often required for real-time and
safety-critical systems [22]. To schedule a set of tasks in an
optimal manner, a scheduler has to know the exact execution-
time of the tasks.

Schedulers also need to sort their tasks in order of their
priority to have access to the most and the least important
tasks at all times. This queue structure is called “Min/Max
queue,” which is often implemented in software. The Min/Max
queue is used in several applications such as electronics, envi-
ronmental, medical, and biological analysis, which requires
sorting on data streams produced by sensors [23], [24]. It also
proved useful to acquire minimum and maximum values in
search [1], [2], data mining [25], and statistical data cal-
culations. In the software implementation of the Min/Max
queue, the performance and delay of the sorting operation
are variable. Therefore, the intrinsic high performance and
constant response time of a hardware implementation are
desirable for real-time systems.

Batcher’s bitonic sorting circuit [26] is parallel hardware
sorting architecture (PHSA) which is based on merge opera-
tions. Bitonic sorting is composed of parallel data-independent
compare-and-swap (CAS) blocks forming a network. There-
fore, bitonic sorting is one of the fastest sorting techniques
implemented in hardware. Exploiting parallelism and pipelin-
ing in hardware [27] has increased the throughput beyond
serial sorting methods in software. The amount of resources
required for hardware sorting network depends on the number
and type of their CAS blocks.

However, several disadvantages come along with the
benefits of bitonic sorting network.

1) This method cannot guarantee that the sequence of
records is partially sorted in the expected order in
middle stages until the sorting process is completely
over. In other words, we cannot determine the process
of sorting at the beginning or the middle of the
network [28].

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7568-1758
https://orcid.org/0000-0002-8420-6545
https://orcid.org/0000-0002-2874-6256

1602 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 7, JULY 2019

2) Bitonic network consumes a considerable amount of
resources to be implemented. As the number of inputs
increase, CAS block counts increase as well. Fur-
thermore, the length of the critical path will also be
increased and the throughput will be reduced as well.

3) Bitonic sorting has excessive memory requirements,
compared to common conventional techniques (e.g.,
merge sort). Therefore, memory utilization puts a limit
on the scalability of the bitonic network [15].

4) The predictability of sorting tasks is important in real-
time applications [29]. Changing the number of input
records will fluctuate the worst case execution-time of
bitonic sorting network.

This paper proposes a novel multidimensional sorting algo-
rithm (MDSA) and its corresponding architecture to greatly
reduce the required resources, increase memory efficiency and
have a little negative impact on execution time, while the
number of input records increases. These features make our
solution a worthy replacement to other sorting techniques in
real-time systems. The proposed method can also be used
for two other applications: 1) to implement Min/Max queues
to find the minimum and maximum records quickly and
2) to acquire the largest/smallest records in the big data. In the
latter case, we have access to the largest and the smallest
records at any time throughout the sorting process.

The rest of this paper is organized as follows. Section II
introduces the bitonic sorting network and CAS blocks.
Section III investigates different sorting hardware using FPGA.
Section IV introduces our novel MDSA. In section V, we dis-
cuss the proposed approach and its architecture in detail.
Section VI presents the experimental results, and finally,
Section VII concludes this paper.

II. BACKGROUND

A. CAS Blocks
A sorting network is the combination of layers of parallel

CAS blocks that leads N disordered M-bit input records to N
ordered output records. Each CAS block has two inputs and
two outputs. If the inputs are sorted, the records will go straight
to the output; otherwise, the CAS block will swap records.
CAS blocks are implemented by an M/2-bit Comparator and
2 × M 2:1 Multiplexers. Each record is divided into two parts
(with an equal number of bits): key field and a data field. The
key field is used for comparison and reordering, whereas the
data field will be passed through the CAS blocks intact.

We have two types of CAS blocks: increasing and decreas-
ing. Fig. 1(a) shows an increasing CAS block. After comparing
two entry records, the smaller record and the larger record
will pass through the right and left multiplexers, respectively.
Using increasing CAS blocks makes for an increasing sorting
network with the smallest records on top. Fig. 1(b) shows a
decreasing CAS block. This block passes the smaller record
through the left multiplexer and the larger record through the
right multiplexer. This block makes for a decreasing sorting
network with the largest records on top. Fig. 1(c) shows a
dual-mode CAS block. As the name implies, this block is
designed to work in both ascending and descending order.
If the “Direction” signal value is zero, the dual-mode block

Fig. 1. High-level implementation (top) and schematic symbol (bottom)
of building CAS blocks for sorting networks. (a) Increasing CAS block.
(b) Decreasing CAS block. (c) Dual-mode CAS block.

Fig. 2. CAS network for an 8-input bitonic sorting unit with 3 CAS stages,
6 CAS steps, and 24 increasing CAS blocks.

behaves like an increasing CAS block; otherwise, it turns into
a decreasing CAS block.

The delay of a CAS block depends on the comparator
and the 2:1 multiplexer that are serially connected together.
We should add the delay of an XOR gate to this value for a
dual-mode CAS block.

B. Bitonic Sorting Network
As mentioned earlier, a series of parallel CAS blocks will

form a sorting network. Each time, a set of N unordered
records enters the network. CAS blocks sort their input records
at each step and send their outputs as inputs to the next step.
Bitonic sorting network has been widely used for hardware
implementations [9], [15], [16]. In an N input bitonic network,
we have log2 (N) CAS stages. Each K-record stage has
log2 (K) CAS steps with N/2 parallel CAS blocks in each
step. Fig. 2 shows an eight-input bitonic sorting network.
In the first stage, we have four parallel CAS blocks with two
records as inputs, and thus, we only need one step to sort
them out. Stage 2 consists of two consecutive steps. Each step

NOROLLAH et al.: RTHS: A LOW-COST HIGH-PERFORMANCE REAL-TIME HARDWARE SORTER 1603

receives records from its previous step and sorts the records
according to the predefined connections of its corresponding
CAS units. Stage 3 includes three steps and its last step outputs
the final sorted sequence of the given records. An N-input
bitonic network has a total of 1/2 log2 (N)(log2 (N)+1) steps.
The total number of CAS blocks required for the network is
calculated from the following equation:

NumCAS = N/4 × log2 (N)(log2 (N) + 1). (1)

For example, the eight-input bitonic sorting unit shown in
Fig. 2 consists of log2 (8) = 3 stages, 1/2×log2 (8)(log2 (8)+
1) = 6 steps, and 8/4 × log2 (8)(log2 (8)+ 1) = 24 increasing
CAS blocks. The resources required to implement a bitonic
sorting unit depend on the number of CAS blocks. Also,
the delay of the network depends on the number of steps.
Moreover, according to (1), this delay limits the feasible
number of input records.

III. RELATED WORK

Several PHSA solutions have been proposed to enhance the
sorting process based on bitonic and merge sorting networks.
In this section, we introduce some of these methods that are
implemented on FPGAs.

Srivastava et al. [15] have proposed a hybrid design for
large-scale sorting on a FPGA. Merge sorting network benefits
from a small delay and optimal memory utilization, but it
suffers from low throughput due to the lack of parallelism
in the last stage of its network. On the contrary, the bitonic
sorting network achieves a great throughput, at the cost of
high delay and memory requirements. The authors managed
to blend merge and bitonic sorting networks to avoid their
inherent shortcomings. Thus, the initial steps of the sorting
network utilize merge sorting structure, while the final steps
make use of bitonic method to increase parallelism. This
combination improves the throughput and reduces memory
consumption, at the cost of high resource requirements. It also
needs to sort the entire records to find the minimum and
maximum entries.

Ricco et al. [30] have introduced a new application of
sorting networks on modular multilevel converters (MMC),
by presenting a new bitonic-based sorting architecture to
enhance the control of capacitor voltages balance (CVB).
The authors have presented a factorization method to share
the CAS units between factorized submodules. This method
decreases resource consumption at the cost of increasing the
factorization level. However, the increase in factorization level
worsens the delay and the throughput of the sorting network.

The Rocket queue architecture [22] has implemented the
Min/Max queue structure based on shift registers and the heap
sort. The shift registers are divided into sections with only one
CAS block for each section, which reduces the area and power
consumption. Incoming records will be compared to the first
cell of each queue. If it is smaller, it will be swapped in, else it
will move on to the lower sections, and this process continues
until it finds a fit for the input record. The critical path of
finding the smallest record is fixed and highly predictable.
On the other hand, if a new record enters a queue and it
happens to be bigger than the majority of enqueued records,

it will impose a great delay on sorting process to fit the record
which is the main disadvantage of this architecture.

Song et al. [16] introduce parallel merge tree (PMT),
a high-performance merge sorting network with multirate
merger (MM) units at each stage. An MM unit consists of
a P input partial bitonic network and P FIFO queues. The
partial bitonic network selects P/2 of the biggest records and
sends them to its outputs. Their architecture achieves high
throughput for a small number of records. However, increasing
inputs will extend the critical path and will diminish the
resource and memory efficiency.

The complexity and throughput of a sorter have a direct
impact on power consumption. Lin et al. [17] offer a high-
performance, low-power sorter architecture. Their solution
benefits from a low-power sorting module followed by an
adaptive clipping operation, in order to increase throughput.
The critical path lengthens slowly as the input records increase,
which satisfies real-time constraints, but the resources required
for the sorter will increase dramatically.

SHMS [18] is a hardware merge sorter that arranges the
sorted segments of records into a general sequence. As men-
tioned earlier, merge sort takes a toll on frequency due to
the increase in the critical path. SHMS tries to solve this
problem in an innovative way by circumventing the number of
consecutive circuit gates to a constant number, resulting in a
constant frequency. This architecture has been able to improve
throughput compared to other PHSA solutions.

The low speed and high resource requirements of bitonic
and even–odd sorting networks, in the absence of pipelining,
have persuaded Sklyarov and Skliarova [31] to devise a
sorting method that sorts a set of records in an iterative
manner. Iterative sorting includes subsorters, consisting of
two layers of consecutive CAS units. The subsorter is fed
through registers and eventually its outputs are returned to
the same registers. We call this method reusable sorting
network (RSN). The authors emphasize that by employing
software presorting and partial sorting of incoming records,
the number of iterations can be reduced. This method sorts
partial sets of records independently and then merges all sets
into a single sequence of sorted records, using a merge sort
method, implemented in software. Of course, with increasing
the number of inputs, the number of iterations will increase
as well and the throughput starts to decline.

In [9], unary processing is used to design a low-cost
and fault tolerant sorter. Unary processing is a subcategory
of stochastic computing. All bits possess equivalent values.
Numbers are represented as a bitstream, which allows the
computational circuits to be simple and efficient in terms of
power and area consumption. CAS blocks are implemented,
using only one AND and one OR logic gates. Therefore,
the delay and resources required for each CAS block are
dramatically decreased. However, their method suffers from
low throughput and extensive delays. The latter reacts poorly
to a slight increase in data width.

IV. MULTIDIMENSIONAL SORTING ALGORITHM

As discussed in the previous sections, factors such as critical
path, resources, and power consumption limit the feasible

1604 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 7, JULY 2019

Fig. 3. Two-dimensional proposed algorithm for sorting 8 × 8 matrix input
records.

number of input records. To sort a large sequence of records,
the sequence has to be divided into smaller segments and each
segment has to be sorted, separately. In the end, the sequence
of the sorted records is obtained by a secondary sorter,
which is implemented, using a set of FIFO queues and a
comparator unit [18]. A secondary sorting circuit imposes a
great delay on the system and occupies a considerable amount
of resources on an FPGA. The goal is to provide a method
that can handle more input records without using a secondary
sorter.

Assume N input records with M-bit width form a P ×
P matrix (P = (N)1/2). The MDSA uses P input sorting
networks to sort all records. Fig. 3 shows MDSA in action
with 64 input records, forming an 8 × 8 matrix.

The sorting network can operate in two modes: 1) Normal
sorting is the case in which the sorting network arranges
records in descending order and 2) reverse sorting is the case
in which the sorting network arranges records in ascending
order. MDSA has six consecutive phases, as follows.

1) Column Sorting: Odd and even networks have normal
sorting modes.

2) Row Sorting: Even networks have reverse sorting mode,
and odd networks have normal sorting mode.

3) Column Sorting: Odd and even networks have normal
sorting modes.

4) Row Sorting: Odd networks have reverse sorting mode,
and even networks have normal sorting mode.

5) Column Sorting: Odd and even networks have normal
sorting modes.

6) Row Sorting: Odd and even networks have normal
sorting modes.

At each phase, each sorting network sorts its assigned
eight records, independently. In phase 1, column records are
assigned to the sorting networks. Sorting networks operate
in the normal sorting mode and arrange their records in the
descending order for each column. In phase 2, row records are
assigned to the sorting networks. Odd and even networks are
in the normal sorting and reverse sorting modes, respectively.
Moving records in adjacent rows, using two normal and
reverse sorting modes, makes it possible to compare all the
records together in the following phases. In phase 3, sorting
networks receive and sort records as columns in the normal
sorting mode. After phase 3, partial sorting is done and the
larger and smaller records are placed in the upper matrix and
lower matrix elements, respectively. Phase 4 reiterates phase 2,
and phase 5 is similar to phases 1 and 3. In phase 6, records
are assigned to the sorting networks as rows and they will be
arranged in normal sorting mode, one last time. At the end of
phase 6, all records are sorted and will be sent to the output
as a 1-D array.

We tend to use MDSA to sort an n-dimensional matrix. Let
a(i, j,...,n) be a matrix element and i × j × . . . × n represent
their corresponding sizes.

Theorem 1: Records in an n-dimensional matrix can be
arranged into a 1-D sorted array, if the following relations
are established (1 ≤ w ≤ n).

1) In wth dimension, record am , must be greater than record
a(m+1), for 1 < m ≤ P and P = ([n]N)1/2.

2) In wth dimension, the record a(c,P) of this dimension
must be greater than record a(c+1,1), for 1 < c ≤ P .
in a(k,l), k is w−1th dimension and l is wth dimension.

Proof: If we want to place the records of matrix A(i, j,...,w)

in 1-D array B, we will use the following equation:
B[Pn−1w + . . . + P j + i] = A(i, j,...,w). (2)

In (2), i, j, . . . , w can change in the range between 1 and P .
The following equation is used to check the descending order
of records in array B:

B[m] ≥ B[m + 1], 0 < m < P. (3)

According to (2), in each dimension, records have to
be arranged in descending order and the last record of
each dimension is larger than the first record of the next
dimension. �

Consider set {x̄, x, x} as the representation of sorting modes
in dimension x . In mode x , all sorting networks operate in the
normal sorting mode. In mode x̄ , the odd/even sorting net-
works operate in the normal/reverse sorting modes, and in x ,
the odd/even sorting networks operate in the reverse/normal
sorting modes. For example, to sort a 2-D matrix (i represents
the row and j represents the column), we require six phases,
which are represented as { j ī, j i, j i}.

We assume a 2-D matrix with the size of P × P ,
a(i, j) < a(i+1, j) and a(i, j) < a(i, j+1). In phase 1 ({ j}),
the matrix columns are arranged in descending order and
the P/2 larger/smaller records of each column are placed
on the top/bottom of the matrix. In phase 2 ({ī}), the matrix
odd/even rows are arranged in the descending/ascending order.

NOROLLAH et al.: RTHS: A LOW-COST HIGH-PERFORMANCE REAL-TIME HARDWARE SORTER 1605

The record a(P,P) is transferred to the first row and first
column of the matrix after this phase, but the record a(P,P−1)

remains in row 2 and column 4. These replacements cause
the columns with the largest records (records residing in
columns P/2 to P), to broadcast their records across the
matrix. In other words, it will enable us to compare all the
records in the next phases. In phase 3 ({ j}), columns will
be arranged in the decreasing order for the second time, and
as a result, the upper/lower records of the matrix will be the
largest/smallest records. At this point, all records are arranged
in their rows and columns, but we tend to send the sorted
records as a 1-D sorted array to the output. To respect the
conditions of Theorem (1), the following equation is obtained
for 2-D sorting (0 < i ≤ P):{

ai, j ≥ ai, j+1, 0 < j < P

ai,P ≥ ai+1,1, j = P.
(4)

The next phases are intended to meet this condition.
In phase 4 ({i}), the matrix odd/even rows are arranged in the
ascending/descending order. The next two phases ({ j i}) will
arrange the rows and columns of the matrix in the descending
order. At the end, the condition of (4) is met, and the sorting
process is completed.

We can sum up the sorting phases for an n-dimensional
matrix with the following equation, which has distributive
property, but lacks Commutative property (q = n − 1):

{n{q̄, q, q}} . . . {k̄, k, k}}{ j̄, j , j}}{ī, i , i}}. (5)

In (5), the sorting modes are always changing in each
dimension except for the last one, in which the sorting mode
has to be always fixed. To sort an n-dimensional matrix,
we need n×3n−1 sorting phases. For instance, it requires 6 and
27 phases for 2-D and 3-D matrices, respectively. Increasing
the phases will extend the delay. However, the number of CAS
blocks required to implement a high number of phases will be
considerably lower than the conventional solution, presented
by (1). If the number of input records remains constant in the
main sorter, the sorting network units will be simplified by
increasing the dimensions of the matrix.

Fig. 4 shows the sorting phases of MDSA for a 3-D
matrix A4,4,4, intended for sorting 64 input records. According
to (5), it takes 27 phases to sort a 3-D matrix. In the first
dimension ({i}), the sorting mode will be changed for each
row, as shown in Fig. 4. In the second dimension ({ j}),
the sorting mode will be changed per { j i} page and the
columns of each page have the same sorting mode. In the third
dimension ({k}), the sorting mode is normal and constant for
all phases. The 3-D matrix sorting process can be replaced by
the 2-D sorting process shown in Fig. 3. Choosing 3-D over
2-D reduces hardware resources but imposes 4.5 times more
sorting phases to the process.

This sorting algorithm eliminates the need for secondary
sorting hardware. Moreover, increasing the number of input
records does not affect the number of phases. It will affect
the size of the input matrix and will increase the number of
sorting networks and their number of corresponding stages,
but it will not change the phases of the algorithm (six in the

Fig. 4. Three-dimensional proposed algorithm for sorting 4 × 4 × 4 matrix
input records.

2-D matrix). If we integrate the pipeline stages into sorting
networks, we obtain a fixed execution time, so that a real-time
scheduler can easily calculate and schedule execution time of
sorting tasks. Note that this algorithm is also applicable for
other nonsquare matrices. However, the square matrix is the
optimum form for hardware implementation. If the increased
number of input records is in the range between 22k + 1 and
22(k+1) for k = 1, 2, 3, . . ., we will use a sorter, capable of
sorting 22(k+1) records. As a result, we will not experience any
increase in delay, if the number of records increases in this
range. For example, the delays in sorting the number of records
between 17 and 64 are the same. However, if the increased
number of records exceed 22(k+1) limit, we experience a
gradual increase in overall delay, due to the increase in the
number of stages of sorting networks.

In big data sorting, we assume a software tool to split
the input records into segments and then each segment to
be sorted by MDSA. The software tool will assign records
to segments based on sorting algorithms such as bitonic. The
sorting process continues until all records are sorted.

The second application of this algorithm is to obtain
Min/Max records in two phases. According to Fig. 3, at the
first phase, the biggest records are in the first row and the
smallest records are in the last row. At the second phase,
the biggest record is in the first row and first column and
the smallest record is in the last row and first column.

V. PROPOSED APPROACH

In this section, we describe the hardware implementation
of MDSA for a 2-D input matrix. To illustrate our design,

1606 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 7, JULY 2019

Fig. 5. Eight-input DPBN.

we first discuss the design of dual-mode pipeline bitonic
network (DPBN).

A. Dual-Mode Pipeline Bitonic Network
Increasing the number of input records in a bitonic sorting

network will increase the number of steps and will further
deepen the network. This will lengthen the critical path and
overall network latency. Therefore, pipelining is used as a
technique to reduce the critical path.

The number of pipeline stages in a DPBN is equivalent to
the number of its steps (1/2 log2 (N)(log2 (N) + 1)). Fig. 5
shows an eight-input DPBN. The network can receive up to
eight input records with 64-bit width per clock and deliver
sorted records to its output after six stages of the pipeline.
The control unit sends the “direction” signal to the DPBN to
set mode between the normal and reverse sorting.

B. Main Proposed Sorting Hardware
According to the proposed algorithm for a 2-D input matrix,

we need P column sorters and P row sorters. We also need
the row sorters to include both decreasing and increasing CAS
block types. We design the total sorting network with P units
of DPBN to reduce the hardware requirements. Fig. 6 shows
the proposed sorting architecture called real-time hardware
sorter (RTHS) for sorting 8×8 matrix records. It is composed
of eight DPBNs, an 8 ×8 implicit switch, registers for storing
records, and a controller. As shown in Fig. 7, the implicit
switch is implemented, using fixed wiring. The multiplexing
circuit is implemented by an implicit switch. The switch will
interchange the position of rows and columns in a matrix. The
switch is implicitly implemented within the sorting network
and does not require additional hardware (only requires more
complex routing in the FPGA). In Fig. 7, each horizontal
line is connected to an input line, carrying a set of eight
64-bit records. Each horizontal line then distributes each of
its records to eight vertical output lines. All the first records
of all inputs will be merged into a set of eight records and
will be sent out through the first output. This transition is
similar across all the outputs. Note that the process of breaking
down and concatenating the sets of eight records is completely
static and only imposes a minimal overhead to the routing of
the FPGA, due to its intrinsic hardwiring.

Fig. 6. RTHS design for sorting 8 × 8 matrix records.

Fig. 7. Implicit switch design.

At the first, the process is initialized by loading 64 records
with 64-bit data width into the primary registers from the block
random access memories (BRAMs) and next “Start” signal is
activated. In the next cycle, the records of the primary registers
are assigned to eight DPBN units for sorting. The control unit
sends out the “Direction” signals to the DPBN units according
to the proposed sorting algorithm. Each bit of the “Direction”
signal determines the sorting mode of its corresponding DPBN
unit. “0” value represents normal sorting, while “1” value
indicates the reverse sorting mode. The switch swaps rows
and columns of the matrix and sends them back to the primary
registers. The control unit manages the execution of the six-
phase sorting process by issuing proper control signals. In the
end, the control unit will issue the “Ready” signal to declare
that the records residing in the primary registers are sorted.

Fig. 8 shows the finite-state machine (FSM) of the control
unit. The sorter is initially in the “Wait” state. An initial value
will be assigned to the “Direction” signals when the “Start”
signal is activated. After every six clock cycles (number of
pipeline stages in DPBNs), the “Delay” signal (counts delays)
will be activated. The FSM states and the “Direction” signals
will be changed according to Fig. 8. Finally, as the “Ready”

NOROLLAH et al.: RTHS: A LOW-COST HIGH-PERFORMANCE REAL-TIME HARDWARE SORTER 1607

Fig. 8. FSM of the control unit.

Fig. 9. Improved RTHS design.

signal becomes activated, the sorter will return to the “Wait”
state.

C. Extended Proposed Sorting Hardware
Some applications need to know the maximum and min-

imum records as fast as possible. As shown in Fig. 3,
it only takes two phases of the proposed algorithm to find
the maximum and minimum records in a 2-D input matrix.
Fig. 9 shows an improved architecture for obtaining the min-
imum and maximum records. Initially, 64 input records with
64-bit width will be allocated to the sorter. After two phases,
the maximum and minimum records are in the leftmost and
the rightmost registers, respectively. Then, the “Ready” signal
will be activated and the midlevel records will be replaced by
62 new records in primary registers. This process will continue
until all big data records are fed to the sorter. In the end,
the two most lateral registers are holding the minimum and
maximum records of big data.

In general, the proposed method can obtain P/2 maximum
records and P/2 minimum records after two phases, because,
at the end of phase 2, the first and last rows contain the largest

and smallest records, respectively. Note that, at this point, only
half of the P records, residing in the first and last rows, are
in the correct order. The overall delay will be increased due
to the reduction of entry inputs to (N − P) record at each
replacement.

The architecture shown in Fig. 9 can also be used for
Min/Max queues. Assume that we have relative deadline
values of each real-time task in the key field of the input
records. When a new task arrives at this queue, the task with
a maximum relative deadline will be swapped out for the new
task to replace it. However, if the relative deadline of the new
task is larger than the maximum one on the Min/Max queue,
it will not be added to the queue after all. The Min/Max queue
will be updated in two scenarios: 1) a new task is accepted
and 2) the task with a minimum relative deadline is assigned
to a processor to run.

The sorter can be used for three different applications
only by changing the controller modes: 1) general sorting;
2) finding the minimum and maximum records in big data;
and 3) creating Min/Max queues. Fig. 9 shows the overall
RTHS architecture, with the ability to change the applications
of the sorter by receiving different “FUN” signals. The general
sorting mode is indicated by “00,” which means that all input
records will be sorted after six phases. If FUN = “01,” the
sorter will find the minimum and maximum records in big
data and finally, if FUN = “10,” the sorter will switch to
the Min/Max queue mode, in which only the largest record
in the queue will be swapped out under certain circumstances.
The maximum and minimum records will be sent to the output
at once.

D. Proposed Sorting Analysis

The overall delay of the sorting network relies on the
maximum delay of a CAS-Dual unit and the implicit switch
routing in the FPGA. Therefore, if the implicit switch routing
is ideal, the delay of the sorter is almost constant. The memory
usage is also important and relies on three factors: 1) the
number of DPBN units; 2) the number of pipeline stages; and
3) the registers of each pipeline stage.

The number of registers required per pipeline stage is
obtained from the following equation:

blockreg = M × P (6)

where M is the data width and P is the number of records
in a row or column. The number of registers required by a
DPBN unit is obtained from the following equation:
bitonicreg = blockreg × (1/2 × log2 (P)(log2 (P) + 1)). (7)

Finally, the total registers of the RTHS network will be
calculated from the following equation:

totalreg = (bitonicreg × P) + M × N. (8)

The number of required registers for the conventional
bitonic sorting network (CBSN) is obtained from the following
equation:
CBSNreg = M × N × (1/2 × log2 (N)(log2 (N) + 1)). (9)

1608 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 7, JULY 2019

TABLE I

COMPARISON OF DESIGN FOR SORTING N ELEMENTS

Therefore, the total number of registers required for the
RTHS network is of order of O(M × P2 × log2

2 (P)), while
this number is of order O(M × N × log2

2 (N)), for the CBSN.
To sort 64 records with 64-bit width, the proposed method
requires [(from (8)] ([(64 × 8) × (1/2 × log2 (8)(log2 (8) +
1))] × 8) + 64 × 64 = 28 672 registers, while CBSN needs
(64×64)× (1/2× log2 (64)(log2 (64)+1)) = 86 016 registers
[from (9)]. Therefore, we can conclude that RTHS uses less
memory compared to the CBSN solution. We also assume the
number of pipeline stages of CBSN, to be equal to the number
of stages in its network, for a fair comparison between CBSN
and RTHS.

Table I compares our design against CBSN. The CBSN
latency relies on the depth of the sorting network, which
translates to the number of consecutive CAS blocks between
two stages. Routing in Table I is referred to as the delay of
routing on the FPGA.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup
We have implemented the RTHS design on a Virtex-7 FPGA

(XC7VX485T, speed grade −2L), written in Verilog hardware
description language. This device has 360 dual-port BRAMs
(each 36 Kb) and 303 000 CLBs. We also used Vivado-2018.2
[32] for synthetization and place-and-route purposes. In the
test cases which demand resources beyond the FPGA limits,
we reported results, obtained in the synthesis phase. The
metrics are as follows.

1) Resource Utilization: The number of resources required
for the sorter, such as lookup tables (LUTs), registers
and operating frequency.

2) Throughput: Number of sorted bytes per time unit
(gigabytes per second).

3) Execution Time: Time required to sort one sequence of
input records.

4) Memory Efficiency: The achieved throughput divided
by the on-chip memory consumption (in bits). We are
specifically interested in the top-left area of the memory
efficiency plot that indicates the most efficiency coupled
with the least memory usage.

5) Power Consumption: The amount of power in watts per
time unit.

B. Resource Utilization Analysis
In this section, the resource utilization of the RTHS design

is compared to CBSN and other common methods. Table II
and Fig. 10 illustrate the results of comparing RTHS against

CBSN with the number of pipeline stages equal to the number
of network stages (CBSN1) and CBSN with the number of
pipeline stages equal to the number of network steps (CBSN2)
for 16, 64, and 256 input records. The number of input records
is limited to 22n , where RTHS can achieve the most optimal
hardware implementation. It also suits the bitonic sorting
network, with 2n input format. However, the RTHS design
supports various sizes for the input matrix. The number of
CAS blocks inCBSN1 and CBSN2 is obtained from (1) and
RTHS is obtained from the following equation:

NumCAS−RTHS = NumDPBN(D/4 × log2 D(log2 D + 1))

(10)

where NumDPBN is the number of DPBNs, while D shows
the number of inputs/outputs in a DPBN unit. According to
Table II, the RTHS design needs 71.2% on average less CAS
units compared to CBSN1. The dual-mode CAS blocks, used
in RTHS, does not consume more resources compared to
increasing/decreasing CAS blocks, because the XOR gate is
implemented in the same LUT.

As we explained in the previous section, for a fair compar-
ison, we assumed a pipeline stage between every two stages
of DPBN in the bitonic network. CBSN2 is also considered
in order to show the excessive increase in the number of its
required registers. We put a pipeline stage between each two
steps of a CBSN, highlighting the advantage of RTHS design
in terms of resource consumption. This modification is seemed
to be necessary, as CBSN2 occupies an excessive amount of
registers when the number of inputs passes 32 records (tested
for 64 and 128 records).

As we know, the maximum operating frequency depends
on the minimum period of the sorting circuit clocks, which
is limited to the largest critical path of the design. High
resource requirements of CBSN1, for 64 input records and
higher, nullifies the pipelining benefits to a certain extent,
due to the increase in the number of steps. The impact of
increasing pipeline stages directly affects the critical path
and the minimum period of a clock cycle. Our minimalistic
approach has allowed us to embed a pipeline stage between
each step of DPBN units, resulting in 85.4% and 69.9%
shorter critical path compared to CBSN1 in the best and
the worst case, respectively. In response to an increase in
the number of input records, we can simply add additional
DPBN units to our design. Due to the parallel nature of our
architecture, the critical path will remain unaffected, resulting
in a predictable execution-time and better performance in real-
time applications.

In Table II, the number of LUTs has dropped by 66.3%
on average compared to CBSN1. Unlike LUTs, the number
of registers is increased by 43.5% on average. As expected,
the main reason behind this increase is the number of pipeline
registers, used in the RTHS design.

Scalability is one of the most important issues in the sorting
problem. According to our evaluations, the scalability of the
RTHS design is far superior to CBSN. By increasing the
number of inputs, we experience a little impact on the critical

NOROLLAH et al.: RTHS: A LOW-COST HIGH-PERFORMANCE REAL-TIME HARDWARE SORTER 1609

TABLE II

COMPARISON OF RTHS DESIGN, CBSN WITH THE NUMBER OF PIPELINE STAGES EQUAL TO THE NUMBER OF NETWORK STAGES (CBSN1)
AND CBSN WITH THE NUMBER OF PIPELINE STAGES EQUAL TO THE NUMBER OF NETWORK STEPS (CBSN2)

Fig. 10. Number of CAS blocks, LUTs, registers and critical path (ns) reported for the CBSN1, CBSN2, and the RTHS design.

path and a slow increase in resource requirements of our
design, which greatly contribute to its scalability.

Table III and Fig. 11 put RTHS against PMT, SHMS,
RSN, and the unary sorting for 16, 32, 64, and 256 input
records. PMT and SHMS are not implemented for 256 input
records due to the high complexity and resource requirements.
Therefore, in these two cases, the results are estimated hypo-
thetically. The unary design requires the smallest amount of
resources for implementation. We use the 64-record format in
RTHS to sort 32 input records. We put 32 incoming records
in the top entries of the input matrix and assign the minimum
value to the remaining records to be neutral in the sorting
process. The top 32 records of the matrix will be sent to the
output after the sorting process ends. Only some input registers
and their corresponding sorting circuits will be removed from
the 64 record design to further tailor the hardware for the
32-record use case. RSN is implemented, according to the
pipelined design, presented in [31]. The results are obtained
from the hardware part of the design, but the numbers will

change if we factor in the presorting and merge-sort steps
handled by software.

The number of LUTs used by RTHS has decreased by
85.8% and 87.3%, compared to PMT and SHMS designs
respectively and has increased between 29.9% and 1.3×
compared to the unary design. Like LUTs, we achieved 65.8%
and 94.8% savings in the number of registers used, compared
to PMT and SHMS designs, respectively.

The length of the critical path in RTHS design is far less
than the other sorting methods and offers a relatively constant
value. The critical path of RTHS relies on a single dual-mode
CAS block, whereas in other sorting methods, it is equal to the
maximum number of consecutive CAS blocks. If we consider
the delay of the implicit switch to be constant, the total delay
of RTHS will not rise by increasing the number of input
records. However, in reality, the complexity of the switch
leads to a more complex routing on the FPGA, which, in turn,
increases the critical path gradually. The critical path of our
design is shorter by 80.3%, 43.25%, and 26.5%, compared to

1610 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 7, JULY 2019

TABLE III

COMPARISON OF RTHS DESIGN AND UNARY, PMT, SHMS, AND RSN DESIGNS

Fig. 11. Number of LUTs, registers, and critical path (ns) reported for the unary, PMT, SHMS, RSN, and RTHS designs.

the PMT, SHMS, and unary designs, respectively. Therefore,
we have managed to achieve the highest frequency among
other sorting designs.

C. Throughput Analysis
Throughput T for a sorter with N input records is calculated

from the following equation:
T = N/t × f × datawidth (11)

where f is the frequency, t is the time required to sort N input
records (in cycles) and datawidth is measured in bytes.

RTHS employs N/2 BRAMs and a BRAM control unit to
store NumPipeline stages ×NumI/O incoming input records from

the main memory. BRAMs are used to circumvent the delays
of reading/writing records directly from the memory which
further impact the throughput of the sorter. Virtex-7 benefits
from dual-port BRAMs, resulting in simultaneous writes and
reads. This number of records will certainly exceed the sorting
capacity of RTHS. Hence, BRAMs transfer each set of input
records to the sorting registers in two clock cycles serially.
After the transfer is completed, the sorting procedure begins
for each set of records. Using a software bitonic algorithm,
the records will be fed to the sorter one sequence at a time.
Each BRAM is divided into two sections. The second section
is used to store the next sequence of incoming input records.
So, by the time, sorter sorts out the records in the first

NOROLLAH et al.: RTHS: A LOW-COST HIGH-PERFORMANCE REAL-TIME HARDWARE SORTER 1611

Fig. 12. Throughput of sorting methods for different number of input records.
(a) 32-bit data width. (b) 64-bit data width.

Fig. 13. Execution-time of sorting methods for different number of input
records. (a) 32-bit data width. (b) 64-bit data width.

BRAM section, the upcoming sequence will be available in
the second BRAM section to eliminate the memory conflict
between writing the results and reading the next sequence
of records. In the sorting procedure, each BRAM transfers
sorted sequence of records, received in the previous sorting
procedure, to the main memory and receives a new sequence
of input records.

Fig. 12 compares the throughput of the RTHS design with
the unary, PMT and SHMS solutions. The throughput for
256 input PMT and SHMS designs are absent because they
cannot be implemented. The unary design takes 2M cycles to
sort N records with M-bit width, which is much longer than
the CBSN delay (the longest critical path) [14]. If the data
width is low, the unary design has proved to be cost-effective.
Otherwise, it has the lowest throughput (close to zero) with
32-bit and 64-bit data widths.

Note that the RTHS design receives a completely unordered
sequence of records in the beginning, but the PMT and SHMS
methods receive sequences of partially sorted records as input
and pass a single ordered sequence to their outputs. We have
not considered the overhead of preliminary partial sorting
operations in our comparison, regarding the aforementioned
methods.

D. Execution Time Analysis

Fig. 13 shows the execution-time of sorting methods for a
different number of input records. At the beginning of time,
only one sequence of records will be assigned to sorters. Their
execution times will be the difference between the time that
records were fed to the sorters and the time that sorted records

Fig. 14. Memory-efficiency between five sorting methods for different
number of input records. (a) 32-bit data width. (b) 64-bit data width.

are received at their output. As expected, the execution time
of RTHS proved to be more stable than other methods. Note
that the pipeline technique does not affect execution time
in Fig. 13, because we only passed one sequence of input
records to the sorters. The serialized process of the SHMS
method suppresses its performance severely. The unary method
posted prolonged delays in our test scenario to the point
that made it irrelevant to include its scores in Fig. 13. The
execution time of the RSN method is not included in Fig. 13
since the execution time of RSN depends on the software sorter
and is greater than other methods.

E. Memory Efficiency Analysis
Fig. 14 compares the memory efficiency between five sort-

ing methods. The ideal sorter should achieve the maximum
throughput with the least amount of memory required. The
SHMS method that offers more throughput than RTHS is
located on the right side of the plot because it consumes a
lot of memory. The RTHS method for 256 records with 64-bit
width offers the optimized memory usage on the top left of
the memory- efficiency plot and has the best performance.

F. Power Consumption Analysis
Power consumption is a substantial aspect of every digital

system design. For FPGA chips, the power consumption
depends on the design and operating conditions, the tar-
get device and its operating frequency. Furthermore, power
consumption is heavily dependent on resource utilization,
placement and route, mapping, and logic partition [33]. The
power consumption of an FPGA chip is derived from the total
of static and dynamic power consumptions, which include
clock signal power, design signals, logic blocks, and I/O.
Fig. 15 shows the power consumption of the proposed method
in comparison with other sorting methods. As expected,
increasing the number of input records will increase the power
consumption of all methods, present in Fig. 15. The unary
method offers the lowest power consumption, due to its drastic
reduction of required resources. On the contrary, the SHMS
method demonstrates the highest power consumption, consid-
ering its high resource requirements and operating frequency.
The RTHS method needs more power than the CBSN1 and
unary methods. High operating frequency and total system
dependence on a controller have negatively impacted the

1612 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 7, JULY 2019

Fig. 15. Power consumption of sorting methods for different number of input
records. (a) 32-bit data width. (b) 64-bit data width.

Fig. 16. Throughput to power consumption ratio of five sorting methods.
(a) 32-bit data width. (b) 64-bit data width.

power consumption of the proposed method, compared to
the CBSN1, despite using less LUTs. The RTHS method
still requires less power than the PMT and SHMS methods,
due to the drastic decrease in resource consumption. Despite
the fact that low power consumption is always desirable,
the throughput to power consumption ratio provides a more
equitable insight for comparing different sorting circuits.
Fig. 16 compares RTHS against other sorting methods, based
on the throughput to power ratio. The acceptable results are
the ones, placed under the y = x-axis. In other words, the right
bottom of the graph represents the most ideal design, which
translates to the most efficiency coupled with the lowest power
consumption. The proposed RTHS method is always below the
y = x-axis except for the implementation of 32 input records
with 32-bit data width.

VII. CONCLUSION

Sorting is one of the most important tasks, employed
in many applications. FPGAs provide high-throughput and
memory-efficient solutions to implement parallel and pipeline
designs of various architectures. The bitonic sorting network
offers high throughput, but it lacks memory-efficiency and
requires a lot of resources to be implemented. In this paper,
we have introduced a novel MDSA and high-performance
hardware sorter. It only takes six phases for RTHS to sort any
number of input records. We have presented a detailed analysis
of RTHS, in terms of resource utilization, execution-time,
memory, and throughput. RTHS reduces the required resources
considerably. The number of LUTs is reduced by 66.3%,
compared to the CBSN. We also managed to outdo the

state-of-the-art method SHMS and decrease the number of
LUTs and registers by 87.3% and 94.8%, respectively. In the
future, we plan to implement big Min/Max queues for task
scheduling in real-time systems on multicore platforms.

REFERENCES

[1] U. Güvenç and F. Katircioǧlu, “Escape velocity: A new operator for
gravitational search algorithm,” Neural Comput. Appl., vol. 31, no. 1,
pp. 27–42, Apr. 2017. doi: 10.1007/s00521-017-2977-9.

[2] K. Sujatha, P. V. N. Rao, A. A. Rao, V. G. Sastry, V. Praneeta, and
R. K. Bharat, “Multicore parallel processing concepts for effective
sorting and searching,” in Proc. Int. Conf. Signal Process. Commun.
Eng. Syst., Jan. 2015, pp. 162–166.

[3] G. Graefe, “Implementing sorting in database systems,” ACM Com-
put. Surv., vol. 38, no. 3, p. 10, Sep. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1132960.1132964

[4] S. W. Al-Haj Baddar and B. A. Mahafzah, “Bitonic sort on a chained-
cubic tree interconnection network,” J. Parallel Distrib. Comput., vol. 74,
no. 1, pp. 1744–1761, Jan. 2014. doi: 10.1016/j.jpdc.2013.09.008.

[5] M. Kik, “Merging and merge-sort in a single hop radio net-
work,” in SOFSEM 2006: Theory and Practice of Computer Science,
J. Wiedermann, G. Tel, J. Pokorný, M. Bieliková, and J. Štuller, Eds.
Berlin, Germany: Springer, 2006, pp. 341–349.

[6] Y. Zhang, L. Li, M. Ripperger, J. Nicho, M. Veeraraghavan, and
A. Fumagalli, “Gilbreth: A conveyor-belt based pick-and-sort industrial
robotics application,” in Proc. 2nd IEEE Int. Conf. Robot. Comput.
(IRC), Jan. 2018, pp. 17–24.

[7] D. C. Stephens, J. C. R. Bennett, and H. Zhang, “Implementing schedul-
ing algorithms in high-speed networks,” IEEE J. Sel. Areas Commun.,
vol. 17, no. 6, pp. 1145–1158, Jun. 1999.

[8] Y. Tang and N. W. Bergmann, “A hardware scheduler based on task
queues for FPGA-based embedded real-time systems,” IEEE Trans.
Comput., vol. 64, no. 5, pp. 1254–1267, May 2015.

[9] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Low-cost
sorting network circuits using unary processing,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 26, no. 8, pp. 1471–1480, Aug. 2018.

[10] M. Burrows and D. J. Wheeler, “A block-sorting lossless data
compression algorithm,” Digit. Equip. Corp., Maynard, MA, USA,
Tech. Rep. 124, 1994.

[11] A. Rasmussen et al., “Tritonsort: A balanced and energy-efficient large-
scale sorting system,” ACM Trans. Comput. Syst., vol. 31, no. 1,
Feb. 2013, Art. no. 3. [Online]. Available: http://doi.acm.org/10.1145/
2427631.2427634

[12] S.-W. Jun, S. Xu, and A. Arvind, “Terabyte sort on FPGA-accelerated
flash storage,” in Proc. IEEE 25th Annu. Int. Symp. Field-Program.
Custom Comput. Mach. (FCCM), Apr. 2017, pp. 17–24.

[13] A. Stillmaker, L. Stillmaker, and B. Baas, “Fine-grained energy-efficient
sorting on a many-core processor array,” in Proc. IEEE 18th Int. Conf.
Parallel Distrib. Syst., Dec. 2012, pp. 652–659.

[14] B. Jan, B. Montrucchio, C. Ragusa, F. G. Khan, and O. Khan, “Fast
parallel sorting algorithms on GPUs,” Int. J. Distrib. Parallel Syst.,
vol. 3, no. 6, p. 107, Nov. 2012.

[15] A. Srivastava, R. Chen, V. K. Prasanna, and C. Chelmis, “A hybrid
design for high performance large-scale sorting on FPGA,” in Proc.
Int. Conf. ReConFigurable Comput. FPGAs (ReConFig), Dec. 2015,
pp. 1–6.

[16] W. Song, D. Koch, M. Luján, and J. Garside, “Parallel hardware merge
sorter,” in Proc. IEEE 24th Annu. Int. Symp. Field-Program. Custom
Comput. Mach. (FCCM), May 2016, pp. 95–102.

[17] S.-H. Lin, P.-Y. Chen, and Y.-N. Lin, “Hardware design of low-power
high-throughput sorting unit,” IEEE Trans. Comput., vol. 66, no. 8,
pp. 1383–1395, Aug. 2017.

[18] S. Mashimo, T. V. Chu, and K. Kise, “High-performance hardware merge
sorter,” in Proc. IEEE 25th Annu. Int. Symp. Field-Program. Custom
Comput. Mach. (FCCM), Apr. 2017, pp. 1–8.

[19] M. He, X. Wu, S. Q. Zheng, and B. Englert, “Optimal sorting algorithms
for a simplified 2D array with reconfigurable pipelined bus system,”
IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 3, pp. 303–312,
Mar. 2010.

[20] R. Chen and V. K. Prasanna, “Computer generation of high throughput
and memory efficient sorting designs on FPGA,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 11, pp. 3100–3113, Nov. 2017.

[21] P. P. Puschner and A. V. Schedl, “Computing maximum task execu-
tion times—A graph-based approach,” Real-time Syst., vol. 13, no. 1,
pp. 67–91, Jul. 1997. doi: 10.1023/A:1007905003094.

http://dx.doi.org/10.1007/s00521-017-2977-9
http://dx.doi.org/10.1016/j.jpdc.2013.09.008
http://dx.doi.org/10.1023/A:1007905003094

NOROLLAH et al.: RTHS: A LOW-COST HIGH-PERFORMANCE REAL-TIME HARDWARE SORTER 1613

[22] L. Kohútka and V. Stopjaková, “Rocket queue: New data sorting
architecture for real-time systems,” in Proc. IEEE 20th Int. Symp. Design
Diagnostics Electron. Circuits Syst. (DDECS), Apr. 2017, pp. 207–212.

[23] A. Rjabov, “Hardware-based systems for partial sorting of streaming
data,” in Proc. 15th Biennial Baltic Electron. Conf. (BEC), Oct. 2016,
pp. 59–62.

[24] A. D. G. Biroli and J. C. Wang, “A fast architecture for finding maximum
(or minimum) values in a set,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2014, pp. 7565–7569.

[25] Z. K. Baker and V. K. Prasanna, “An architecture for efficient hardware
data mining using reconfigurable computing systems,” in Proc. 14th
Annu. IEEE Symp. Field-Program. Custom Comput. Mach., Apr. 2006,
pp. 67–75.

[26] K. E. Batcher, “Sorting networks and their applications,” in Proc.
Spring Joint Comput. Conf. (AFIPS), Apr. 1968, pp. 307–314. [Online].
Available: http://doi.acm.org/10.1145/1468075.1468121

[27] C. Layer, D. Schaupp, and H.-J. Pfleiderer, “Area and throughput
aware comparator networks optimization for parallel data processing on
FPGA,” in Proc. IEEE Int. Symp. Circuits Syst., May 2007, pp. 405–408.

[28] J. Angermeier, E. Sibirko, R. Wanka, and J. Teich, “Bitonic sort-
ing on dynamically reconfigurable architectures,” in Proc. IEEE Int.
Symp. Parallel Distrib. Process. Workshops Phd Forum, May 2011,
pp. 314–317.

[29] R. I. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4,
Oct. 2011, Art. no. 35. [Online]. Available: http://doi.acm.org/10.1145/
1978802.1978814

[30] M. Ricco, L. Mathe, and R. Teodorescu, “FPGA-based implementation
of sorting networks in MMC applications,” in Proc. 18th Eur. Conf.
Power Electron. Appl. (EPE ECCE Europe), Sep. 2016, pp. 1–10.

[31] V. Sklyarov and I. Skliarova, “High-performance implementation of reg-
ular and easily scalable sorting networks on an FPGA,” Microprocessors
Microsyst., vol. 38, no. 5, Jul. 2014, pp. 470–484.

[32] Vivado Design Suite User Guide: Design Flows Overview.
Accessed: Oct. 20, 2018. [Online]. Available: http://www.xilinx.
com/support/documentation/

[33] H. G. Lee, S. Nam, and N. Chang, “Cycle-accurate energy measurement
and high-level energy characterization of FPGAS,” in Proc. 4th Int.
Symp. Qual. Electron. Design, Mar. 2003, pp. 267–272.

Amin Norollah received the B.S. degree in com-
puter engineering from Islamic Azad University,
South Tehran Branch, Tehran, Iran, in 2015. He is
currently working toward the M.Sc. degree at the
Department of Computer Engineering, Iran Univer-
sity of Science and Technology, Tehran.

His current research interests include computer
architecture, hardware accelerators, real-time sys-
tems, and reconfigurable computing.

Danesh Derafshi received B.E. degree in hardware
engineering from Shiraz University, Shiraz, Iran,
in 2016. He is currently working toward the M.Sc.
degree at Iran University of Science and Technology,
Tehran, Iran.

His current research interests include embedded
real-time systems and reconfigurable architectures.

Hakem Beitollahi received the B.S. degree in com-
puter engineering from the University of Tehran,
Tehran, Iran, in 2002, the M.S. degree from the
Sharif University of Technology, Tehran, in 2005,
and the Ph.D. degree from Katholieke Universiteit
Leuven, Leuven, Belgium, in 2012.

He is currently an Assistant Professor and the
Head of the Hardware and Computer Architecture
Branch, Department of Computer Engineering, Iran
University of Science and Technology, Tehran, Iran.
He and his graduate students are investigating new

architectures, integration techniques, and systems software techniques for
reconfigurable computing and real-time systems. His current research interests
include real-time systems, fault tolerance and dependability, reconfigurable
computing, and hardware accelerators.

Mahdi Fazeli received the M.Sc. and Ph.D. degrees
in computer engineering from the Sharif University
of Technology, Tehran, Iran, in 2005 and 2011,
respectively.

Since 2011, he has been at the Department of
Computer Engineering, Iran University of Science
and Technology (IUST), Tehran, Iran, where he
is currently an Associate Professor. He was the
Founder of the Dependable Systems and Architec-
tures Laboratory, IUST, where he has been the Chair
since 2012. He has authored or coauthored more than

40 papers in reputable journals and conferences. His current research interests
include system-level power analysis and management, real-time systems,
low-power circuits and systems, reconfigurable computing, and reliability
modeling and evaluation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

