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Abstract— Pseudorandom bit generator (PRBG) is an essential
component for securing data during transmission and storage
in various cryptography applications. Among popular existing
PRBG methods such as linear feedback shift register (LFSR),
linear congruential generator (LCG), coupled LCG (CLCG),
and dual-coupled LCG (dual-CLCG), the latter proves to be
more secure. This method relies on the inequality comparisons
that lead to generating pseudorandom bit at a non-uniform
time interval. Hence, a new architecture of the existing dual-
CLCG method is developed that generates pseudo-random bit at
uniform clock rate. However, this architecture experiences several
drawbacks such as excessive memory usage and high-initial clock
latency, and fails to achieve the maximum length sequence.
Therefore, a new PRBG method called as “modified dual-CLCG”
and its very large-scale integration (VLSI) architecture are
proposed in this paper to mitigate the aforesaid problems.
The novel contribution of the proposed PRBG method is to
generate pseudorandom bit at uniform clock rate with one
initial clock delay and minimum hardware complexity. Moreover,
the proposed PRBG method passes all the 15 benchmark tests
of NIST standard and achieves the maximal period of 2n. The
proposed architecture is implemented using Verilog-HDL and
prototyped on the commercially available FPGA device.

Index Terms— Pseudorandom bit generator (PRBG), VLSI
architecture, FPGA prototype.

I. INTRODUCTION

SECURITY and privacy over the internet is the most
sensitive and primary objective to protect data in vari-

ous Internet-of-Things (IoT) applications. Millions of devices
which are connected to the internet generate big data that
can lead to user privacy issues [1], [2]. Also, there are
significant security challenges to implement the IoT whose
objectives are to connect people-to-things and things-to-things
over the internet [3], [4]. The pseudorandom bit generator
(PRBG) is an essential component to manage user privacy
in IoT enabled resource constraint devices. A high bit-rate,
cryptographically secure and large key size PRBG is difficult
to attain due to hardware limitations which demands efficient
VLSI architecture in terms of randomness, area, latency and
power.

The PRBG is assumed to be random if it satisfies the
fifteen benchmark tests of National Institute of Standard and
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Technology (NIST) standard. Linear feedback shift register
(LFSR) and linear congruential generator (LCG) are the most
common and low complexity PRBGs. However, these PRBGs
badly fail randomness tests and are insecure due to its linearity
structure [5], [6]. Numerous studies on PRBG based on
LFSR [7], chaotic map and congruent modulo are reported
in the literature. Among these, Blum-Blum-Shub generator
(BBS) is one of the proven polynomial time unpredictable and
cryptographic secure key generator because of its large prime
factorize problem [8]–[11]. Although it is secure, the hardware
implementation is quite challenging for performing the large
prime integer modulus and computing the large special prime
integer. There are various architectures of BBS PRBG, dis-
cussed in [12] and [13]. Most of them either consume a large
amount of hardware area or high clock latency [12], [13]; to
mitigate it, a low hardware complexity coupled LCG (CLCG)
has been proposed in [14] and [15]. The coupling of two
LCGs in the CLCG method makes it more secure than a
single LCG and chaotic based PRBGs that generates the
pseudorandom bit at every clock cycle [14]. Despite an
improvement in the security, the CLCG method fails the
discrete Fourier transform (DFT) test and five other major
NIST statistical tests [16]. DFT test finds the periodic patterns
in CLCG which shows it as a weak generator. To amend this,
Katti et al. [16] proposed another PRBG method, i.e. dual-
CLCG that involves two inequality comparisons and four
LCGs to generate pseudorandom bit sequence. The dual-
CLCG method generates one-bit random output only when it
holds inequality equations. Therefore, it is unable to generate
pseudorandom bit at every iteration. Hence, designing an
efficient architecture is a major challenge to generate random
bit in uniform clock time.

To the knowledge of authors, the hardware architecture
of the dual-CLCG method is not deeply investigated in the
literature and therefore, in the beginning, the architectural
mapping of the existing dual-CLCG method is developed to
generate the random bit at a uniform clock rate. However,
it experiences various drawbacks such as: large usage of flip-
flops, high initial clock latency of 2n for n-bit architecture,
fails to achieve the maximum length period of 2n (it depends
on the number of 0’s in the CLCG sequence and is nearly 2n−1

for randomly chosen n-bit input seed) and also fails five major
NIST statistical tests. Hence, to overcome these shortcomings
in the existing dual-CLCG method and its architecture, a new
PRBG method and its architecture are proposed in this paper.

The manuscript mainly focuses on developing an efficient
PRBG algorithm and its hardware architecture in terms of area,
latency, power, randomness and maximum length sequence
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for IoT enabled hardware applications. The proposed PRBG
method i.e. “modified dual-CLCG” and its VLSI architecture
have the following advantages and novel contributions over
previous PRBG method. First, a single XOR logic is utilized
at the output stage for generating pseudorandom bit at uniform
clock rate which leads to lower the hardware cost. Secondly,
it generates a maximum length of 2n pseudorandom bits
with one initial clock latency. Third, the proposed modified
dual-CLCG method passes all the fifteen benchmark tests of
NIST standard and is proved to be polynomial-time unpre-
dictable. The randomness tests are performed using NIST test
tool sts-2.1.2 [17]. Further, the properties of the proposed
PRBG method are investigated theoretically by using the
probabilistic approach. It shows that the proposed modified
dual-CLCG system has the similar security strength of dual-
CLCG method and the probabilistic algorithm to obtain the
initial seed requires the solution of n24n . The architecture of
the existing dual-CLCG method and the proposed modified
dual-CLCG method for different word size of n = 8-, 16-
and 32- bits are implemented using Verilog HDL and pro-
totyped on commercially available FPGA devices such as
Spartan3E XC3S500E and Virtex5 XC5VLX110T. The real-
time validation is performed using Xilinx Chipscope.

This paper is organized as follows: architectural mapping
of the existing dual-CLCG method is performed and its
drawbacks are highlighted in Section-II. The proposed PRBG
method along with its randomness properties are discussed in
Section-III. Section-IV presents the efficient VLSI architecture
of the proposed modified dual-CLCG method. The experi-
mental setup and FPGA prototype of the proposed PRBG
method are demonstrated in Section-V. Finally, Section-VI is
incorporated to conclude this article.

II. ARCHITECTURAL MAPPING OF THE

EXISTING DUAL-CLCG METHOD

The dual-CLCG method is a dual coupling of four linear
congruential generators proposed by Katti et al. [16] and is
defined mathematically as follows:

xi+1 ≡ a1 × xi + b1 mod2n (1)

yi+1 ≡ a2 × yi + b2 mod 2n (2)

pi+1 ≡ a3 × pi + b3 mod 2n (3)

qi+1 ≡ a4 × qi + b4 mod2n (4)

Zi =
�

1 if xi+1 > yi+1 and pi+1 > qi+1

0 if xi+1 < yi+1 and pi+1 < qi+1
(5)

The output sequence Zi can also be computed in an alter-
native way as described in [15], i.e.,

Zi = Bi if Ci = 0 (6)

Where,

Bi =
�

1, if xi+1 > yi+1

0, else
; Ci =

�
1, if pi+1 > qi+1

0, else
(7)

Here, a1, b1, a2, b2, a3, b3, a4 and b4 are the constant
parameters; x0, y0, p0 and q0 are the initial seeds. Following
are the necessary conditions to get the maximum period.

Fig. 1. Architectural mapping of the existing dual-CLCG method.

Fig. 2. Architecture of the linear congruential generator.

(i) b1, b2, b3 and b4 are relatively prime with 2n(m).
(ii) (a1-1), (a2-1), (a3-1) and (a4-1) must be divisible by 4.
Following points can be observed from the dual-CLCG

method i.e.
1. The output of the dual-CLCG method chooses the value

of Bi when Ci is ‘zero’; else it skips the value of Bi

and does not give any binary value at the output.
2. As a result, the dual-CLCG method is unable to generate

pseudorandom bit at each iteration.

A. Architecture Mapping of the Existing
Dual-CLCG Method

The scope of the work presented in [16] is limited to the
algorithmic development. However, it lacks the architectural
design of the dual-CLCG method. Hence, a new hardware
architecture of the existing dual-CLCG method is developed
to generate pseudorandom bit at an equal interval of time
for encrypting continuous data stream in the stream cipher.
The architecture is designed with two comparators, four
LCG blocks, one controller unit and memory (flip-flops) as
shown in Fig. 1. The LCG is the basic functional block in
the dual-CLCG architecture that involves multiplication and
addition processes to compute n-bit binary random number
on every clock cycle. The multiplication in the LCG equation
can be implemented with shift operation, when a is considered
as (2r +1). Here, r is a positive integer, 1 < r < 2n . Therefore,
for the efficient computation of xi+1, the equation (1) can be
rewritten as,

xi+1 ≡ (a1 × xi + b1)mod2n ≡ [(2r1 + 1)xi + b1]mod2n

≡ [(2r1 × xi ) + xi + b1]mod2n

The architecture of LCG shown in Fig. 2 is implemented
with a 3-operand modulo 2n adder, 2 × 1 n-bit multiplexer
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and n-bit register. LCG generates a random n-bit binary
equivalent to integer number in each clock cycle. Other three
LCG equations can also be mapped to the corresponding
architecture similar to the LCG equation (1). To implement
the inequality equation, a comparator is used that compares the
output of two LCGs. The comparator and two linear congru-
ential generators (LCG) are combined to form a coupled-LCG
(CLCG). Two CLCGs are used in the dual-CLCG architecture.
One is called controller-CLCG which generates Ci and another
one is called controlled-CLCG which generates Bi . To perform
the operation of Zi = Bi if Ci = 0, a 1-bit tristate buffer is
employed that selects the Bi (output of controlled-CLCG) only
when Ci = 0 (the output of controller-CLCG) and it does not
select the value of Bi while Ci = 1. Since the CLCG output
(Ci ) is random; it selects tristate buffer randomly. Therefore,
the direct architectural mapping of the existing dual-CLCG
method does not generate random bits in every clock cycle at
the output of the tristate buffer. In this case, the overall latency
varies accordingly with the number of consecutive 1’s between
two 0’s in the sequence Ci (output of controller-CLCG). This
asynchronous generation of pseudo-random bits is applicable
only where asynchronous interface is demanded. However,
in stream cipher encryption, the key size should be larger
than the message size where bitwise operation is performed at
every clock cycle. Therefore, a fixed number of flip-flops can
be employed at the output stage of dual-CLCG architecture
for generating pseudorandom bit in a uniform clock time.

If the sequence Ci is considered to be known and the
zero-one combinations are in a uniform pattern, then the fixed
number of flip-flops can be estimated to generate random bit
at every uniform clock cycle. For example:

If,

Ci = (0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1);
and

Bi = (1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1);
then,

Zi = Bi if Ci = 0; Zbu f i = (1, x, x, 1, x, 0, 0, x, 1, x, 0, x)

In this example, it is observed that the number of 0’s and
1’s are equal in every 4-bit patterns. There are two 0’s and
two 1’s in every pattern. Therefore, a pair of two flip-flops
(two 2-bit registers) is sufficient to get the random bit in the
uniform clock cycle. However, Ci is not known to the user
and is not always in a uniform pattern. Consider an example,

If,

Ci = (0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1);
and

Bi = (1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1);
then,

Zbu f i = (1, x, 1, 1, 0, x, x, 1, 0, x, x, x, 1, x, 1, x)

No such uniform pattern can be observed in the sequence Ci

of the above example. Therefore, the fixed number of flip-flops
cannot be estimated in this case.

Considering this problem as mentioned above, k number of
bits are generated first and then stored in k-flipflops (termed as
1 × k-bit memory) when Ci = ‘0’. Further, these stored bits
are released at every equal interval of clock cycle. If there
are k number of 0’s in the sequence Ci , then the dual-CLCG
architecture can generate maximum of k- random bits in
2n- clock cycles. It can utilize k- flip-flops to store k different
bits of Bi while Ci = ‘0’. After 2n clock cycles, it releases
these stored bits serially at every two clock cycles (1-bit
per two clock cycles). Here, it is assumed that the number
of 0’s = number of 1’s = 2n−1 (for n-bit input seed) in the
sequence Ci . This architecture may work even if the number
of 0’s in the sequence Ci are less than 2n−1. However, when
the number of 0’s are greater than the number of 1’s, then
this architecture may not work correctly. The maximum length
period of dual-CLCG method depends on the number of 0’s
in Ci and is nearly 2n−1 for randomly chosen n-bit input seed.

The maximum combinational path delay in the dual-CLCG
architecture is the three-operand adder with multiplexer. The
reason is that three-operand adder with multiplexer has highest
critical path delay as compared to the comparator. Therefore,

Area, ADCLCG = 4ALCG+2Acmp+Atri+Amem+Acntrl

Critical path, TDCLCG = Tadd + Tmux

B. Drawbacks of the Existing Dual-CLCG Method and Its
Architecture

Although the dual-CLCG method is secure when compared
with CLCG and single LCG [16], it suffers from several
drawbacks in terms of hardware and randomness test as
mentioned below,

1. It requires control circuit and a large number of flip-
flops (referred as memory). It requires k flip-flops for
generating k number of pseudorandom bits. In this case,
it is assumed k ≈ 2n−1 for randomly chosen n-bit input
seed, therefore it needs 2n−1 flip-flops.

2. Initial clock latency (input to first output) depends on the
number of clock cycles required to generate k random
bits. The dual-CLCG architecture takes 2n initial clock
latency if k is considered as maximum length.

3. Maximum length period of dual-CLCG method depends
on the number of 0’s in Ci and is nearly 2n−1 for
randomly chosen n -bit input seed.

4. The proposed architecture works when it is assumed that
the number of 0’s ≤ number of 1’s in a maximum length
sequence generated from controller-CLCG.

5. The existing dual-CLCG method fails five major NIST
randomness tests [16].

III. PROPOSED PRBG METHOD

To overcome the aforesaid shortcomings in the exist-
ing dual-CLCG method and its architecture as highlighted
in Section-II-B, a new PRBG method and its architecture
are proposed in this paper. The proposed PRBG method is
the modified version of the dual-CLCG method referred as
“Modified dual-CLCG”, in which the equation (6) of existing
dual-CLCG method is replaced with the new equation (12),
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whereas the other four equations from (8) to (11) are same as
in the case of dual-CLCG method from equation (1) to (4).

A. Proposed Modified Dual-CLCG Method and
Its Algorithm

The proposed modified dual-CLCG method generates
pseudorandom bits by congruential modulo-2 addition of two
coupled linear congruential generator (CLCG) outputs and is
mathematically defined as follows,

xi+1 ≡ a1 × xi + b1 mod 2n (8)
yi+1 ≡ a2 × yi + b2 mod2n (9)
pi+1 ≡ a3 × pi + b3 mod2n (10)
qi+1 ≡ a4 × qi + b4 mod 2n (11)

The pseudorandom bit sequence Zi is obtained by using the
congruential modulo-2 equation (12),

Zi ≡ (Bi + Ci )mod 2 = Bi ⊕ Ci (12)

Where,

Bi =
�

1, if xi+1 > yi+1

0, else
and Ci =

�
1, if pi+1 > qi+1

0, else

Here, a1, b1, a2, b2, a3, b3, a4 and b4 are the constant para-
meters; x0, y0, p0 and q0 are the initial seeds. The necessary
conditions to get the maximum length period are same as the
existing dual-CLCG method (as discussed in Section-II). The
proposed modified dual-CLCG method uses the congruential
modulo-2 addition of two different coupled LCG outputs as
specified in equation (12). Hence, the congruential modulo-2
addition does not skip any random bits at the output stage
and produces one-bit random output in each iteration. Since,
the coupled LCG has the maximal period [16], the modulo-2
addition of two coupled-LCG outputs in the modified dual-
CLCG have also the same maximum length period of 2n for
n-bit modulus operand. To perform the modulo-2 addition
operation, it takes only single XOR logic. Therefore, by
replacing equation (6) with equation (12), the proposed PRBG
method can reduce the large memory area used in the exist-
ing dual-CLCG method and also can achieve the full-length
period of 2n . The step by step procedure to evaluate the
pseudorandom bit sequence in the proposed PRBG method
is summarized in the algorithm form in Algorithm 1.

Example of the Proposed Modified Dual-CLCG Method: Let
a1 = 5, b1 = 5, a2 = 5, b2 = 3, a3 = 5, b3 = 1, a4 = 5,
b4 = 7 and m = 23. The sequences xi , yi , pi and qi have a
period of 8 and are hence full period. If the initial condition or
the seed are (x0, y0, p0, q0) = (2, 7, 3, 4) then the generated
sequences are

Xi = (7, 0, 5, 6, 3, 4, 1, 2); Pi = (0, 1, 6, 7, 4, 5, 2, 3);
Yi = (6, 1, 0, 3, 2, 5, 4, 7); Qi = (3, 6, 5, 0, 7, 2, 1, 4);
Therefore, the output sequences Bi and Ci are evaluated as,

Bi = (1, 0, 1, 1, 1, 0, 0, 0); Ci = (0, 0, 1, 1, 0, 1, 1, 0)

The final sequence Zi generated from the proposed modified
dual-CLCG method for n = 3- bit is,

Zi = (Bi + Ci ) mod2 = Bi ⊕ Ci = (1, 0, 0, 0, 1, 1, 1, 0)

Algorithm 1 Modified Dual-CLCG Algorithm to Generate
Pseudorandom Bit Sequence Zi

Input: n (positive integer), m = 2n .
Initialization:

b1, b2, b3, b4 < m, such that these are relatively prime
with m.
a1, a2, a3, a4 < m s.t. (a1-1), (a2-1), (a3-1) and (a4-1)
must be divisible by 4.
Initial seeds x0, y0, p0 and q0 < m.

Output: Zi
1. for i = 0 to k
2. Compute xi+1, yi+1, pi+1, qi+1 using equation

(8), (9), (10) and (11) respectively;
3. if xi+1 > yi+1, then Bi = 1 else Bi = 0;
4. if pi+1 > qi+1, then Ci = 1 else Ci = 0;
5. Zi = (Bi + Ci ) mod 2;
6. Return Zi ;

Before developing the architecture of the “Modified
dual-CLCG” algorithm, the randomness properties are ana-
lyzed in the next subsequent sections.

B. NIST Test Analysis of the Proposed Modified Dual-CLCG
Method for Randomness Evaluation

In this section, the statistical properties of the proposed
modified dual-CLCG method are discussed by conducting
fifteen benchmark randomness tests of NIST standard. The
NIST tests are performed using NIST test tool sts-2.1.2 [17]
on T = 100 and 1000 different binary sequences of length
106 bits which are generated from the proposed PRBG. All
the sequences are generated from different randomly chosen
seeds using the parameters a1 = 129, b1 = 32177, a2 = 65,
b2 = 1533, a3 = 4097, b3 = 571, a4 = 1025 and
b4 = 732969. The size of the modified dual-CLCG method
is considered as n = 24-, 32- and 40- bit. The initial seeds
(x0, y0, p0, q0) are chosen from a true random source [18].
The threshold level alpha (α) is considered as 0.01 for passing
the tests. If P-value ≥ 0.01, then the sequence appears to be
random with a confidence of 99%. After collecting T number
of P-values for each test, a Goodness-of-Fit distributional test
is performed to check whether these values are uniformly
distributed in [0, 1]. Such computation provides the U-values,
and if U-value ≥ 0.0001, then the sequences can be considered
uniformly distributed. The NIST test results of the proposed
PRBG method are highlighted in Table I. It is observed that
the proposed PRBG method for the size of n ≥ 24- bits passes
all the fifteen benchmark randomness tests of NIST standard
with a high degree of consistency.

The NIST statistical test results of the proposed modified
dual-CLCG method of 24- bit size are further compared with
the testing results of other existing PRBG methods in Table II.
It is reported that the proposed modified dual-CLCG method
is the only method among others, which successfully passes
the ‘non-periodic templates’ (NOT) test. ‘NOT’ is the most
difficult test consisting of 149 subtests that detect irregular
occurrences of the possible template pattern [17]. The existing
dual-CLCG method fails to meet uniformity requirements for
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TABLE I

NIST STATISTICAL TESTS OF THE PROPOSED PRBG METHOD

TABLE II

COMPARISON OF THE PROPOSED AND OTHER EXISTING PRBG METHOD (NIST TEST RESULTS)

three NIST statistical tests such as ‘Frequency’, ‘Cumulative
Sum’ and ‘Runs’. It also fails to meet the accepted success-
trial ratio for ‘Runs’ and two out of 149 ‘NOT’. Likewise,
CLCG method fails to meet the uniformity requirement for

three tests, i.e. ‘Frequency’, ‘Runs’ and ‘DFT’. Besides this,
it fails to meet the accepted success- trial ratio for three tests
such as ‘Runs’, ‘DFT’ and ‘NOT’. In nonlinear PRBG [19],
success- trial ratio of ‘NOT’ test and uniformity requirements
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of ‘Entropy’ and ‘Serial’ are failed. Further, major NIST tests
are failed in 24- bit LFSR method [19]. Similarly, the 128- bit
LFSR based weighted pseudorandom test generator [7] also
fails to meet both the uniformity requirements and the success-
trial ratio of ‘linear complexity’ test. The NIST test results
in Table I and Table II reveal that the proposed modified dual-
CLCG method is very efficient for generating high quality
pseudo-random bits than the other existing PRBG methods.

C. Measuring Randomness by Linear Complexity Profiles

Linear complexity profile is an important testing method to
measure the randomness of a periodic sequence. In the pre-
vious subsection, the proposed modified dual-CLCG method
has successfully passed the linear complexity test of NIST
standard, but unfortunately, it ignores some details of the
linear complexity behavior. This subsection presents the
computation of linear complexity profile by applying the
Berlekamp-Massey algorithm. The linear complexity Lk of a
k length binary sequence is the shortest number of stages of a
LFSR that generates the same sequence [20]. Intuitively, non-
linearity is observed in the sequence when Lk is small and
therefore, cryptographically strong sequence must have a high
linear complexity. The sequence generated by a PRBG should
have these three properties regarding linear complexity:

• Its linear complexity profile graph should be close to the
k/2- line in its first period.

• Its linear complexity graph should consist of irregular
stair cases with average height of 2 and average length
of 4 in its first two periods.

• Its linear complexity should be close to its minimal period
for k = 2N.

Consider the example of generating a maximum length
sequence ‘s’ of 32 bits (k = 32) by the proposed modified
dual-CLCG method of 5-bit word size and then expand it by
repeating the first period of 32 bits length. Therefore,

s32 = (01001111100001000011100001011000)

s64 = (01001111100001000011100001011000 . . . 011000)

The linear complexity profile of the sequence ‘s’ for its first
two periods is illustrated in Fig. 3 which shows that it is quite
close to the k/2-line and Lk(sk) stops increasing at 32 (close
to the minimal period of the sequence) after k = 64 bits.
Fig. 4 presents the linear complexity profile of the sequence
obtained by the proposed modified dual-CLCG method
of 32-bit word length for its first 100000 (105) bits.
It shows that the linear complexity graph grows approximately
as k/2 -line with the average height of 2 and the average length
of 4 for k-bit sequence and therefore, Lk(sk) = 50000.

D. Properties of the Proposed Modified Dual-CLCG Method

The properties of the CLCG and dual-CLCG appear
in [14] and [16] show that the coupling of two/four LCGs
makes it more secure. Therefore, the proposed modified dual-
CLCG method which involves the dual coupling of four
LCGs has also the similar security strength like CLCG/dual-
CLCG method. The properties of the proposed modified dual-
CLCG method are derived from the complexity based number

Fig. 3. Linear complexity profiles for first two periods obtained by the
proposed modified dual-CLCG method. Here, period N = 32 bits for
n = 5-bit.

Fig. 4. Linear complexity profiles for first 100000 bits obtained by the
proposed modified dual-CLCG method.

theoretic assumptions and arguments by using the probabilistic
approach.

The basic property of a PRBG for the application of stream
cipher is that the key size should be sufficiently large and must
be as long as the message [17]. In case of proposed modified
dual-CLCG method, the maximum period occurs only when
LCG is considered as maximal period. The sequence of LCG
has maximal period if and only if gcd(b, m) = 1 and
(a − 1) is divisible by 4. Therefore, the sequence of the
proposed modified dual-CLCG has maximal period if and only
if gcd(b1, m) = gcd(b2, m) = gcd(b3, m) = gcd(b4, m) = 1
and (a1-1), (a2-1), (a3-1) and (a4-1) are divisible by 4.

Another important property is that a PRBG must be able
to generate a sequence of bits which cannot be distinguished
in polynomial time from a truly random distribution even
though such a sequence is deterministically generated,
given a short truly random seed [21], [22]. Therefore,
the probabilistic algorithm to find the next bit and the
initial seed must have the negligible probability of success.
In the existing CLCG method, two aspects, namely, those
of 1) forward and 2) backward unpredictability are addressed
with different lemmas. The first aspect is addressed with
Lemma 2.1, whereby Pr(Bi = 1 or 0) ≈ 1/2 for large m.
The second aspect is addressed by quantifying the complexity
of solving the CLCG problem, which is exponential in
O(22n) [16]. Therefore, these two notions for the proposed
PRBG are also addressed with the same mathematical
procedures as applied in the existing dual-CLCG method.
According to [16, Lemma 2.1],

Pr (Xi = j) = Pr (Yi = j) = 1

m
, j ∈ 0, 1, · · · , m − 1
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Where, Xi , Yi , Pi and Qi are the output of the four
different LCGs and is assumed that these are maximal period.
Therefore, the probability of getting 0’s and 1’s in the sequence
of both CLCGs are computed as,

Pr (Bi = 0)

=
m−1�
j=0

Pr(Xi = j)Pr(Yi ≥ j) = 1

m

m−1�
j=0

Pr(Yi ≥ j)

= 1

m

m−1�
j=0

Pr(Yi = j) + Pr (Yi = j + 1) + . . .

+ Pr (Yi = m − 1)

=> Pr (Bi = 0) = 1

m

�
1

m

�
m(m + 1)

2

��
= m + 1

2m

Similarly, Pr (Bi = 1) = m−1
2m . Since Ci is another output

bit sequence generated from the second CLCG in the pro-
posed modified dual-CLCG method and is obtained in same
procedures like Bi , therefore

Pr (Ci = 0) = Pr (Bi = 0) = m + 1

2m

Pr (Ci = 1) = Pr (Bi = 1) = m − 1

2m

Further, the probability of getting 0’s and 1’s in the output
sequence of the proposed modified dual-CLCG method can be
determined in the following lemma.

Lemma 1: Pr (Zi = 0) ≈ Pr (Zi = 1) ≈ 1/2.
Proof: Pr (Zi = 0) is computed as follows,

Pr (Zi = 0) = Pr(Bi = 1)Pr(Ci = 1)

+ Pr(Bi = 0)Pr(Ci = 0)

Here, Bi and Ci are the two independent random processes
that are computed by comparing Xi with Yi and Pi with Qi

respectively. Hence,

Pr (Zi = 0) =
�

m − 1

2m

� �
m − 1

2m

�
+

�
m + 1

2m

� �
m + 1

2m

�

Pr (Zi = 0) = 1

4m2

�
2m2 + 2

	
= m2 + 1

2m2

Similarly, the probability of getting 1’s is,

Pr (Zi = 1) = m2 − 1

2m2

From these probabilistic analyses, if m is considered to be
very large then m2 � 1 and hence

Pr (Zi = 0) ≈ Pr (Zi = 1) ≈ 1

2

The security strength of the proposed PRBG method
depends on the statistical distance between the uniform distri-
bution and the probability distribution of the sequence Zi of
the proposed generator. If the statistical distance dist (Dk, Uk)
between probability ensembles {Dk} and {Uk} is negligi-
bly small then the random generator is secure [22], [23].
Therefore, the probability ensembles {Dk} and {Uk} are
called statistically close or statistical indistinguishability if

their statistical difference is negligible in k [22]–[24] such
that

dist (Dk , Uk) = 1

2

�
s∈{0,1}k





Pr (S = s) − 1

2k





 ≤ ε(k) (13)

Here Dk and Uk are the probability and uniform distribu-
tions respectively over {0, 1}k for k-bit sequence. {0, 1}k are
k-bit segments and S is the random variable that refers to
k consecutive outputs of the sequence Zi in equation (12).
If k-bit sequences are generated according to uniform distrib-
ution, then the probability of obtaining any sequence is 1/2k .
For generating the maximum length sequence, the value of
k = m = 2n is chosen. The probability of the occurrence of
the random variable S in the proposed modified dual-CLCG
can be evaluated by multiplying the individual probability of
each outcome in the sequence as described in [15] and [16]
and is defined as follows,

Pr (S = s) =
�k

i=1
Pr (Zi = zi ) (14)

Here, zi is the one-bit output of the proposed PRBG method.
Practically, Zi is computed as Zi = (Bi + Ci ) mod2,
where Bi and Ci are two independent random processes.

Lemma 2: Pr (S = s) ≈ 1
2k .

Proof: The probability of the occurrence of random vari-
able S, Pr (S = s) for the proposed generator is computed
as,

Pr (S = s) =
�k

i=1
Pr (Zi = zi )

≈
�k1

i=1
Pr (Zi = 0)

�k2

i=1
Pr (Zi = 1)

≈
�

m2 + 1

2m2

�k1 �
m2 − 1

2m2

�k2

(15)

Where, k1 and k2 are the total numbers of 0’s and 1’s count
in a proposed PRBG sequence such that k1 + k2 = k. If m is
very large then m2 � 1 and hence

Pr(S = s) ≈ 1

2k1

1

2k2
= 1

2k1+k2
= 1

2k

Now, the statistical distance between the probability ensem-
bles {Dk} and {Uk} can be measured for the proposed
modified dual-CLCG method by substituting the equation (15)
in equation (13).

dist (Dk , Uk)

= 1

2

�
s∈{0,1}k





Pr (S = s) − 1

2k






≈ 1

2

�
s∈{0,1}k







�

m2 + 1

2m2

�k1 �
m2 − 1

2m2

�k2

− 1

2k







≈ 1

2

�
s∈{0,1}k






 1

2k

�
1 + 1

m2

�k1
�

1 − 1

m2

�k2

− 1

2k







By using the Binomial theorem, the series

�
1 + 1

m2


k1
and�

1 − 1
m2


k2
in the above equation are expanded and further



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

simplified as follows,

dist (Dk , Uk) = 1

2









⎧⎪⎨
⎪⎩

(k1 − k2)

m2 + (k1 − k2)
2 − k

2m4

+ . . . + 1

m2k

⎫⎪⎬
⎪⎭








 (16)

The ‘frequency’ test result as reported in Table I shows
that the number of 1’s and 0’s in a sequence of the proposed
PRBG is approximately equal for randomly chosen input seed.
It assesses the closeness of the fraction of ones to 1/2, i.e., the
number of 1’s and 0’s in a sequence should be approximately
equal [17]. If the number of 1’s and 0’s in the sequence of the
proposed PRBG method is considered approximately equal,
i.e., k1 ≈ k2, then the dist (Dk , Uk) can be computed as,

dist (Dk, Uk) = 1

2






�
− k

2m4 + k (k − 2)

8m8 − . . . + 1

m2k

�




(17)

If k = m and if m tends to infinite then the dist (Dk, Uk)
tends to be zero.

lim
k→∞

dist (Dk, Uk) = lim
k→∞

1

2






�
− k

2m4 + . . . + 1

m2k

�



 = 0

(18)

The polynomial equation (17) can be further simplified to
measure the statistical distance between the two distributions
for k1 ≈ k2 as,

dist (Dk, Uk) ≈ 1

2






�
− k

2m4 + k (k − 2)

8m8

�



 (19)

According to equation (13), the probability ensembles {Dk}
and {Uk} are called statistical indistinguishability if their statis-
tical difference is negligible, such that dist (Dk, Uk) ≤ ε(k).
Here, ε(k) is a negligible function and in standard practice,
ε is negligible if ε ≤ 2−80 [24]. Therefore, the equation (19)
can be further solved for the negligible function.

As an example, ε = 2−100 is considered. Suppose, for
generating k = m = 2n pseudorandom bits, then the value
of m and size of n can be calculated for the proposed modified
dual-CLCG method by solving the following equation:

dist (Dk , Uk) ≈ 1

2






�
− k

2m4 + k (k − 2)

8m8

�



 ≤ 2−100

By solving the above polynomial equation, the value of
k ≈ 232 is obtained and therefore, the proposed PRBG method
is polynomial time unpredictable with an indistinguishability
of 2−100 (with a distribution that is at a specified distance from
the uniform distribution) for n ≥ 32 bits.

Two other different cases such as k1 = 3k2 and k2 = 3k1
can also be considered to measure the statistical distance
dist (Dk, Uk) between the two distributions. Therefore, the
polynomial equation (16) can be further simplified as,

for k1 = 3k2 :
dist (Dk , Uk) ≈ 1

2






�

k

2m2 + k(k − 4)

8m4

�



 ≤ 2−100 (20)

for k2 = 3k1 :
dist (Dk , Uk) ≈ 1

2






�
− k

2m2 + k(k − 4)

8m4

�



 ≤ 2−100 (21)

Hence, the polynomial equations (20) and (21) can be solved
for the negligible value of 2−100 and the value of k ≈ 298 is
obtained in both the cases k1 = 3k2 and k2 = 3k1. Therefore,
the proposed modified dual-CLCG method is polynomial time
unpredictable with an indistinguishability of 2−100 for n ≥ 98
bits. Hence, any probabilistic algorithm for finding the next
bit has negligible probability of success.

Now consider the problem of determining the initial seed
(x0, y0, p0, q0) of the proposed modified dual-CLCG method.
On knowing a1, a2, a3, a4, b1, b2, b3, b4, m and q-bits of the
output sequence (Z1, Z2, Z3, . . . , Zq) of the proposed modi-
fied dual-CLCG method, the initial seed (x0, y0, p0, q0) can
be determined by solving the inequality equations. The same
mathematical procedure as followed in [16] applies to the
proposed modified dual-CLCG system to solve the inequality
equation. Every i th output Bi of CLCG in the proposed
PRBG holds an inequality equation which is given below

xi > yi if Bi = 1; xi ≤ yi if Bi = 0

Where xi and yi are the i th output of LCG that can
be mathematically derived from the initial seeds x0 and y0
respectively. Therefore,

xi = ai
1x0 + b1

i−1�
j=0

a j
1 (modm)

yi = ai
2 y0 + b2

i−1�
j=0

a j
2 (mod m)

It implies that,

ai
1x0 + b1

i−1�
j=0

a j
1 (modm) > ai

2 y0 + b2

i−1�
j=0

a j
2 (modm)

i f Bi = 1 (22)

ai
1x0 + b1

i−1�
j=0

a j
1 (modm) ≤ ai

2 y0 + b2

i−1�
j=0

a j
2 (modm)

i f Bi = 0 (23)

Once the inequality equation for given i th output bit Bi is
solved, then it is easy to find the initial seeds in the backward
direction. The analysis to solve the inequality equation of
CLCG is described in [16, Lemma 2.1–Lemma 2.4] with
examples. If q-bits of Bi are known then q number of
inequalities, Ei can be set up, where 1 ≤ i ≤ q . Each
inequality equation Ei will have Si set of solutions (x j , y j ).
The intersection of all the Si ’s for i ∈ [1, q] gives a small
set of possible values for the seed. The number of inequalities
that are to be solved to obtain an unique solution (x0, y0) is
given by q = 1 + log2 (|S1|). It means S1 ∟ S2 ∟ S3 ∟ . . .∟ Sq

will give an unique solution (x0, y0), where S1, S2, . . . Sq are
all the set of solutions (x j , y j ).

As stated in the Lemma 2.2 of the CLCG properties,
the inequality a1xi + b1 ≤ a2 yi + b2(modm) and a1xi + b1 >
a2yi +b2(modm) has m(m+1)/2 and m(m−1)/2 solutions for
(xi , yi ) respectively, if all four LCGs have the full period [16].
Therefore, the complexity of a brute-force search to find the
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unique solution (x0, y0) in CLCG is

≈
�

m2

2

�
× q =

�
m2

2

�
× log2

�
m2



= m2 × n = n22n,

where q = 1 + log2 (|S1|) and n = log2 (m). In the proposed
PRBG method, a pair of two inequality equations decides the
generation of random bits at the output. Therefore, the initial
seed (x0, y0, p0, q0) can be obtained by solving the inequality
pair using the above mathematical procedures. Every i th output
Zi of proposed PRBG holds the possible pair of inequality
equations as given below:

[Bi = 1 and Ci = 1] or [Bi = 0 and Ci = 0] if Zi = 0

[Bi = 1 and Ci = 0] or [Bi = 0 and Ci = 1] if Zi = 1

It implies that,

{xi > yi and pi > qi } or {xi ≤ yi and pi ≤ qi }, if Zi = 0

(24)

{xi > yi and pi ≤ qi} or {xi ≤ yi and pi > qi }, if Zi = 1

(25)

Where xi , yi , pi and qi are the i th output of LCGs
derived from the initial seeds x0, y0, p0 and q0 respectively.
If a1, b1, a2, b2, a3, b3, a4, b4, m and q-bits of the output bit
sequence (Z1, Z2, Z3, . . . , Zq) are known then the initial
condition or the seeds (x0, y0, p0, q0) of the proposed method
cannot be determined by solving the above inequality equa-
tions like CLCG method. It means the proposed PRBG method
does not give unique solution (x0, y0, p0, q0) by intersecting
the set of solutions of q number of inequality equations.
This statement can be justified by taking a suitable example.
Consider the same example explained for the proposed PRBG
method in Section-III, where Zi is evaluated from the initial
seeds (2, 7, 3, 4) and assume that Bi and Ci are known. The
computed value of Bi , Ci and Zi are given below,

Bi = (1, 0, 1, 1, 1, 0, 0, 0) and Ci = (0, 0, 1, 1, 0, 1, 1, 0)

Zi = (1, 0, 0, 0, 1, 1, 1, 0)

In this case, seven inequality equation pairs corresponding
to seven consecutive output bits are needed to get a unique
solution. The inequality equation pairs Ei for 1 ≤ i ≤ q , are

{[(5x0+5) > (5y0+3)]mod8; [(5 p0 + 1) ≤ (5q0 + 7)]mod8}
{[(x0 + 6) ≤ (y0 + 2)]mod8; [(p0 + 6) ≤ (q0 + 2)]mod8}
{[(5x0+3) > (5y0+5)]mod8; [(5 p0 + 7) > (5q0 + 1)]mod8}
{[(x0 + 4) > (y0 + 4)]mod8; [(p0 + 4) > (q0 + 4)]mod8}
{[(5x0+1) > (5y0+7)]mod8; [(5 p0 + 5) ≤ (5q0 + 3)]mod8}
{[(x0 + 2) ≤ (y0 + 6)]mod8; [(p0 + 2) > (q0 + 6)]mod8}
{[(5x0+7) ≤ (5y0+1)]mod8; [(5 p0 + 3) > (5q0 + 5)]mod8}

The inequality equation xi > yi has 28 solutions and xi ≤ yi

has 36 solutions. Similarly, inequality equations pi > qi and
pi ≤ qi has 28 and 36 solutions respectively. For the first
inequality equations pair, there are 28 × 36 = 1008 solutions
set and the second combination has 36 × 36 = 1296 solutions
set. Similarly, the third combination has 28 × 28 = 784
solutions set. Therefore, the total numbers of solutions for

each pair of inequality equations depend on the four different
inequality equation conditions. Let Si and |Si | are the solution
set and the total number of solutions for each inequality equa-
tion pair Ei respectively. As the solutions are evaluated using
two different combinations of inequality equations, therefore
the total solution for each pair of inequality is |Si | = 

Sxy



 ×

Spq


. Where



Sxy


 is the total number solutions corresponding

to the inequality between xi and yi . Similarly,


Spq



 is the
total number solutions corresponding to the inequality between
pi and qi . Therefore, it has two cases Zi = 1 and Zi = 0 to
find the total number of solutions. If Zi = 1, then there are
two possible combinations of inequality equation pairs, either
(xi > yi and pi ≤ qi ) or (xi ≤ yi and pi > qi ). If Zi = 1, then
there are two possible combinations of inequality equation
pairs, either (xi > yi and pi > qi ) or (xi ≤ yi and pi ≤ qi ).

Lemma 3: If four LCGs have full period, then the inequality

equation pair (xi > yi and pi ≤ qi ) has
m2

�
m2−1

�
2 solutions

for (xi , yi ).
Proof: As stated in [16], if the two LCGs xi and yi have

full period, the inequality equations xi > yi and xi ≤ yi has
m(m−1)/2 and m(m+1)/2 solutions for (xi , yi ) respectively.
Therefore, by using this property, the total number of solutions
for the inequality equation pair (xi > yi and pi ≤ qi ) can

be obtained as
�

m(m−1)
2



×

�
m(m+1)

2



= m2

�
m2−1

�
2 . Similarly,

the number of solutions for other inequality pairs is defined
in the following corollaries.

Corollary 1: If four LCGs have full period, then the inequal-
ity equation pairs (xi ≤ yi and pi > qi ) has

�
m(m+1)

2



×�

m(m−1)
2



= m2

�
m2−1

�
2 solutions for (xi , yi ).

Corollary 2: If four LCGs have full period, then the inequal-
ity equation pairs (xi > yi and pi > qi ) has

�
m(m−1)

2



×�

m(m−1)
2



= m2(m−1)2

4 solutions for (xi , yi ).

Corollary 3: If four LCGs have full period, then the inequal-
ity equation pairs (xi ≤ yi and pi ≤ qi ) has

�
m(m+1)

2



×�

m(m+1)
2



= m2(m+1)2

4 solutions for (xi , yi ).

case-1. If Zi = 1: There are two possible combinations of
inequality equation pairs, either (xi > yi and pi ≤
qi ) or (xi ≤ yi and pi > qi ). In both combinations

there are
m2�m2−1

�
2 solutions.

case-2. If Zi = 0: There are two possible combinations
of inequality equation pairs, either (xi > yi and
pi > qi) or (xi ≤ yi and pi ≤ qi ). For (xi > yi and
pi > qi ) inequality equation pair, it has m2(m−1)2

4
solutions. Similarly, for (xi ≤ yi and pi ≤ qi )

inequality equation pair, it has m2(m+1)2

4 solutions.

Let Si be the solution set for each inequality pair Ei .
In the previously mentioned example, there are seven solution
sets S1, S2, . . . S7 for the corresponding inequality equation
E1, E2, . . . E7. After solving seven inequality pairs, the inter-
section of sets S1 through S7 is S1 ∟ S2 ∟ S3 ∟ . . . ∟ S7 =
{(2, 7, 3, 4)}. The number of solutions with each step dimin-
ishes as 1008 → 323 → 66 → 18 → 5 → 3 → 1.

Therefore, if the internal states of the comparative LCGs
are known, then the complexity of a brute-force search to find
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Fig. 5. Proposed architecture of the modified dual-CLCG method.

the unique solution (x0, y0, p0, q0) in the proposed modified
dual-CLCG method is ≈ m4

4 × q = m4

4 × log2
�
m2

� ≈ n24n ,
where q = log2

�|Sxy |
�

and n = log2 (m). If the comparator
output Bi and Ci in the proposed modified dual-CLCG method
are not known corresponding to the output Zi , then it is not
possible to compute the unique solution (x0, y0, p0, q0) with
above theoretical procedures. For each value of Zi , there are
two possible combinations of inequality equation pairs. If we
combine the solution sets of each possible inequality pair and
further intersect with similar solution sets corresponding to
other value of Zi , then it gives 18 different solutions at the
end of the steps. The number of solutions with each step
diminishes as 2016 → 1020 → 488 → 256 → 120 → 46 →
26 → 18. It means even after considering all the inequality
pairs corresponding to every output bits Zi , 1 ≤ i ≤ 2n ,
a brute-force search is not able to find the unique solution for
the proposed method.

Therefore, the probabilistic algorithm to obtain the initial
seed of the proposed modified dual-CLCG method requires the
solution of n24n , if Bi and Ci are known. If the intermediate
states Bi and Ci are unknown then it is computationally
infeasible to find the initial seed (x0, y0, p0, q0) for large m,
where m = 2n . Therefore, the dual coupling of LCGs and use
of XOR logic as post-processing in the proposed modified
dual-CLCG method enhance the security strength in the order
of O(n24n) as compared to existing dual-CLCG method. Thus,
the complexity of a brute-force search to break the proposed
modified dual-CLCG system is n24n , whereas it is n22n for
existing dual-CLCG method.

IV. PROPOSED ARCHITECTURE OF THE MODIFIED

DUAL-CLCG METHOD AND ITS

COMPLEXITY ANALYSIS

This section presents the new efficient VLSI architecture
of the proposed modified dual-CLCG method that generates
pseudorandom bit at every uniform clock cycle. The first order
architecture of the proposed modified dual-CLCG method is
shown in Fig. 5 which is developed by mapping the four
LCG equations, two inequality equations and one modulo-2
addition. The LCG block is the basic functional structure
in the proposed modified dual-CLCG architecture and it is
highlighted with dotted box in Fig. 5. The architectural design
of LCG block mapped from LCG equation has discussed in
the Section-II-A. It involves logical shift operation instead of

multiplication and three-operand addition to computes n-bit
binary random output on every clock cycle. The proposed
modified dual-CLCG architecture consists of four LCG blocks
that computes xi+1, yi+1, pi+1 and qi+1 from x0, y0, p0
and q0 respectively. The two inequality equations are realized
with the two n-bit binary comparators that compare the n-bit
binary output xi+1 with yi+1 and pi+1 with qi+1 at the same
clock time, produces one-bit output Bi and Ci respectively.
Further, the modulo-2 addition of the two comparator outputs
are realized with XOR logic as shown in Fig. 5 that computes
final random bit at every clock rate. Therefore, unlike dual-
CLCG architecture which demands complex hardware circuits
(buffer, data control and memory), this proposed architecture
utilizes only single XOR logic at the output stage.

A. Complexity Analysis of the Proposed Architecture

The LCG block used in the proposed architecture takes
the maximum combinational path delay which is contributed
by the combination of one adder and multiplexer delay. The
proposed architecture of the modified dual-CLCG method
consumes an area of four 2x1 n-bit multiplexers, four
n-bit registers, four n-bit three-operand modulo-2n adders and
one 1-bit XOR gate. Therefore, the area and the maximum
combinational path delay of the proposed modified dual-
CLCG architecture are evaluated as follows,

Area, Aprop = 4
�
A3oa + Amux + Areg

� + 2Acmp+AX

Critical path, Tprop = T3oa + Tmux

Here, A3oa and T3oa represents the area and critical delay
of the three-operand adder. The performance of the proposed
architecture depends on the efficient implementation of the
three-operand adder and the binary comparator. The carry
save adder (CSA) is the most efficient and widely adopted
adder technique to perform the three-operand modulo-2n addi-
tion [25]. Therefore, the three-operand modulo-2n adder in the
proposed architecture is implemented by using the carry-save
adder which is shown in Fig. 6. In carry-save adder, the three-
operand addition is performed in two stages. The first stage is
the array of full adders and each of them performs bit wise
addition that computes sum and carry bit signal. The second
stage is ripple carry adder that computes final sum signal.
The area (A3CSA) and critical path delay (T3CSA) of carry
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TABLE III

AREA AND TIME COMPLEXITY

Fig. 6. Three-operand modulo-2n carry-save adder.

save adder are evaluated as follows,

Area, A3CSA = (2n−1)AFA = (2n−1) (2AX+3AG)
Critical path, T3CSA = nTFA = 3TX + 2(n − 1)TG

Similarly, the binary comparator in the proposed modified
dual-CLCG architecture is implemented by the magnitude
comparator which is the most common comparator tech-
nique [26]. The n-bit binary comparator is designed using
the 2-bit magnitude comparator (see Fig. 7(a)). The logic
diagram of 2-bit magnitude comparator is shown in Fig. 7(b)
that computes A > B (Abig) and A < B (Bbig) signals
by comparing two 2-bit binary operands. The number of
2-bit comparator stages for the n-bit magnitude comparator
is (log2 n + 1) and therefore, the critical path delay is in the
order of O(log2 n). Hence, the overall area (Acmp) and critical
path delay (Tcmp) of the magnitude comparator are evaluated
as follows,

Area, Acmp = (n − 1) [9AG + 4AN]
Critical path, Tcmp = 4(log2 n)TG

Therefore, the overall area and critical path delay of the
proposed architecture of the modified dual-CLCG method can
be evaluated as follows,

Area, AMDCLCG
= 4

�
A3oa + Amux + Areg

� + 2Acmp + AX
= (16n − 7) AX+2(27n − 15)AG + 12AN + 4nAFF

Critical path, TMDCLCG
= T3oa + Tmux = 3TX + 2nTG

Here, AG, AX, AN and AFF are denoted as area
of 2-input basic gate (AND/NAND/OR/NOR), XOR/XNOR
gate, NOT gate and flipflop respectively. TG and TX denotes
the delay of 2-input basic gate (AND/NAND/OR/NOR) and
XOR/XNOR gate respectively. Table III summarizes and
compares the area and time complexity of the proposed
architecture of the modified dual-CLCG method with the
architecture of other existing PRBG methods. It reports that

Fig. 7. Magnitude comparator (a) n-bit, (b) Logic diagram of 2-bit
comparator.

the critical path delay in all the LCG based methods depend
on the three-operand adder circuit. The area of the proposed
architecture is considerably less than the dual-CLCG archi-
tecture. It generates a one-bit random output at every clock
cycle with one initial clock latency. Whereas, dual-CLCG
architecture takes 2n initial clock latency (input to first output
delay) to give the first output bit and further, it takes two clock
cycles (output to output delay/output latency) to generate one-
bit random output. On the other hand, the architecrure of BBS
method [12] has the large output latency of 2n+5 clock cycles
due to the use of iterative Montgomery modular multiplier.

V. FPGA PROTOTYPE AND REAL-TIME VALIDATION

The hardware architecture of the existing dual-CLCG and
the proposed modified dual-CLCG methods for different word
size of n = 8-, 16- and 32- bit are designed using Ver-
ilog HDL and prototyped on two different commercially
available FPGA devices, such as Spartan3E XC500E and
Virtex5 XC5VLX110T to study their resource utilizations.
The laboratory experimental setup of the proposed architecture
on Virtex5 XC5VLX110T FPGA device is shown in Fig. 8.
The real-time pseudorandom bit sequence is captured through
USB-JTAG programming cable and displayed on the PC using
Xilinx Chipscope analyzer tool. The real-time implementation
is performed at the clock frequency of 120 MHz. This clock
is provided externally to the FPGA device by using arbitrary
function generator (AFG 3252).

A. Real-Time Validation of the Dual-CLCG Architecture

To highlight the initial clock latency (input to first out-
put latency) in the architectural mapping of the existing
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TABLE IV

PHYSICAL RESULTS COMPARISON

Fig. 8. Laboratory experimental setup of the proposed architecture of the
modified dual-CLCG method of 32-bit word size.

dual- CLCG method, 8-bit design is implemented on the tar-
geted Virtex5 FPGA device and the captured pseudorandom bit
sequence on real-time is shown in Fig. 9(c) that validates the
behavioral simulation result of Fig. 9(b). The 8-bit architecture
is designed with the constant values of a1 = 5, b1 = 1, a2 = 5,
b2 = 3, a3 = 9, b3 = 141, a4 = 33, b4 = 79, m = 28 and
initial seeds of (x0, y0, p0, q0) = (1, 2, 14, 3) which generates
the sequence as follows,

Zi = [0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 . . .]
It generates a maximum of 2n−1 = 27 = 128 random bits

and thereafter, the sequence is repeated. Therefore, 1×128 bit
size of memory (128 FFs) is required to store the generated bits
until it reaches to maximum length period of controller-CLCG.
It takes 28 = 256 initial clock cycles as shown in Fig. 9(a)
to store the generated random output bits in memory. After
256 clock cycles, it releases the stored 128 bits serially in
every 2 clock cycles (1-bit per 2 clock cycles).

B. Real-Time Validation of the Proposed Modified
Dual-CLCG Architecture

The proposed architecture of the modified dual-CLCG
method is implemented on the same targeted device
Virtex5 FPGA to validate the results. For the readers’

convenience, the behavioral simulation result (see Fig. 10(a))
of the 8-bit design is validated with Xilinx Chipscope result
(see Fig. 10(b)). Further, the 32-bit architecture of the pro-
posed modified dual-CLCG is also validated on the same
platform.

The proposed architecture of 8-bit word size is designed
with the constant values of a1 = 5, b1 = 1, a2 = 5, b2 = 3,
a3 = 9, b3 = 141, a4 = 33, b4 = 79, m = 28 and initial
seeds of (x0, y0, p0, q0) = (1, 2, 14, 3) which generates the
sequence as follows,

Zi = [0 1 0 0 1 1 0 1 0 0 . . .]
It generates a maximum of 2n = 28 = 256 random bits

and thereafter, the sequence is repeated. It takes only one
clock cycle to generate one random bit with one initial clock
latency. Fig. 10(a) shows the behavioral simulation result of
the proposed architecture for n = 8- bit word size and the
real-time captured pseudorandom bit sequence using Xilinx
Chipscope analyzer is shown in Fig. 10(b) that validates the
behavioral simulation result of Fig. 10(a).

Similarly, the proposed architecture of 32-bit word size is
designed with the constant values of a1 = 65, b1 = 117,
a2 = 16385, b2 = 221, a3 = 4097, b3 = 21359, a4 = 1025,
b4 = 533, m = 232 and initial seeds of (x0, y0, p0, q0) =
(5183, 91356, 39771, 7392) which generates the sequence as
follows,

Zi = [1 0 0 1 1 0 1 0 1 0 . . .]
It generates a maximum of 2n = 232 = 4294967296

random bits and thereafter, the sequence is repeated.
Fig. 11(a) shows the behavioral simulation result of the pro-
posed architecture for n = 32- bit word size and the real-time
captured pseudo-random bit sequence using Xilinx Chipscope
analyzer is shown in Fig. 11(b) that validates the behavioral
simulation result of Fig. 11(a).

VI. PHYSICAL IMPLEMENTATION RESULTS

The physical implementation results of 8-, 16- and 32- bit
size architectures of the proposed modified dual-CLCG
method along with other existing PRBG methods such as
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Fig. 9. (a) Behavioral simulation results, (b) Zoom view of (a) and (c) Real-time captured Chipscope result of the dual-CLCG architecture for n = 8- bit.

Fig. 10. (a) Behavioral simulation result and (b) Real-time captured Chipscope result of the proposed modified dual-CLCG architecture for n = 8- bit.

Fig. 11. (a) Behavioral simulation result and (b) Real-time captured Chipscope result of the proposed modified dual-CLCG architecture for n = 32-bit.

dual-CLCG and CLCG are highlighted in Table IV. The
physical implementation results in Table IV report that the
proposed architecture of the modified dual-CLCG method
consumes 83.8%, 88.9% and 81.4% less flip-flops, slices and
LUTs respectively as compared to the dual-CLCG architecture
on Virtex5 FPGA chip for 8-bit design. Similarly, it uti-
lizes 42.3% less power than the dual-CLCG architecture on
Virtex5 for 8-bit design. The 8-bit dual-CLCG architecture
takes 28 initial clock cycles (input to first output latency)
to get the first pseudorandom bit and further, it takes two
clock cycles (output to output latency) to generate each
pseudorandom bit. Whereas, the proposed modified dual-
CLCG method takes only one clock cycle to generate one
random bit with one initial clock latency. The proposed
architecture has the same maximum frequency of CLCG and
dual-CLCG architecture because the critical path delay in
all three methods depend on the three-operand adder circuit.
The implementation of the dual-CLCG architecture failed
for the 16- and 32- bit word size on both FPGA devices

due to excessive usage of memory (<215) resources on
FPGA chip. For 32- bit dual-CLCG architecture, 1 × 231 bits
memory (231 flip-flops) is required which is limited to
69,120 CLB flip-flops and 5,328 Kbits BRAM on Vir-
tex5 XC5VLX110T chip. Similarly, the memory is limited
to 9,312 CLB flip-flops and 360 Kbits BRAM on Spartan3E
XC3S500E chip. On the other hand, the proposed architecture
of the modified dual-CLCG method can be implemented on
the commercially available low-end FPGA devices. Therefore,
the proposed modified dual-CLCG method is the efficient
PRBG method for generating pseudorandom bit at every
uniform clock rate because of its advantages such as good
randomness, maximal period, less area, low power, low output
latency and low initial clock latency.

VII. CONCLUSION

Dual-CLCG method involves dual coupling of four LCGs
that makes it more secure than LCG based PRBGs. However,
it is reported that this method has the drawback of generating
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pseudorandom bit at non-uniform time interval as it works on
the few inequality cases. Hence, a new hardware architecture
of the existing dual-CLCG method is developed that generates
the pseudorandom bit at uniform clock rate. But, it leads to
some other drawbacks such as high initial clock latency of 2n

for n- bit architecture, large memory consumptions and fails
to achieve the maximal period of 2n . Further, to overcome the
aforesaid drawbacks, a new modified dual-CLCG method and
its architecture are proposed that generate the pseudorandom
bits of a maximum length of 2n at one-bit per clock cycle
with one initial clock delay. In this architecture, only a single
XOR logic is utilized at the output stage instead of complex
hardware circuits (buffer, data control and memory) used in
previous dual-CLCG architecture. Thus, the hardware com-
plexity of the proposed architecture of the new modified dual-
CLCG method is significantly reduced. Moreover, the pro-
posed modified dual-CLCG method for the size of n ≥ 24- bits
pass all the fifteen benchmark tests of NIST standard with
a high degree of consistency and it is polynomial time
unpredictable with an indistinguishability of ε = 2−100 for
n ≥ 32- bits. The proposed architecture of the modified dual-
CLCG method is prototyped on the commercially available
FPGA devices and the results are captured in real-time using
Xilinx chipscope for validation. Based on the performance
analysis in terms of hardware complexity, randomness and
security, it is observed that 32- bit hardware architecture of the
proposed modified dual-CLCG method is optimum and can be
useful in the area of hardware security and IoT applications.
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