
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Architecture Optimization and Performance
Comparison of Nonce-Misuse-Resistant
Authenticated Encryption Algorithms

Sandhya Koteshwara , Student Member, IEEE, Amitabh Das, Senior Member, IEEE,

and Keshab K. Parhi , Fellow, IEEE

Abstract— This paper presents a performance comparison of
new authenticated encryption (AE) algorithms which are aimed
at providing better security and resource efficiency compared
to existing standards. Specifically, these algorithms improve the
security of existing AE standards by providing a critical property
termed nonce-misuse resistance. This paper addresses algorithm
to architectural mappings of several candidates from the ongoing
Competition for AE: Security, Applicability, and Robustness as
well as a submission from the Crypto Forum Research Group.
Implementations of the architectures on both field-programmable
gate arrays and application-specific integrated circuits platforms
are provided and compared with the architecture of a popular
standard: Advanced Encryption Standard in Galois Counter
mode (AES-GCM). Optimizations that are applicable to AE,
in general, and nonce-misuse-resistant architectures, in particu-
lar, are presented. A hardware–software codesign approach to
optimization is also discussed. The implementations via pro-
posed optimizations demonstrate that new AE algorithms can
provide comparable performance as standard AES-GCM while
enhancing security and resource utilization for specific use-case
scenarios.

Index Terms— Advanced Encryption Standard in Galois
Counter mode (AES-GCM), AES-GCM-synthetic IV (SIV),
authenticated encryption (AE), Competition for AE: Security,
Applicability, and Robustness (CAESAR) competition, Deoxys,
nonce-misuse resistance, pipelineable on-line encryption with
authentication tag (POET), PRIMATE-APE.

I. INTRODUCTION

W ITH the advent of the Internet of Things (IoT) era,
billions of devices will be connected to each other

and to a common network. Hence, it is of utmost importance
to ensure security and privacy of communication between
the devices as well as between the device and the cloud
server. Moreover, there is a growing trend to bring computing
to the edge of the IoT rather than the cloud, termed as edge-
centric computing [1]. Hence, resource efficient and strongly

Manuscript received June 28, 2018; revised November 5, 2018; accepted
December 31, 201 8. (Corresponding author: Sandhya Koteshwara.)

S. Koteshwara was with the Department of Electrical Engineering, Uni-
versity of Minnesota, Minneapolis, MN 55455 USA. She is now with the
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 USA
(e-mail: kotes001@umn.edu).

A. Das was with Intel Labs, Security and Privacy Research, Intel Corpo-
ration, Hillsboro, OR 97124 USA. He is now with AMD, Austin, TX 78735
USA.

K. K. Parhi is with the Department of Electrical Engineering, University of
Minnesota, Minneapolis, MN 55455 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2019.2894656

secure cryptographic algorithms which can ensure the security
of communication and can be implemented on the hardware
of the device itself have become critical. Also, algorithms that
require smaller key sizes, less frequent change of keys, and
better resilience are desired.

Authenticated encryption (AE) algorithms combine the
process of authentication and encryption to create a single
algorithm which is secure and resource efficient. It is well
understood that confidentiality of data does not suffice, and it
is important to ensure authentication of source as well as data
integrity [2]. Hence, AE algorithms are growing in importance
with the changing device scenarios and platforms. When data
such as packet headers and message numbers are also included
as part of the plaintext, the resulting algorithms are termed AE
with associated data (AEAD) algorithms. These additional data
require only authentication and are termed associated data.

The general equations of AEAD are expressed as follows:

EncK (N, AD, PT) = (CT, Tag) (1)

DecK (N, AD, CT, Tag) = (PT,⊥). (2)

In these equations, K represents the secret key, AD repre-
sents the associated data, PT refers to the plaintext, and N is
a unique nonrepeating number termed nonce. These inputs are
applied to the encryption algorithm Enc to produce the outputs:
CT, which represents the encryption of the plaintext, and Tag,
which are utilized for authentication purposes. The nonce is
used to transmit more than one message block using the same
secret key. For the decryption algorithm Dec, N , AD, CT, Tag,
and K are used as inputs to retrieve PT. In addition, Tag is
verified and a valid/invalid message is generated (represented
as ⊥ in the equation).

Some of the existing standards for AEAD algorithms
include Advanced Encryption Standard in Galois Counter
mode (AES-GCM), Advanced Encryption Standard in Counter
with cipher block chaining message authentication code
mode, encrypt-then-authenticate-then-translate, Offset Code-
book (OCB) mode, etc. We do not delve into the details
of these algorithms and refer the reader to the existing lit-
erature [3]–[6]. Instead, we focus on AES-GCM which has
been deployed in most practical applications such as Transport
Layer Security (TLS) and Secure Socket Layer. Using AES-
GCM as a baseline architecture, we present the architectures of
several new algorithms which have been proposed as a part of
the ongoing Competition for AE: Security, Applicability, and

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3182-219X
https://orcid.org/0000-0001-6543-2793


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Robustness (CAESAR) competition as well as from Crypto
Forum Research Group (CFRG). The chosen algorithms incor-
porate an important property termed nonce-misuse-resistance.

The presented nonce-misuse-resistant algorithms are
mapped to hardware using both field-programmable
gate array (FPGA) and application-specific integrated
circuit (ASIC) platforms. The implementations are then
compared to the AES-GCM standard. This paper also
discusses important architectural differences that arise because
of the nonce-misuse resistance property and optimizations to
overcome these limitations. FPGA-based implementation of
two of the algorithms discussed in this paper, namely, Deoxys
and AES-GCM-synthetic IV (SIV) have been presented
in [7] and [8], respectively. This paper moves beyond these
implementations by providing several optimizations and
comparisons with other candidates such as PRIMATE-APE
and pipelineable on-line encryption with authentication
tag (POET). Also, a hardware–software codesign approach
to obtain resource efficient implementations applicable to
modern IoT like platforms is presented. A final comparison
of the selected candidates and AES-GCM with respect to
performance and resource utilization is presented with a
recommendation of the most suitable candidates for several
use-case scenarios.

The rest of this paper is divided as follows. In Section II,
we present related work and discuss the motivation of this
paper in detail. Section III presents the flow diagram and
architecture of several algorithms which provide nonce-misuse
resistance. Optimizations applicable to these new AE algo-
rithms are presented in Section IV. In Section V, we discuss the
detailed experimental setup and present results on FPGA/ASIC
platforms. An analysis of the side-channel vulnerabilities
of these algorithms is presented in Section VI. Finally,
we conclude with a recommendation of candidates based on
applications.

II. MOTIVATION AND RELATED WORK

In this section, we discuss the shortcomings of current
AEAD algorithms and motivation for this paper.

A. New AEAD Schemes

Several issues have been identified in existing AE algo-
rithms. Some of these are highlighted below.

1) Existing algorithms are still too large in terms of
area or consume too much energy. This is especially true
if the AE schemes are to be implemented on a device
which has minimal resources.

2) Several security properties such as nonce-misuse resis-
tance, decryption misuse resistance, robustness against
leakage of plaintext, detection of forgery attempts, and
so on are desirable and missing in existing AEAD
algorithms.

3) Cryptanalytical efforts have found groups of weak keys
in the most widely adopted AES-GCM algorithm [9].

4) Better performance while maintaining the same level of
security of existing standards or better security with the
same performance are both desirable. This is especially

true due to increase in number and reduction in the size
of devices in modern applications.

To alleviate some of these problems, a call for novel
authenticated algorithms was put forth in the form of CAE-
SAR competition. The goal of this competition is to identify
a portfolio of AE algorithms which offer advantages over
AES-GCM and are suitable for widespread adoption [10].
The competition is ongoing and currently in its final round
with seven finalists. The first round had 54 submissions out
of which 29 candidates were selected for the second round.
In the third round, 15 potential candidates were recognized.
These candidates have different properties with respect to
security, resource consumption, and underlying constructions.
A summary for the candidates and their important properties
can be found in [11] and [12]. A candidate that we discuss in
this paper, Deoxys, has been selected to the final round of the
competition. Note that even though some of the candidates
selected for this paper have not been selected for the final
round of the CAESAR competition, these are useful candidates
for several applications. Since the competition considers sev-
eral parameters apart from security, these candidates have been
excluded from the next round. We also consider an algorithm
submitted to CFRG after the CAESAR competition first round
submission deadline.

Several independent implementations of the algorithms in
both hardware and software can be found in the literature.
To bring these implementations under the same platform, there
is an ongoing effort being carried out by the SUPERCOP
software benchmarking team and the ATHENa GMU hardware
platform team [13]. Our work specifically focuses on in-depth
analysis of nonce-misuse resistance schemes whose details and
significance will be discussed next.

B. Importance of Nonce-Misuse Resistance

From the description of AEAD schemes, it is observed
that nonces are critical to the security of symmetric key
cryptographic algorithms. The construction of these algorithms
is such that using the same key, multiple messages can be
encrypted by using different nonces. Hence, the nonce must
not repeat under the same key. Even though this appears to
be a simple requirement, it is not easy to satisfy as has been
observed in many practical applications [14].

There are several approaches that can be used to ensure
nonces do not repeat while using the same key. One solution
is to update the keys frequently. However, regular exchange of
secret keys between two parties is not an easy task and many
applications will not have the capability to do so. Specifi-
cally, with systems involving IoT devices where millions of
devices are interconnected with each other, the most practical
implementation would program one secret key and utilize it
for the lifetime of the device. The second approach to ensure
nonces do not repeat is to derive the nonces from counters.
With sufficiently large counters, the nonce values will be
based on each increment of the counter and will not repeat.
However, if the counter is made to overflow by injecting
faults or other forms of attacks, the nonces start to repeat
breaking the security of the algorithm. Finally, the nonce can



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOTESHWARA et al.: ARCHITECTURE OPTIMIZATION AND PERFORMANCE COMPARISON OF NONCE-MISUSE-RESISTANT AE ALGORITHMS 3

TABLE I

SUMMARY OF CANDIDATE FEATURES AND COMPARISON WITH AES-GCM

be made unique by using random number generators. However,
the random number generator should be of high quality and
sufficiently large. Ensuring this requirement is met again is a
challenging task with the ever-shrinking sizes of devices.

Attacks due to nonce-misuse have been demonstrated in the
literature in important applications such as the TLS [14]. Thus,
algorithms which can inherently provide some form of nonce-
misuse resistance have become favorable and will continue to
increase in importance as IoT devices become more prevalent.

C. Algorithms With Nonce-Misuse Resistance

Nonce-misuse-resistant schemes ensure that even though
the nonce is repeated, only limited knowledge about the
encrypted message is given away, while the complete plaintext
decryption is not possible [17]. There are two types of nonce-
misuse-resistant algorithms: complete and partially nonce-
misuse resistant. While the complete nonce-misuse resistance
property is preferred, some applications may still benefit from
partial nonce-misuse resistance.

In [12], candidates which provide both complete and partial
nonce-misuse resistance have been identified and initial per-
formance comparisons from several existing studies have been
presented. Based on this analysis, candidates which provide
complete nonce-misuse resistance and promise good perfor-
mance from initial comparisons have been selected for our
study. Among the finalists of the competition, only Deoxys,
OCB, and ElmD (which has now been merged with another
algorithm AES-COPA) provide complete nonce-misuse resis-
tance. Since OCB is covered by some patents and ElmD
shows high area consumption from our initial analysis, these
were not selected for our study. AES-GCM-SIV, which is
an independent submission from CFRG, is also included in
our study as it promises complete nonce-misuse resistance
while reusing the blocks of standard AES-GCM. Table I lists
the basic properties of these candidates and their detailed
algorithm and architecture are discussed next.

III. ALGORITHM AND ARCHITECTURAL DESCRIPTIONS

Next, we briefly discuss the algorithm and architecture
of AES-GCM standard. The discussions of nonce-misuse-
resistant algorithms and architectures will be based on this
standard.

A. AES-GCM

The AES-GCM algorithm is represented using the block
diagram of Fig. 1. This algorithm is a block cipher-based

Fig. 1. Description of the algorithm of AES-GCM. Left: cipher text block
generation using a counter. Right: associated data processing and processing
of plaintext blocks to generate the tag.

AE scheme. This implies that a block cipher such as AES is
used to perform all encryption operations. AES in the counter
(CTR) mode of operation handles plaintext in a block by
block manner to generate cipher text blocks. The first value
of the counter is dependent on the nonce, and the counter
is incremented to process subsequent message blocks. The
authentication process is handled by a Galois field multiplier
which performs polynomial multiplication on the associated
data and the generated cipher text blocks. A final encryption
results in the generation of the tag value.

Note that the counter value is encrypted using the AES
block and the plaintext is just XORed with the output. This
implies that the security of the algorithm is completely depen-
dent on the nonce being different for each message. If the
same nonce repeats for two different messages, a simple XOR

operation can differentiate between them. Thus, information
is leaked, and the system is not nonce-misuse resistant.

A serial implementation aimed at low area and power
consumption is used to design the architecture of AES-GCM.
This means that the architecture makes use of a single AES
block and Galois field multiplier block. The blocks of the
data path of AES-GCM are illustrated in Fig. 2. The plaintext
blocks are processed serially and require correct control to
direct data in and out of the blocks. All architectures created
in this paper follow the serial implementations. Based on the
different properties of the architecture, optimizations are then
added on top of the serial architecture. This is discussed in
Section IV.

The finite-state machines (FSMs) required for control are
presented in Fig. 3. Note that after processing of a cipher text
block by the encryption block, the first state machine generates
a ct_done signal. The authentication FSM first processes the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 2. Data path of AES-GCM consisting of AES block and Galois field
multiplier block.

Fig. 3. FSMs of AES-GCM for encryption and authentication in a block-
interleaved manner. Signal ct_done is used for synchronization between the
two FSMs.

associated data blocks and waits for the ct_done signal. Upon
receiving the signal, the processing of cipher text blocks
is performed in an interleaved manner with the encryption
process to generate the tag value. The ability to parallelly
process multiple message blocks is an important property of
the AES-GCM algorithm since it results in a good performance
and resource utilization.

B. Deoxys

Deoxys is a block-cipher-based AE algorithm utilizing a
tweakable block cipher, Deoxys-BC. The tweakable block
cipher is based on AES but uses a key and a tweak value.
It has more rounds than standard AES, claiming better security.
The Deoxys algorithm has two modes: one for which nonce
must not be reused and one which is nonce-misuse resistant.
The nonce-misuse-resistant version of Deoxys provides full
128-bit security for unique nonces and birthday bound security
when nonce is reused. Existing hardware and software imple-
mentation also shows that it is suitable for short messages
having low precomputation overhead.

The basic steps of Deoxys authentication and encryption
are described in Fig. 4. Since the block cipher in Deoxys
is a custom built tweakable block cipher, the inputs include
an additional tweak value which needs to be provided each
time the encryption block is called. From the block diagram,
we observe that the associated data blocks are processed first
followed by the plaintext blocks. Finally, incorporating the
nonce value into the tweak value, the tag is generated. Note
that, for the encryption process, the nonce value is used as
input to the block cipher. The tag value is incorporated into
the tweak value. Thus, there is a dependence between the tag
generation and cipher-text generation in Deoxys. This will lead

Fig. 4. Description of the algorithm of Deoxys. The encryption block in this
figure is the tweakable Deoxys block cipher with a key and tweak as inputs.
Top: tag generation. The generated tag is used for processing of plaintext
blocks to generate cipher text blocks.

to important differences in the architectural implementation
and optimizations.

Note that the nonce is incorporated as the tweak value in tag
generation and as the message input in cipher text generation.
Now, even if the nonce is reused, we observe that if the
associated data and plaintext are different, the generated tag
will be different. Since the tag forms a part of the tweak value
for cipher text generation, the generated cipher text will also
be different. Thus, no information is leaked if nonce is reused
providing complete nonce-misuse resistance.

The Deoxys algorithm uses the Deoxys Block cipher for
both authentication and encryption purposes. Thus, a hardware
implementation requires only one block cipher as illustrated
in Fig. 5. For the implementation of the block cipher, we use a
standard implementation as used in AES. Since the rounds of
Deoxys and AES are similar, the implementation is also simi-
lar. However, Deoxys has more number of rounds (14 rounds)
compared to 10 rounds of AES. The key schedule is also
different in the case of Deoxys and is based on the tweakey
schedule.

In this paper, we consider two versions of the Deoxys algo-
rithm presented in the literature, namely, versions v1.3 [18]
and v1.41 [19]. One of the main differences between these
two versions is the implementation of the tweakey key
schedule algorithm. Briefly, Deoxys version v1.3 requires the
implementation of simple substitution function h and a mul-
tiplication function g. Deoxys version v1.41 replaces the
multiplication function g with simple linear-feedback shift
registers (LFSRs). More details about the implementation can
be found in the algorithm description of these two versions.

The state machine illustrated in Fig. 5 is used to route data
to and from the block cipher to perform encryption and authen-
tication process. Since the same block cipher is used for all
operations, the implementation is completely serial in nature.
Note that there are no multipliers required for this architecture,
unlike AES-GCM which reduces resource requirement and
eliminates the problem associated with security of polynomial
multiplication blocks.

C. AES-GCM-SIV

AES-GCM-SIV combines the GCM building blocks into
an SIV paradigm [20]. The basic steps of encryption and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOTESHWARA et al.: ARCHITECTURE OPTIMIZATION AND PERFORMANCE COMPARISON OF NONCE-MISUSE-RESISTANT AE ALGORITHMS 5

Fig. 5. Data path and control path of the Deoxys algorithm. Note that the
block cipher is a tweakable block cipher and a single state machine is used
for both authentication and encryption.

decryption are shown in Fig. 6. The main advantage of
AES-GCM-SIV is its similarity in structure to AES-GCM
algorithm. Mainly, the AES block cipher is still used in
CTR mode in this algorithm. The POLYVAL construction
used for building the multiplication is similar to the GHASH
construction used in AES-GCM. The conversion between the
two is expressed in the following equation:

POLYVAL(H, X1, X2, .)

= ByteReverse(GHASH(ByteReverse

×(H ) ∗ x, ByteReverse(X1), ByteReverse(X2), .)). (3)

However, there are several differences in the overall con-
struction of the algorithms. The tag generation occurs first
in AES-GCM-SIV compared to the generation of cipher text
blocks occurring first in the case of AES-GCM. Second,
the plaintext needs to be processed twice in the case of
AES-GCM-SIV instead of just once as in the case of
AES-GCM. The occurrence of tag generation before cipher
text and the processing of plaintext twice are common to both
AES-GCM-SIV and Deoxys algorithms. We assume that the
plaintext is stored in memory and can be accessed by the
algorithms twice. Future studies will address the practicality
and limitations of such an assumption.

In the AES-GCM-SIV algorithm, the nonce (not shown in
the figure) is incorporated as part of the tag generation process.
The tag then forms a part of the initial counter value for cipher
text generation. Hence, similar to Deoxys, even if the nonce
is reused, the generated tag will be different. No information
will be leaked through the cipher text, providing nonce misuse
resistance.

The architecture of AES-GCM-SIV consists of the AES
block as well as the POLYVAL block. While the AES block
is realized similar to the AES block used in AES-GCM,

Fig. 6. Algorithm description of AES-GCM-SIV. The left part of the
figure represents processing of associated data and message blocks using the
POLYVAL and AES block to produce a Tag. The right half of the figure
represents cipher text generation using the Tag as an initial value for the
counter.

Fig. 7. Data path and control path of AES-GCM-SIV. Only the conversion of
GF_MULT of AES-GCM to POLYVAL of AES-GCM-SIV is presented here.
Also, note that a single FSM is used for both authentication and encryption.

the POLYVAL block is realized by making appropriate
swap and shift operations to the GHASH composition of
AES-GCM algorithm. This is described in detail in [20] and
illustrated in Fig. 7. The components marked in red indicate
the additional operations required for POLYVAL. The control
path of AES-GCM-SIV is also illustrated in this figure. Note
that due to the dependence of the cipher text generation on the
tag generation process, only a single serial finite state machine
just as in Deoxys can be used. The state machine routes data
to and from the AES and POLYVAL blocks.

D. POET

POET is a block-cipher-based algorithm which provides
both nonce misuse resistance as well as decryption misuse
resistance. This means that if authentication fails, the adversary



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 8. Algorithm description of POET. The left part of the figure presents
processing of associated data/header blocks to produce an intermediate
value τ . Cipher text and Tag generation using the intermediate τ value are
presented in the right half of this figure.

obtains no information about decrypted cipher texts. POET
uses the AES block cipher itself for both encryption and
authentication and does not require any Galois field multi-
plication operations. Thus, the algorithm can reuse available
AES modules and provide required AE operations. The POET
algorithm is also described as a flexible algorithm since it is
not necessary to use AES block ciphers in this construction.
It is shown that the AES can be replaced with a smaller
four-round AES block cipher or other such lightweight block
ciphers. This will reduce the resource overhead of POET
while providing lower security which can be suitable for some
applications. The authors also propose an encryption only
version of the algorithm termed POE whose details can be
referenced from [21].

The top-level algorithm description of POET is provided
in Fig. 8. The associated data blocks are processed using
a hashing key L and the AES block cipher to produce an
intermediate value τ . This is represented in the first part of
the figure. The processing of plaintext blocks occurs next. This
occurs through the AES block ciphers and hash functions FKF .
Here, we note that the output of the message processing blocks
is used together with the value τ to generate the final tag.
Hence, in POET, the cipher text generation occurs first similar
to AES-GCM algorithm.

In POET, the nonce is a part of the header block shown
in the figure. The message block is a direct input to the AES
block for cipher text generation. Hence, even if the nonce
is repeated, any change in the message block results in a
completely different cipher text block. Thus, no information
is leaked, and misuse resistance is achieved.

The top-level block diagram of POET is illustrated in Fig. 9.
The architecture is constructed using one AES block cipher
(which is utilized for both encryption and authentication) and
two four-round AES blocks which serve as the hash func-
tion (FK f ) blocks. We observe from the algorithm description
of POET (Fig. 8) that an initial vector X is first processed
by the FK f block and XORed with the message block. After
processing of message block using the AES module, the
Y vector processed by the FKF block is utilized to produce
the cipher text block. However, the processing of the next
message block has a dependence on the FKF output of the
previous message block. Hence, the processing of Y vector
and processing of previous message blocks is performed
simultaneously using two FKF function blocks.

Fig. 9. Data path and control path of the POET algorithm. Note that the
data path consists of a regular AES ten-round cipher and two AES four-round
ciphers used as hash function blocks.

E. PRIMATE-APE

Unlike the block-cipher-based algorithms, the PRIMATE-
APE is a sponge-/duplex-based construction termed
permutation-based AE. The sponge construction is based on
a fixed-length permutation block which operates on a fixed
number of bits. These bits are divided into two parts: r also
known as the bit-rate or rate and c termed as capacity. The r
bits of the input are absorbed by multiple permutation function
blocks in an iterative manner and squeezed out in subsequent
stages. The capacity bits contribute to the permutations but
are never changed or released as an output. Using sponge
constructions in different ways, both ciphers and hashing
algorithms can be created. The duplex construction is a
variation of the sponge construction in that absorption and
squeezing of data occur in an alternating fashion.

The PRIMATE-APE algorithm utilizes a duplex-based con-
struction to create an AE algorithm. The permutation block is
termed as PRIMATE in this algorithm. A high-level overview
of the construction is presented in Fig. 10. We observe from
this figure that the nonce/associated data blocks are absorbed
in an iterative manner by the permutation block followed by
the absorption of the message blocks. Finally, the cipher text
block and tag are generated from the last permutation block.
The input at the top which forms the rate r is of size 40 bits
and the input at the bottom which forms the capacity c is of
size 240 bits. Hence, a 240-bit key is required, and processing
of associated data/message blocks occurs in blocks of 40 bits
each. The details of the PRIMATE block are discussed in
Section III-E.

In PRIMATE-APE, the nonce forms an input to the
PRIMATE block early in the algorithm. The message block
is also an input to the PRIMATE block. Thus, even if nonce
is repeated, since the generated cipher text will be different,
no information about the plaintext is leaked. Thus, nonce-
misuse resistance is achieved.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOTESHWARA et al.: ARCHITECTURE OPTIMIZATION AND PERFORMANCE COMPARISON OF NONCE-MISUSE-RESISTANT AE ALGORITHMS 7

Fig. 10. Algorithm description of PRIMATE-APE. After initial absorption
of the nonce and associated data by the PRIMATE block, for every message
block that is input, the cipher text block is produced. Finally, the tag is
generated.

Fig. 11. Data path and control path of PRIMATE-APE algorithm. Note that
the implementation of the PRIMATE block is similar to AES block but is
much smaller and utilizes nibbles for processing.

The architecture of PRIMATE-APE mainly consists of the
PRIMATE block as illustrated in Fig. 11. The PRIMATE
block used in this paper is a version termed PRIMATE-120
as described in [22]. The structure of PRIMATE is sim-
ilar to the AES block cipher and consists of rounds:
SubElements, ShiftRows, MixColumns, and ConstantAddi-
tion. Hence, the same architecture as used for construction
of AES block cipher can be used. However, the state elements
of PRIMATE are 5-bit elements arranged in a 7 × 8 state
matrix. The first row of the state is the rate and the rest is
the capacity. Also, the key schedule algorithm is not required
in case of PRIMATE. The 5-bit LFSRs are used to create the
constants required for ConstantAddition round.

We observe from the architecture that the PRIMATE-APE
is a lightweight AE algorithm because of the use of only
one PRIMATE block. However, it can also be observed that
all transactions with this block occur through the rate bits
which are only 40 bits wide. Hence, this architecture will
be significantly slower than other architectures presented in
this paper. However, for short messages, this architecture will
serve as a good lightweight option providing nonce-misuse
resistance.

IV. OPTIMIZATIONS

In this section, we discuss some of the optimizations
that can be applied to the discussed AEAD schemes. These
optimizations are either targeted to utilize the properties of
the FPGA platforms or the properties of the algorithm itself.
In Section V, we present the results of optimization on the
algorithms and discuss which of the optimizations are most
suitable for each algorithm.

Fig. 12. Parallel processing of messages in AES-GCM-SIV.

A. Parallel Processing of Messages

From the architecture of AES-GCM, we have observed
that it is inherently parallel in nature. This means that when
a cipher text block is being generated by the encryption
algorithm, parallel processing of data by the authentication
algorithm can occur. This is an important property which
results in low cycles per byte for AES-GCM. However,
by modifications, such as pipelining and parallelism, this
property can be utilized to optimize other algorithms.

AES-GCM-SIV utilizes AES and multiplier blocks for
encryption and authentication operations. Hence, similar to
AES-GCM, the two operations can be separated and performed
in parallel. However, in AES-GCM-SIV, authentication occurs
first and there is a data dependence between authentication and
encryption. This means that first the authentication process
must be performed completely to generate the tag and then
the cipher text blocks can be generated through encryption.
To break this dependence, we can process two messages in par-
allel and pipeline the design such that the two processes occur
using two different FSMs. This concept is illustrated in Fig. 12.
Synchronization is necessary for the parallel processing of
messages. This can be achieved by using flags as indicated
in the figure. After the associated data blocks of the second
message are processed, the processing of plaintext blocks
using the multiplier begins. At this time, the processing of
plaintext blocks of message 1 can be carried out by the second
state machine. Note that the tag of the first message needs to
be stored for the encryption block to access during processing
of message 2.

Deoxys uses a single block cipher for both authentica-
tion and encryption. Hence, to apply parallel processing to
the Deoxys algorithm, two block ciphers are required. This
process is similar to loop unrolling or unfolding technique [23]
where the resources are replicated to process more data in
the same time frame. Now, the authentication process of
message 2 can occur in parallel with the encryption of mes-
sage 1 blocks. The two processes can be completely separated
since there is no contention of resources between the two
processes. The concept of parallel processing in Deoxys is
illustrated in Fig. 13. The tag_done signal which indicates
that the tag processing has been completed can itself be used
as a flag for the processing of cipher text blocks. Parallelly,
the authentication state machine can begin the processing of
message 2. Note that this results in reduction in time for



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 13. Parallel processing of messages in Deoxys.

processing of messages but will also increase the resource
consumption because of duplication.

B. Implementation of S-Box in Memory

The discussed algorithms utilize lookup tables (LUTs) in
the form of S-Boxes of block ciphers. Each S-Box maps
1 byte of a message to 1 byte of the substitution value. Since
each message block is of size 16 bytes (128 bits), 16 such
S-Boxes are necessary to process a complete message block.
These LUTs can be implemented using a straightforward
implementation where the LUTs are synthesized using pure
combinational logic elements. However, we note that most
modern-day device platforms such as FPGAs and microcon-
trollers have some form of memory available on board. This
memory can be used to port the LUTs of S-Boxes. This results
in reduction of logic elements and utilization of the available
memory blocks of the device platform.

C. Tower Field Implementation of Block Cipher

To implement the AES algorithm using a compact imple-
mentation, the S-Box of AES is replaced using tower field
implementations. Basically, the S-Box lookup can be con-
sidered as an inversion in the Galois field (28). By decom-
posing this field into subfields, more optimized and compact
implementations can be obtained. These decomposed fields
are termed tower fields. Several papers discuss the tower
field implementations [24]–[27]. In this paper, we adopt two
implementations in the form of G F(((22)2)2) and G F((24)2)
decompositions.

D. Hardware–Software Codesign

Next, we discuss a design style which can serve as a poten-
tially powerful tool in designing for low-resource applications
in the form of a hardware/software codesign approach. Typ-
ically, hardware/software codesign is used as a method to
increase execution speed of pure software algorithms by
offloading work to dedicated hardware blocks. However, here,
we look at hardware–software codesign from the perspective
of reducing area and optimizing resources. The rationale
behind this idea is that while blocks such as AES and Galois
field multiplication perform efficiently in hardware, the design
and optimization of FSMs on hardware are a challenging
task. Implementing this in software simplifies execution while
providing for a more flexible and reusable implementation.

Fig. 14. Block diagram of a codesign implementation using NIOS II
soft processor. The top part of the figure represents codesign on an
AES-GCM/AES-GCM-SIV module. The bottom part presents codesign on
Deoxys.

With modern development platforms typically including a
processor, memory, and hardware blocks, this approach com-
pletely utilizes and optimizes resources in the best possible
manner.

1) Codesign of AES-GCM: A codesign approach is
deployed by retaining the AES blocks and Galois field mul-
tiplier in hardware, while implementing the top-level state
machines in software. The software runs on a processor which
could be a specialized processor or reused from one existing on
the board. For example, when using an Altera FPGA board,
we can make use of a 32-bit NIOS II soft processor core
by running a C program on it. A top-level block diagram
of the codesign with the hardware and software boundaries
is shown in Fig. 14. For accessing data to and from the
hardware blocks, we need address decoders which are built as
a wrapper around the hardware blocks converting them into
custom instructions. These instructions can then be called as
macros in the software program. It is to be noted that data
transfer occurs in blocks of 32 bits. However, our design uses
128-bit data requiring a stream of data to be transferred
between the hardware and software boundary and synchro-
nized using start and done signals. The decoders at the
hardware/software boundary accept a 4-bit opcode n from the
NIOS II processor. Values of n and their corresponding opera-
tions are shown in Table II. For each transaction, the NIOS II
processor sends out a start signal and waits for a done signal
from the decoder block.

2) Optimization of the Codesign: While the codesign
approach reduces area and lowers power consumption, it suf-
fers from an increase in latency due to the transfer of
data between the processor and AES/Galois field multiplier
blocks. Thus, there is a tradeoff between resource consumption
versus speed of execution. However, optimizations can be
made to reduce this latency by minimizing communications
between the processor and hardware blocks by making some



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOTESHWARA et al.: ARCHITECTURE OPTIMIZATION AND PERFORMANCE COMPARISON OF NONCE-MISUSE-RESISTANT AE ALGORITHMS 9

TABLE II

TABLE OF OPCODES AND THEIR CORRESPONDING
OPERATIONS FOR DECODERS

critical observations. It is seen that the AES block repeatedly
uses the secret key while the Galois field multiplier block
needs access to the H value calculated as part of initialization.
The two values are marked in Fig. 14. Thus, by transferring
these values only once and storing them on the hardware
blocks itself, latency per execution of hardware blocks can
be reduced.

The approach of using S-Box in memory blocks can also
be utilized since the AES algorithm is still completely present
on hardware. This further reduces the area requirement of
hardware blocks and utilizes the available memory resources
more efficiently. In fact, the data memory accessed by the
processor can be shared for the storage of S-Boxes resulting
in better resource utilization of the complete system.

3) Application of Codesign Techniques to AES-GCM-SIV
and Deoxys: The AES-GCM-SIV algorithm matches the
AES-GCM algorithm except for the modifications to Galois
field multiplier blocks (which are necessary to convert them
to POLYVAL blocks) and top-level state machines. Hence,
the mapping from hardware to software is the same as that
of AES-GCM. All optimizations are equally applicable, and
the resulting benefits are similar to the AES-GCM algorithm.
An alternate approach to codesign of AES-GCM-SIV is to
reuse the hardware blocks of AES-GCM and move all changes
required by the POLYVAL hashing operations to software.
This results in complete flexibility of use where a nonce-
misuse-resistant and secure AES-GCM-SIV algorithm or the
faster AES-GCM algorithm can be chosen based on the
application.

The Deoxys algorithm differs by using the Deoxys
block cipher for both encryption and authentication. Hence,
the Deoxys block cipher is built on hardware similar to
the AES block and repeatedly accessed for both encryption
and authentication. Because of the requirement of only one
hardware block, the overall area of this design will be the
lowest. This indicates that the Deoxys algorithm benefits the

most due to codesign approach. Also, note that the Deoxys
algorithm has an additional tweak input which needs to be
provided along with the key and message value. Unlike
the key, the tweak input is not constant and cannot be
stored on the hardware. This requires two additional opcodes
(2 and 3) as presented in Table II. Further discussion and
comparison between the three algorithms will be presented in
Section V.

V. RESULTS

In this section, we describe the experimental setup adopted
for all implementations and discuss the corresponding results
obtained after applying optimizations discussed in Section IV.
Results are reported both in terms of FPGA and ASIC
implementations wherever applicable. This ensures platform
obliviousness while making the final comparisons between
different algorithms. Note that the described results mainly
compare the encryption operation of the AEAD algorithms.
Comparison of the decryption or a combination of both is
scope for future work.

A. Experimental Setup

All results on the FPGA platform are obtained using Altera’s
Cyclone V family of FPGA which are built on TSMC’s
28-nm low-power process technology. Specifically, Altera
Cyclone 5CSEMA4U23C6 incorporated in an ATLAS SoC
board is utilized. The Cyclone V family of FPGAs allows
for low-area, low-cost implementations of algorithms. The
implementations are written in Verilog Hardware Descriptive
Language and simulated using the ModelSim tool. Synthesis
is performed using the Altera Quartus Prime tool and timing
measurements are performed using the TimeQuest timing ana-
lyzer. While running synthesis, area optimization is enabled,
and a target frequency of 50 MHz is used. Power measure-
ments are performed using the PowerPlay power analyzer tool.

For every experiment performed, the following measure-
ments are reported.

1) The area consumption is reported both in terms of LUTs,
which are the basic combinational elements of FPGAs,
as well as register count. The resource utilization of
the cipher as a percentage of the total adaptive logic
modules (ALMs) and registers of the FPGA is also
presented.

2) The output of power play power analyzer tool is reported
in terms of power in milliwatt. Before running the tool,
appropriate inputs in terms of value change dump files
of the simulation of modules is provided. Only dynamic
power is considered since the leakage power reported
by the tool is for the entire fabric of the FPGA and
does not correctly represent the leakage power of the
design. Details of the generation of power values can be
referenced from [7].

3) We report the time of operation in terms of cycles per
byte which is defined as the number of cycles required
to process each byte of the message. This measure is
independent of the FPGA platform and is an important
measure of the performance. It is calculated using the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE III

AREA, THROUGHPUT, AND POWER OF AES-GCM AND OTHER ALGORITHMS USING DIRECT IMPLEMENTATION (FREQUENCY = 50 MHz)

following equation:

Cycles_per_byte = Cycles_per_msg

Size_of_msg_in_bytes
. (4)

The value for the number of cycles is obtained through
simulation.

4) The throughput, which is defined as the number of
bits that can be processed every second of the time of
operation, is measured using the following equation:

Throughput = Num_of_blks × Blk_length

Cycles × 1
Max_freq

. (5)

The value of Max_freq is obtained from synthesis.
Hence, there is a dependence of the throughput on the
FPGA platform. This is different from the cycles per
byte measure which is not dependent on the hardware
platform used.

5) The energy consumed to process every bit of the mes-
sage is an important measure and can be calculated by
measuring power and time of operation. For the mea-
surement of energy consumption, the following equation
is used:

Energy = Power

Frequency
× Cycles

Num_of_blks × Blk_length
.

(6)

The throughput/area which defines a tradeoff between
the speed of operation of the design versus the area con-
sumption of the design is measured using the following
equation:

Throughput/Area = Throughput_in_Mb/s

Area_in_LUTs
. (7)

The Throughput/Area is a good measure which allows
comparison between implementations of the different
algorithms.

6) For measurement of the performance of parallel
designs (after application of optimization described in
Section IV-A), the above-mentioned measurements are
repeated for 100 messages.

All ASIC implementations are synthesized using the Design
Compiler tool using a 65-nm technology library and target

frequency of 50 MHz. The area results are reported in terms of
gate equivalent (GE), calculated using the following equation:

Gate_Equivalent (GE) = Total_area_of_algorithm

Area_of_NAND_gate
. (8)

The total power which is a sum of the dynamic, internal,
and leakage power is reported in milliwatt. For a 65-nm
technology, the dynamic power dominates over other power
values. This gives a validation for the power numbers reported
by FPGA implementations.

B. Implementation 1: Direct Implementation of the
Algorithms Using Combinational Logic Only

The architectural descriptions provided in Section III are
directly mapped to hardware. This results in implementations
which are unoptimized but provide a good first compari-
son between all the algorithms. The results are tabulated
in Table III for a clock speed of 50 MHz. Note that ASIC
implementations are also included in the same table for
comparison.

From the results, we observe that in terms of area,
PRIMATE-APE is the smallest. This can be attributed to
the fact that the PRIMATEs are sponge-based designs and,
hence, are expected to be lightweight. The next smallest
architecture with respect to area is the Deoxys algorithm. With
the modifications of the algorithm as applied to version v 1.4.1,
the area of the algorithm has reduced further. Both versions
of Deoxys have the advantage of utilizing just one block
cipher for both authentication and encryption processes. This
avoids multiplication which is a resource-intensive operation.
AES-GCM-SIV and POET are slightly more resource con-
suming in terms of area compared to AES-GCM. The power
consumption trends are almost similar to the area consumption
trends with PRIMATE and Deoxys having the least FPGA
power consumption values.

With respect to performance, AES-GCM has the lowest
cycles per byte value. This is because of the inherently
parallel nature of this algorithm which is reflected even in the
unoptimized implementation of its architecture. With respect
to the reported throughput, POET and AES-GCM architectures
are the fastest with PRIMATE being the slowest among all.
With respect to energy consumption, PRIMATE consumes the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOTESHWARA et al.: ARCHITECTURE OPTIMIZATION AND PERFORMANCE COMPARISON OF NONCE-MISUSE-RESISTANT AE ALGORITHMS 11

TABLE IV

AREA, THROUGHPUT, AND POWER OF AES-GCM AND OTHER ALGORITHMS USING PARALLEL PROCESSING OF MESSAGES (FREQUENCY = 50 MHz)

least energy while AES-GCM-SIV consumes the most energy.
The throughput/area indicates that overall, Deoxys has the best
ratio. In other words, it has area consumption and performance
values in between that of other algorithms making it a good
architecture overall. The ASIC implementation results in terms
of both area and power are reflective of the FPGA results with
PRIMATE and Deoxys consuming the least resources.

Note that both versions of Deoxys have the same cycles
per byte value. This is because the major change in the two
versions is with respect to the tweakey key schedule of the
Deoxys block cipher and initialization method. These affect
the maximum frequency reported and, hence, the throughput
of the algorithm. They do not affect the cycles per byte value
which is a platform independent number.

C. Implementation 2: Optimization Using Parallel Processing

The optimization described in Section IV-A is applied to
both Deoxys and AES-GCM-SIV and the resulting imple-
mentation values are reported in Table IV. We note that
the unoptimized implementation of AES-GCM is inherently
parallel. Hence, there is no change in the reported values for
area, power, and timing of AES-GCM.

From these results, we observe that all algorithms have
improved performance benefits after application of the parallel
processing technique. The cycles per byte value is significantly
reduced and the throughput is significantly increased for
all algorithms. However, for parallel processing of Deoxys
algorithm, two block ciphers are required. This results in
significant increase in area consumption for Deoxys compared
to AES-GCM-SIV, which, in fact, sees a slight reduction
in area consumption. This is because the same blocks of
AES-GCM-SIV as used in the serial version are also uti-
lized in the parallel version of the algorithm. The overall
throughput/area is high for all algorithms and is comparable
to AES-GCM. However, for Deoxys, there is a reduction in
the throughput/area number because of the increase in area
even though the throughput also increases significantly. For
AES-GCM-SIV, there is improvement in the throughput/area
value compared to the serial version. The ASIC area numbers
are similar to the area results obtained for FPGA implemen-
tation while the ASIC power numbers are more reflective of
the results of energy consumption.

D. Implementation 3: Optimization of the S-Box of the Block
Ciphers Using Memory Blocks

For the optimization described in Section IV-B, we con-
sider only Deoxys and AES-GCM-SIV. However, it is to be
noted that the optimization is equally applicable to all the
algorithms under study. For Deoxys, the serial implementation
is considered since it has a better throughput/area compared
to its parallel implementation. However, for AES-GCM-SIV,
the parallel implementation of the algorithm is used instead of
the serial version for application of the S-Box optimization.

The result of optimization using memory blocks is provided
in Table V. The reported results show the memory require-
ments in kilobytes for storing the S-Box values. We observe
from these results that all algorithms map to architectures with
lower area and power requirements than their direct or opti-
mized versions. This is because of the hardware require-
ment shifts from using purely combinational logic elements
to the memory blocks present on board the FPGA. For
AES-GCM and AES-GCM-SIV, S-Boxes are required for both
key expansion and substitution steps. However, for Deoxys,
only the substitution step requires S-Boxes. Hence, the mem-
ory requirement is also lower. For all the algorithms, the LUT
consumption is reduced by almost 20%. This occurs at a
cost of decrease in the throughput and increase in the energy
consumption for almost all algorithms. The modified version
of Deoxys reports better improvements compared to the older
version since the power consumption is not as high resulting
in lower energy consumption values.

E. Implementation 4: Optimization Using Tower
Field Implementations

Optimization using tower field implementations are applied
to the algorithms which are based on AES. Mainly, optimiza-
tions as applied to AES-GCM, AES-GCM-SIV, and POET
are presented in Table VI. For the generation of these results,
we employ two decompositions: G F((24)2) and G F(((22)2)2)
for all the algorithms. Note that the reduction in resources due
to compact S-box implementation is not reflected in the imple-
mentations on Cyclone V platforms. However, implementa-
tions on the ASIC platform reflect this reduction. This can
be attributed to the fact that modern FPGA platforms having
routing strategies which might result in some optimizations



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE V

AREA, THROUGHPUT, POWER, AND MEMORY REQUIREMENTS USING OPTIMIZATION OF S-BOX USING MEMORY BLOCKS (FREQUENCY = 50 MHz)

TABLE VI

RESULTS OF OPTIMIZATION USING TOWER FIELD IMPLEMENTATIONS OF AES

TABLE VII

RESULTS OF HARDWARE/SOFTWARE CODESIGN IMPLEMENTATION

not producing the desired effects. Hence, these optimizations
might be more applicable to ASIC platforms or on other FPGA
platforms such as Cyclone IV.

F. Implementation 5: Optimization Using Hardware–Software
Codesign Approach

The results of implementation of hardware/software code-
sign approach are reported in Table VII. In this table, the area
and power of the components of the design built into hardware
are shown. The hardware requirements of the NIOS II soft
processor are reported separately. Note that this overhead is
common for all designs and is a platform specific value. From
the implementations, we observe that the area requirements
for all designs are reduced significantly. This is because only
the hardware modules are now implemented using LUTs and
registers. This reduction is obtained at an increased cycle per
byte count. Note that there is an almost 10× increase in this

value. Also, we observe that the component power is quite low
compared to the power requirements if the complete module
is built using LUTs.

Among the three algorithms, Deoxys benefits the most
with a hardware–software codesign approach since the Deoxys
algorithm utilizes only one Deoxys hardware block. Both
AES-GCM and AES-GCM-SIV exhibit similar reduction in
area and power because of similar requirements of cipher
block and multiplier block.

VI. ANALYSIS OF SIDE-CHANNEL ATTACKS

AND COUNTERMEASURES

AES-based or block-cipher-based schemes are susceptible
to side-channel attacks targeting the nonlinear S-Box
operation or the key schedule/tweak-key schedule.
Classical algorithmic and design-oriented side-channel
attack countermeasures such as masking or randomization



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOTESHWARA et al.: ARCHITECTURE OPTIMIZATION AND PERFORMANCE COMPARISON OF NONCE-MISUSE-RESISTANT AE ALGORITHMS 13

schemes [28], [29] for simple power analysis (SPA) and
differential power analysis (DPA) and fault attacks on AES
are applicable for most block-cipher-based AE schemes.
In addition, circuit-level countermeasures such as using dual-
rail logic style, power supply noise detector, or laser attack
shields are useful for all the AE schemes. Sponge-based
AE schemes are more secure against side-channel attacks
compared to block-cipher-based candidates as they do not
have a vulnerable key schedule which is the target of several
attacks.

In general, cryptographic implementations can be protected
via mechanisms involving frequent rekeying as a countermea-
sure to DPA attacks. Rekeying achieves this by limiting the
number of processed inputs per key for the cryptographic
primitive. Each plaintext to be encrypted for the underlying
block cipher is provided with a new session key. This session
key is derived from a preshared master secret and a nonce that
is randomly generated on the tag. This inherently prevents
DPA on the session key of the block cipher. However, for
the session key derivation, a rekeying function that maps the
master secret key to the session key and is easy to protect
against both SPA and DPA attacks is required. In this context,
a new AE candidate, called ISAP [30] has been designed
based on the Keyak sponge-based CAESAR candidate, which
provides inherent side-channel attack resistance by design.
It uses a secure rekeying operation to protect against DPA
attacks. In ISAP, several options are proposed for the rekeying
function. A masking scheme involving polynomial multipli-
cation of the secret key and the nonce which is strengthened
using learning parity with leakage and learning with rounding.
Other schemes that are presented are based on the GCM
construction that mixes the secret key with the nonce using
a tree-based approach. Another scheme also reuses GCM but
combines it with a leakage-resistant pseudorandom function.

VII. CONCLUSION

In this paper, we have presented the implementation of
several nonce-misuse-resistant algorithms using both FPGA
and ASIC platforms. All the candidates presented offer nonce-
misuse resistance compared to AES-GCM algorithm. This
arises from the fact that in AES-GCM, the nonce was directly
used by the AES algorithm in CTR mode. The plaintext was
only XORed to this result. Thus, any repetition of the nonce
leaked information about the plaintext. In both Deoxys and
AES-GCM-SIV, the cipher text is dependent on the tag which
changes even if the nonce is repeated. In POET and PRIMATE,
the message block is fed as an input to the block cipher/sponge
block, removing the direct dependence of the cipher text on
the nonce. Thus, nonce-misuse resistance is achieved in all
these algorithms compared to AES-GCM.

Important architectural differences that arise because of
adding nonce-misuse resistance were discussed and optimiza-
tions which can be used to overcome the limitations were
also presented. Based on the results from Section V, we have
provided recommendations for the candidates most suitable
for each application scenario as presented in Table VIII.
Future work, in this direction, will involve exploring further
architecture optimizations of these algorithms. A preliminary

TABLE VIII

RECOMMENDATIONS OF CANDIDATES BASED ON OBSERVED RESULTS

discussion on side-channel analysis was presented in this
paper. Experimental attacks using side-channels and proposal
of countermeasures are topics of further research.

REFERENCES

[1] P. G. Lopez et al., “Edge-centric computing: Vision and challenges,”
ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp. 37–42,
Oct. 2015.

[2] M. Bellare and C. Namprempre, “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,” in
Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur. Berlin, Germany:
Springer, 2000, pp. 531–545.

[3] J. Salowey, A. Choudhury, and D. McGrew, AES Galois Counter Mode
(GCM) Cipher Suites for TLS, document RFC 5288, 2008.

[4] D. McGrew and D. Bailey, AES-CCM Cipher Suites for Transport Layer
Security (TLS), document RFC 6655, 2012.

[5] M. Bellare, P. Rogaway, and D. Wagner, “The EAX mode of opera-
tion,” in Proc. Int. Workshop Fast Softw. Encryption. Berlin, Germany:
Springer, 2004, pp. 389–407.

[6] P. Rogaway, M. Bellare, and J. Black, “OCB: A block-cipher mode of
operation for efficient authenticated encryption,” ACM Trans. Inf. Syst.
Secur., vol. 6, no. 3, pp. 365–403, Aug. 2003.

[7] S. Koteshwara, A. Das, and K. K. Parhi, “FPGA implementation
and comparison of AES-GCM and Deoxys authenticated encryption
schemes,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017,
pp. 1–4.

[8] S. Koteshwara, A. Das, and K. K. Parhi, “Performance comparison of
AES-GCM-SIV and AES-GCM algorithms for authenticated encryption
on FPGA platforms,” in Proc. Asilomar Conf. Signals, Syst. Comput.,
Oct. 2017, pp. 1331–1336.

[9] H. Handschuh and B. Preneel, “Key-recovery attacks on universal hash
function based MAC algorithms,” in Proc. Annu. Int. Cryptol. Conf.
Berlin, Germany: Springer, 2008, pp. 144–161.

[10] D. J. Bernstein. (2014). CAESAR: Competition for Authenticated
Encryption: Security, Applicability, and Robustness. [Online]. Available:
http://competitions.cr.yp.to/caesar.html

[11] F. Abed, C. Forler, and S. Lucks, “General overview of the first-
round CAESAR candidates for authenticated encryption,” IACR Cryptol.
ePrint, Tech. Rep. 2014/792, 2014.

[12] S. Koteshwara and A. Das, “Comparative study of authenticated encryp-
tion targeting lightweight IoT applications,” IEEE Design Test, vol. 34,
no. 4, pp. 26–33, Aug. 2017.

[13] ATHENA: Automated Tool for Hardware Evaluation. Accessed:
Feb. 7, 2019. [Online]. Available: https://cryptography.gmu.edu/athenadb/

[14] H. Böck, A. Zauner, S. Devlin, J. Somorovsky, and P. Jovanovic,
“Nonce-disrespecting adversaries: Practical forgery attacks on GCM in
TLS,” in Proc. USENIX WOOT, 2016, pp. 1–11.

[15] T. Iwata and Y. Seurin, “Reconsidering the security bound of AES-
GCM-SIV,” IACR Trans. Symmetric Cryptol., vol. 2017, no. 4,
pp. 240–267, 2017.

[16] Webpage for the AES-GCM-SIV Mode of Operation. Accessed:
Feb. 7, 2019. [Online]. Available: https://cyber.biu.ac.il/aes-gcm-siv/

[17] P. Rogaway and T. Shrimpton, “Deterministic authenticated-encryption,”
in Advances in Cryptology—EUROCRYPT, vol. 6. Springer, 2007.

[18] Deoxys v1.3. (2015). Second-Round Submission to the CAESAR
Competition. [Online]. Available: http://competitions.cr.yp.to/-caesar-
submissions.html.

[19] J. Jean, I. Nikolic, T. Peyrin, and Y. Seurin, “Deoxys v1. 41,” Submitted
to CAESAR, Oct. 2016.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[20] S. Gueron, A. Langley, and Y. Lindell, “AES-GCM-SIV: Specification
and analysis,” IACR Cryptol. ePrint Arch., Tech. Rep. 2017/168, 2017.
[Online]. Available: https://eprint.iacr.org/2017/168

[21] F. Abed et al., “Pipelineable on-line encryption,” in Proc. Int. Workshop
Fast Softw. Encryption Berlin, Germany: Springer, 2014, pp. 205–223.

[22] PRIMATEs v1.02. (Sep. 2014). CAESAR submission.
[23] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and

Implementation. New York, NY, USA: Wiley, 1999.
[24] D. Canright, “A very compact S-box for AES,” in Proc. Int. Workshop

Cryptograph. Hardw. Embedded Syst. Berlin, Germany: Springer, 2005,
pp. 441–455.

[25] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact Rijndael
hardware architecture with S-box optimization,” in Proc. Int. Conf.
Theory Appl. Cryptol. Inf. Secur. Berlin, Germany: Springer, 2001,
pp. 239–254.

[26] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao, and P. Rohatgi,
“Efficient Rijndael encryption implementation with composite field
arithmetic,” in Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst.
Springer, 2001, pp. 171–184.

[27] X. Zhang and K. K. Parhi, “On the optimum constructions of composite
field for the AES algorithm,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 53, no. 10, pp. 1153–1157, Oct. 2006.

[28] Z. Yuan, Y. Wang, J. Li, R. Li, and W. Zhao, “FPGA based optimization
for masked AES implementation,” in Proc. IEEE 54th Int. Midwest
Symp. Circuits Syst. (MWSCAS, Aug. 2011, pp. 1–4.

[29] P. Maistri, S. Tiran, P. Maurine, I. Koren, and R. Leveugle, “Countermea-
sures against EM analysis for a secured FPGA-based AES implementa-
tion,” in Proc. Int. Conf. Reconfigurable Comput. FPGAs (ReConFig),
2013, pp. 1–6.

[30] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, and
T. Unterluggauer, “ISAP–towards side-channel secure authenticated
encryption,” IACR Trans. Symmetric Cryptol., vol. 2017, no. 1,
pp. 80–105, 2017.

Sandhya Koteshwara (S’16) received the B.E.
degree in electronics and communication from
Visvesvaraya Technological University, Belgaum,
India, in 2010, and the M.S. degree in electri-
cal engineering from the University of Minnesota,
Minneapolis, MN, USA, in 2014, where she
is currently working toward the Ph.D. degree
at the Department of Electrical and Computer
Engineering.

Her current research interests include hardware
security, low power architectures for cryptographic

algorithms, and approximate computing.

Amitabh Das (M’09–SM’17) received the Ph.D.
degree in hardware security and cryptography from
the Computer Security and Industrial Cryptography
Research Group, Electrical Engineering Department,
KU Leuven, Leuven, Belgium.

He was a Security Researcher with the Secu-
rity Center of Excellence Group, Intel Cor-
poration, Hillsboro, OR, USA, where he is
currently a Research Scientist at Intel Labs,
Security and Privacy Research. He has authored
or coauthored several peer-reviewed international

IEEE/ACM/Springer conference and journal papers in the area of hard-
ware security and cryptography. His current research interests include hard-
ware cryptography, field-programmable gate array security, memory security,
system-on-chip hardware security, embedded security, and hardware/software
codesign of cryptographic algorithms.

Dr. Das serves as a reviewer for several IEEE and Springer transactions,
journals, and conferences. He also serves as a Technical Program Committee
Member for IEEE Internal Verification and Security Workshop and an
industry Liaison and Technical Advisory Board Member for Semiconductor
Research Corporation General Research Collaboration Trustworthy and Secure
Semiconductors and Systems effort.

Keshab K. Parhi (S’85–M’88–SM’91–F’96)
received the B.Tech. degree from IIT, Kharagpur,
India, in 1982, the M.S.E.E. degree from the
University of Pennsylvania, Philadelphia, PA, USA,
in 1984, and the Ph.D. degree from the University
of California at Berkeley, Berkeley, CA, USA,
in 1988.

Since 1988, he has been with the University of
Minnesota, Minneapolis, MN, USA, where he is
currently a Distinguished McKnight University
Professor and Edgar F. Johnson Professor at the

Department of Electrical and Computer Engineering. He is involved in
intelligent classification of biomedical signals and images, for applications
such as seizure prediction and detection, schizophrenia classification,
biomarkers for mental disorders, brain connectivity, and diabetic retinopathy
screening. He has authored or coauthored more than 600 papers, has
invented or coinvented 29 patents, has authored the textbook VLSI Digital
Signal Processing Systems (New York, NY, USA: Wiley, 1999), and
coedited the reference book Digital Signal Processing for Multimedia
Systems (Boca Raton, FL, USA: CRC Press, 1999). His current research
interests include the VLSI architecture design and implementation of signal
processing, communications and biomedical systems, error control coders and
cryptography architectures, high-speed transceivers, stochastic computing,
secure computing, and molecular computing.

Dr. Parhi served as a Board of Governors Elected Member of the IEEE
Circuits and Systems Society from 2005 to 2007. He is a fellow of the
AAAS. He was a recipient of numerous awards including the 1999 Golden
Jubilee Medal, 2012 Charles A. Desoer Technical Achievement Award, and
the 2017 Mac Van Valkenburg Award, from the IEEE Circuits and Systems
Society, the 2001 IEEE W. R. G. Baker Prize Paper Award, the 2003 IEEE
Kiyo Tomiyasu Technical Field Award, the 2004 F. E. Terman Award from
the American Society of Engineering Education, the 2013 Distinguished
Alumnus Award from IIT Kharagpur, and the 2013 Graduate/Professional
Teaching Award from the University of Minnesota. He has served as the
Technical Program Co-Chair for the 1995 IEEE VLSI Signal Processing
Workshop and the 1996 Application Specific Systems, Architectures, and
Processors conference, and as the General Chair for the 2002 IEEE Workshop
on Signal Processing Systems. He has served on the Editorial Boards for
the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS Part I And Part II,
the IEEE TRANSACTIONS ON VLSI SYSTEMS, the IEEE TRANSACTIONS

ON SIGNAL PROCESSING, IEEE SIGNAL PROCESSING LETTERS, and the
IEEE Signal Processing Magazine. He served as the Editor-in-Chief for the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS Part I from 2004 to
2005. He currently serves on the Editorial Board of the Journal of Signal
Processing Systems (Springer). He was the Distinguished Lecturer of the
IEEE Circuits and Systems Society from 1996 to 1998.


