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Abstract—In this brief we present novel post-processing mod-
ules for use in True Random Number Generators. These modules
are based on mathematical constructs called strong blenders,
which provide theoretical guarantees for the randomness of the
output. We start by pointing out problems with current post-
processing methods used in state-of-the-art TRNG designs. We
present three novel hardware-efficient architectures and provide
guidelines for choosing the design parameters.

Index Terms—Cryptography, Entropy, Random Number Gen-
eration

I. INTRODUCTION

Hardware True Random Number Generators (TRNGs) are

used in all devices that require secure communication, device

authentication or data encryption. Applications include smart

cards, RFID tags and IoT devices.

TRNGs used in cryptography are subject to strict certifi-

cation procedure. In the past, the security of TRNG designs

was evaluated by running a set of statistical tests such as

NIST 800–22 [1] and DIEHARD [2]. However, as pointed out

in [3], the statistical features exploited by future cryptanalysis

techniques cannot be foreseen in advance. Therefore, it is a

risky practice to rely only on a finite set of statistical tests to

verify the security of a random number generator. A notable

incident happened in 2003 when the Motorola TRNG [4] was

attacked [5] only one year after the details of the design were

disclosed.

Today’s certification authorities [6], [7] require a theoretical

explanation for the unpredictability of generated data. Based

on the theoretical model of the digital noise source (DNS), a

designer has to make an entropy claim – i.e. a lower bound

of the generated entropy. Once this bound is determined, an

appropriate digital post-processing method is used to compress

the sequence of raw numbers into a shorter sequence of full-

entropy random numbers that could be used by the application.

While TRNGs presented in open literature often achieve

impressive results in terms of throughput, energy and hardware

area, they rarely follow all necessary requirements for use in

cryptography. A common mistake is the wrong choice of the

post-processing algorithm. For example, designs presented in

[8], [9] use Von Neumann’s post processing [10]. This method

works only when the probability of generating the output bit

1 doesn’t change over time and when there is no correlation

between the generated bits. Unfortunately, these conditions are

never met in practice. TRNGs presented in [11], [12] use a
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parity filter for post-processing, while a design from [13] uses

an xor gate to combine the outputs of two independent physical

sources of randomness. In some specific cases, these methods

increase the min-entropy of the output, but they don’t provide

general-case theoretical guarantees. TRNG designs presented

in [14]–[16] use the LFSR-based whitening schemes instead

of post-processing. Such schemes don’t compress the data

and thus don’t increase the entropy per bit. In addition, many

designs [17]–[19] don’t use any post-processing because the

raw bits pass NIST 800–22 statistical tests. As illustrated by

the attack [5] on the Motorola TRNG, this is not a good

practice. We stress that the Motorola TRNG was also able

to pass all statistical tests from the DIEHARD suite [2].

NIST special publication 800–90B [7] recommends using

one of the vetted post-processing methods based on crypto-

graphically secure primitives such as block ciphers or cryp-

tographic hashes. However, these methods [20], [21] have a

high cost in terms of area, energy and throughput which makes

them unsuitable for lightweight applications. To the best of our

knowledge, the only attempt to implement a mathematically

secure, hardware-efficient post-processing method was made

by Intel in their µRNG design for IoT applications [22].

This method was based on a single finite field addition and

multiplication, a construct that was proposed and theoretically

analyzed in [23]. Unfortunately, the implementation presented

in [22] uses the wrong choice of the finite field and the design

parameters, and thus fails to provide security guarantees.

Motivated by the current lack of mathematically-secure

post-processing modules in the TRNG state-of-the-art, we

propose three hardware-efficient post-processing architectures

suitable for compact implementations. These architectures are

based on mathematical constructs called strong blenders [24],

which provide theoretically proved guarantees for the sta-

tistical quality and unpredictability of the output. The only

requirement imposed on the digital noise source is that it

produces sufficient amount of min-entropy, which makes these

post-processing methods compatible with all physical sources

of randomness. For all three architectures we provide a method

for selecting design parameters given the min-entropy of the

digital noise source.

II. DEFINITIONS AND PROBLEM STATEMENT

Table I summarizes the notation used in this paper. We

will use concepts of min-entropy and Shannon entropy. Min-

entropy is equal to the information content of the most likely

outcome of a distribution. It is either smaller or equal to the
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TABLE I: Notation.

Symbol Description

x Variables.
xi Possible outcomes of a variable x.
X Probability distributions.

x← X Variable x is sampled from distribution X .
Pr

x←X

[event] Probability of an event given that x← X .

Un Uniform distribution over the domain {0, 1}n.
(X ,Y) Joint distribution of X and Y .
H∞(X ) Min-entropy of a distribution X .

H∞(X ) = − log2
(

maxPr[X = i]
)

.
H1(X ) Shannon entropy of a distribution X .

H1(X ) = −
∑

i
Pr[A = i] · log2

(

Pr[A = i]
)

.
f(x, y) Output of a function for input values x and y.
f(X ,Y) Distribution of the function output for the input

distributions X and Y .

Shannon entropy which represents the average information

content of a distribution. Equality holds only for the uniform

distribution. Statistical distance is used to measure the prox-

imity of two distributions over the same domain. This metric

is often used to quantify the difference between the output

distribution and the ideal (uniform) distribution.

Definition 1. The statistical distance SD between two distri-

butions A and B over the domain D is:

SD(A,B) =
1

2

∑

i∈D

|Pr[A = i]− Pr[B = i]| . (1)

The statistical distance always takes a value between zero

and one, where zero is achieved only for identical distributions.

In this work, we will also consider a more strict metric

called ε-robustness. Loosely speaking, a random variable is ε-

robust if there is no outcome that is significantly more likely

or significantly less likely than any other outcome. The degree

of significance is quantified using parameter ε.

Definition 2. A distribution of an n–bit variable is said to

be ε–robust if the probability of any outcome xi ∈ {0, 1}n is

within the following bounds:

2−n · (1− ε) ≤ Pr
x←X

[x = xi] ≤ 2−n · (1 + ε) . (2)

A. Entropy Extractors

The first method for entropy extraction from biased bit-

sequences was proposed by Von Neumann in [10]. However,

this method has limited applicability because it requires that

the input bits are independent and identically distributed. A

very general class of entropy sources, limited only by the

level of min-entropy, was introduced by Chor and Goldreich

in [25]. These randomness generators are called (l, b)-sources,

and they produce l-bit strings with min-entropy of at least b
– i.e. each of the 2l possible outcomes is generated with a

probability lower than 2−b. This class is suitable for modeling

all entropy sources from nature because it only requires that

some amount of min-entropy is generated without making any

additional assumption about the underlying distributions. The

extractor theory deals with the problem of post-processing data

from (l, b)-sources to obtain a uniformly distributed output.

We note that the perfect extraction is not possible, but it is

only possible to guarantee that the output of the extractor is

statistically close to U up to an arbitrarily small constant δ. In

addition, we note that it is impossible to construct a single-

source entropy extractor–at least two independent sources have

to be used [25].

Definition 3. A (l, b, w, δ) two-source extractor Ext :
{0, 1}l × {0, 1}l → {0, 1}w is a function such that for any

two (l, b)-sources X and Y , the output is statistically close to

Uw:

SD(Ext(X ,Y),Uw) < δ . (3)

The concept of strong blenders was introduced in [24]. A

strong blender is an entropy extractor for which the output is

independent of one of the inputs.

Definition 4. A (l, b, w, δ) two-source strong blender Ble :
{0, 1}l × {0, 1}l → {0, 1}w is a function such that for any

two (l, b)-sources X and Y , the output is statistically close to

Uw and independent of Y:

SD((Ble(X ,Y),Y), (Uw,Y)) < δ . (4)

The following method for constructing strong blenders was

proposed and proven in [26]:

• Let A1, ..., Aw denote l × l binary matrices and let r
denote an integer such that r < l. Further, let the matrices

A1, ..., Aw have the following property:

rank
(

∑

Ai

)

> l − r , (5)

where the summation is done over any non-empty subset

of {1, ..., w}.

• A function Ble : {0, 1}l × {0, 1}l → {0, 1}w is defined

as:

Ble(x, y) = ((xA1) · y, (xA2) · y, ...(xAw) · y) , (6)

where · denotes the inner product and xAi denotes the

matrix multiplication.

• Function Ble(x, y) is a (l, b, w, δ) two-source strong

blender where:

δ 6 2−
2b+2−(l+r+w)

2 . (7)

B. Problem statement

Our goal is to develop a digital post-processing method

that provides theoretical guarantees for the quality of the

output bits. We require this module to be universal in the

sense that the guarantees are provided for any digital noise

source with sufficient level of min-entropy. Since there is

no known mathematical method which guarantees uniformity

(full-entropy) for all such sources, we settle for a slightly

weaker requirement; we require ε-robustness of the output

for an arbitrarily small constant ε set by the designer. We

further require that this post-processing module has a compact

hardware implementation.

We assume that the DNS has a constant data rate of one

raw bit per clock cycle. In addition, we assume that the DNS

can be modeled as the (l, b) source, i.e. the output entropy

is always higher than some value b that can be estimated at

design time. Both assumptions are in line with most TRNG

designs available in literature.
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(a) The standard extractor architecture
using two independent Digital Noise
Sources.

(b) A modified architecture with entropy recy-
cling using a single Digital Noise Source.

(c) A modified architecture with entropy sharing. The architecture uses m Digital Noise Sources to generate m− 1 output words.

Fig. 1: Architectures of the post-processing modules based on strong blenders.

TABLE II: The minimal value of l needed to guarantee ε-robustness.

ε 2−64 2−32 2−16

α 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

w = 1 651 326 217 163 331 166 110 83 171 86 57 43
w = 8 791 396 264 198 471 236 157 118 311 156 104 78
w = 16 951 476 317 238 631 316 210 158 471 236 157 118
w = 32 1271 636 424 318 951 476 317 238 791 396 264 198
w = 64 1911 956 637 478 1591 796 530 398 1431 716 477 358
w = 128 3191 1596 1064 798 2871 1436 957 718 2711 1356 904 678
w = 256 5751 2876 1917 1438 5431 2716 1810 1358 5271 2636 1757 1318

III. PROPOSED ARCHITECTURES

We propose three hardware-efficient architectures for post-

processing modules. These architectures are based on a two-

source strong blender [26] which consumes l bits from each

source and produces a single w-bit word. Such blender can be

constructed using any set of l×l matrices with a property given

in Equation (5). We opt for the right-shift matrices because of

their efficient hardware implementation and their compatibility

with bit-serial DNS architectures. These are superdiagonal

matrices given by:

A1 =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0















, Ai+1 = A1Ai . (8)

A bit vector multiplied by Ai results in the same bit-vector

shifted by i positions to the right. In bit-serial architectures

this multiplication is implemented by simply delaying the bit-

sequence for i clock cycles. A sum of any subset of matrices

A1, ...Aw results in a matrix with a rank of at least l−w. Thus,
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by equation (5) r = w, and by equation (7), the statistical

distance of the output from Uw is limited to:

δ < 2−(b+1−w−l/2) . (9)

A. Hardware Architectures

Fig. 1 shows the architectures of the proposed post-

processing modules. A straightforward implementation using

two DNSs is shown in Fig. 1a. In this architecture the strong-

blender is used as a two-source extractor. Multiplications Aix
are implemented by delaying an input bit-stream by i clock

cycles. Inner products are implemented using an AND gate, an

XOR gate and a flip-flop for storing intermediate results. The

computation is performed in l-clock cycles while the sources

generate raw bits, after which the result is stored in the w-bit

output register.

Higher utilization of available entropy can be achieved by

exploiting the independence of the strong blender output from

one of the inputs. In the architecture shown in Fig. 1b one of

the input sequences is reused for generating multiple output

words. This architecture uses the same computational core

(shown in gray) as the two-source architecture, but it requires

only one DNS. The operation consists of two phases: the setup

phase and the entropy extraction phase. In the setup phase,

an l-bit sequence is generated and stored in the circular-shift

register. During the extraction phase, this sequence is rotated

through this register providing one input for the computational

core, while the DNS generates the data for the second input.

Between these two phases, the DNS should be restarted in

order to guarantee the independence of the two inputs. This

way, we bypass the requirement for two distinct entropy

sources.

Fig. 1c shows an architecture that is suitable for high-

throughput designs. This architecture uses m sources and m−1
computational cores. Each generated bit-sequence is used at

most twice, thereby avoiding the risk that a single corrupted

sequence affects many output words.

The selection of the optimal architecture should be guided

by the application requirements and the properties of the

used digital noise source. The choice between the one-source

and the two-source architecture comes down to the choice

between an l-bit shift register and a DNS. In case that the

selected DNS performs better in terms of the the metric

of interest (area, power or energy) compared to the shift

register, a two-source architecture should be used. Otherwise,

a single source architecture is optimal. The multiple source

architecture shown in Fig. 1c should be used in case when the

throughput requirement cannot be achieved using the other two

architectures.

B. Choosing Design Parameters

To guarantee the correct operation of the proposed post-

processing modules, it is necessary to select sufficiently high

input word length l. The minimal required l depends on the

target output word length w, the target ε-robustness and the

amount of min-entropy generated by the DNS. Typically, a

designer has to make an estimation of the lower bound on

TABLE III: The minimal value of l needed to guarantee

compatibility with AIS-31.

α 0.6 0.7 0.8 0.9

w = 1 100 50 34 25
w = 8 240 120 80 60
w = 16 400 200 134 100
w = 32 720 360 240 180
w = 64 1360 680 454 340
w = 128 2640 1320 880 660
w = 256 5200 2600 1734 1300

TABLE IV: Area (Gate equivalent) results and comparison

with conventional solutions.

This Work (1-DNS)

w 1 8 16 32 64 128 256
l 25 60 100 180 340 660 1300

Area (GE) 166.3 518.6 922 1728 3350 6592 13075

This Work (2-DNS)

w 1 8 16 32 64 128 256
Area (GE) 22.7 176.7 353 706 1420 2839 5685

[21]

VN 100 XOR PRESENT
Area (GE) 20 267 1171

the min-entropy generated by the source. We will quantify

this estimation using parameter α such that α 6 b/l. The

estimation of this parameter should be derived from the

theoretical model of the entropy source. To find the required

input word length l, we rely on the following Lemma:

Lemma 1. Any w-bit random distribution X such that

SD(X ,Uw) < 2−w · ε, is ε-robust.

Proof. For any xi ∈ {0, 1}w:

Pr
x←X

[x = xi] 6 2−w + SD(X ,Uw) < 2−w(1 + ε) ,

Pr
x←X

[x = xi] > 2−w − SD(X ,Uw) > 2−w(1− ε) .

From Lemma 1 and equation (9) follows that for any value

of α > 0.5 and any target values of output word length w and

ε-robustness, the required length l of the bit sequence can be

computed as:

l >
2w − 1 + log2(

1
ε )

α− 1
2

. (10)

Table II sums up the minimal required l for different values

of w, α and ε. As expected, for higher levels of min-entropy α,

fewer input bits are required. We note that extraction efficiency

increases for higher output word length w, e.g. for α = 0.9
extracting a single 2−64-robust bit reduces the throughput by

a factor of 163 while extracting 256-bit words under the same

conditions and requirements reduces the throughput by a factor

of less than six.

Sometimes, designer’s goal is not to provide a high level

of ε-robustness, but only to comply with the AIS-31 recom-

mendations. AIS-31 requires that the Shannon entropy of each

output bit is at least 0.997. To simplify the analysis we set a
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more strict requirement that each generated bit should have

min-entropy level of at least 0.997. When the output word has

min-entropy of w−0.003 this requirement is certainly fulfilled.

Thus, we can make the following conservative estimate for l:

l >
2w − 1− log2(2

0.003 − 1)

α− 1
2

. (11)

Table III sums up the required l for different values of w and

α. Again we see that the efficiency of the entropy extraction

increases with min-entropy per bit α and with the size of the

output word w. The proposed designs were synthesized using

the open cell library NanGate 45 nm. The area results for

selected parameter values are summed up in Table IV. For one-

source architecture, the value of parameter l is chosen such

that the output fulfills AIS-31 requirements for α = 0.9. For

sources with lower entropy, this post-processing is more area

consuming because it requires a longer shift-register. The area

of the two-source post-processing doesn’t depend on l. For

32-bit or shorter output word, this post-processing consumes

less than 1 kGE. These results are compared with three

conventional types of post-processing (Von Neumann, xor with

100 stages and a lightweight block cipher PRESENT) [21]. We

note that even though Von Neumann’s and xor post processing

methods have low area implementations they are not suitable

for many entropy sources. PRESENT-based post-processing

consumes more area than strong-blender implementations with

short output words.

IV. CONCLUSION

Post-processing is an essential component of every TRNG

because it compensates for non-ideal nature of physical en-

tropy sources. However, this important aspect of TRNG design

is often neglected, and existing solutions usually don’t provide

any theoretical guarantees. In this brief we have proposed post-

processing modules based on strong-blenders. We developed

lightweight hardware architectures that are compatible with

bit-serial sources of randomness. Unlike previously used tech-

niques such as Von Neumann filter or XOR post-processing,

the proposed method is compatible with all physical sources

of randomness that produce more than 0.5 bits of min-entropy.
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