
978-1-5386-7512-0/19/$31.00 @2019 IEEE

A Further Optimized Mix Column Architecture
Design for the Advanced Encryption Standard

Sudhir Rao Rupanagudi
WorldServe Education

Bengaluru, India
sudhir@worldserve.in

Valliveti Vidya J
APS College of

Engineering
Bengaluru, India

Varsha G Bhat
WorldServe Education

Bengaluru,
India

Padmavathi P
APS College of

Engineering
Bengaluru, India

Darshan G
APS College of

Engineering
Bengaluru, India

Shreya K. Gurikar
PES University

Bengaluru,
India

Darshan S
APS College of

Engineering
Bengaluru, India

Nivedita Sindhu
PES University

Bengaluru,
India

Abstract— With the evolution of The Internet, there has
been a huge spurt in online transactions and also an increase in
sharing of private, confidential and sensitive information over
the web. This in turn has increased the requirement of highly
secure and swift methodologies to protect such data using
modern cryptographic techniques such as the Advanced
Encryption Standard (AES). In order to achieve the same, this
paper discusses significant and novel modifications to the
existing hardware architecture of the mix column step of the
AES algorithm. By adopting these techniques, a speed
efficiency of over 1.41 times was achieved as compared to
previous algorithms. Moreover, in a VLSI perspective, an
average area optimization of 3 times was also achieved. All
experiments were conducted using the Xilinx Artix-7 series of
FPGA.

Keywords— AES; Cryptography; FPGA; Look-up Table;
Mix Column; Multiplication; Network Security; Splitting
method; VLSI; Vedic Mathematics

I. INTRODUCTION
The dawn of the 21st century has brought along with it a

huge amalgamation of technological breakthroughs and
novel inventions. Most of these discoveries cater to easing
the life of people in their day to day life activities which
include communication [1], agriculture [2], transportation [3]
and the likes. At the same time, it must be noted that most of
these innovations are currently backed by complex
algorithms generally setup and executed on servers situated
elsewhere using the power of cloud computing and wireless
communication. These systems can also be controlled
wirelessly through virtual private networks and also remote
desktop access solutions. Though this may seem
advantageous, it comes along with it a major disadvantage as
well. If not vigilant, these systems can unfortunately be also
controlled by unauthorized personnel through hacking,
obtaining credentials through phishing and other network
security breaches [4]. Hence, highly efficient and quick
methodologies to secure such systems, becomes the need of
the hour.

The past few years has seen a large increase in different
methodologies to provide network security to various
installations, the most common of these methods being
cryptography [5]. Whether it is social networking, online
transactions, social security or controlling smart applications
through the Internet of Things (IoT), cryptographic methods
assist in prevention of data loss or cyber theft. The word
Cryptography, which is derived from two Greek words
‘krypto’ and ‘graphene’ which mean hidden and writing
respectively [6], is the science of protecting vital
information, where the data is encrypted or scrambled in

such a way that only the one who possesses the knowledge
of deciphering it, can understand it [7].

Amongst the various cryptographic techniques which
exist, the most popular methods include the Data Encryption
Standard (DES), Triple DES (3DES) and the Advanced
Encryption Standard (AES) [8]. Amid these, due to the
advantages of the AES standard over the rest [9], it is
considered as the most preferred algorithm. Currently, a
further advanced variant of the AES – the Rijndael
algorithm, is also popularly used, mainly due to its
heightened level of security [10]. The four major steps
involved in the Rijndael AES algorithm can be seen in Fig. 1
and have been elaborated in detail in [11].

Fig. 1. Steps involved in the Rijndael AES algorithm

As shown in Fig. 1, it can be clearly seen that the input
data is first subjected to the add-round key step and is then
made to undergo 10 rounds of AES wherein the first nine
rounds involve all the 4 steps mentioned above and the tenth
round excludes the mix column step [10].

From the descriptions of each step stated in [11], it can be
concluded that the most mathematically intense and time
consuming step of the AES, is the mixed column stage [12].
The main reason for the same is the involvement of
multiplication in the Galois-field domain with the Maximum
Distance Separable (MDS) matrix shown in Fig. 2. It is also
a well known fact that an increase in time to perform
encryption can increase the probability of succeeding to
‘break’ the algorithm [13]. Similarly, with respect to
decryption, a faster execution time relates to better back end
performance [14]. Hence, a need arises to decrease the time

181

required to perform the mix column operation of the AES
and also reduce the vulnerability of the algorithm. This in
turn forms the main motivation for this paper.

Fig. 2. The MDS matrices used for Mix-column (a) for encryption and (b)
for decryption

In this paper, two methodologies, which can be used in
conjunction with each other in order to reduce the execution
time of the mix column step of the AES algorithm, have been
described. The paper also focuses on area efficiency as well,
keeping in mind a hardware VLSI implementation of the
algorithm. Section 2 mentions the various existing
methodologies which prevail for performing the mix column
operation, and also elaborates on one of the most recent
methods published in this regard. In Section 3, the two novel
approaches have been discussed in detail. Section 4 gives a
comparative study in terms of hardware area and speed of all
the methods elaborated in this paper. The conclusion and
future scope of this paper can be seen in section 5.

II. EXISTING METHODOLOGIES
As explained in the previous section, improvising the

speed of execution of the AES algorithm can in turn lead to a
minimal probability of cracking the same. This can be
achieved by reducing the time taken to perform the mix
column step of the Advanced Encryption Standard. The
following section elaborates a few of the techniques already
existing in literature to perform the same and also their
disadvantages.

In [15], the authors describe a method to perform the mix
column operation by multiplying the data obtained from the
previous step of the AES algorithm, with an irreducible
polynomial. This multiplication is performed over the Galois
Field - GF 28 with the polynomial x8 + x4 + x3 + x+ 1 [11].
[16] - [19] also discuss a similar approach, though this time
with a pipelined architecture. Though pipelining does reduce
the time taken to obtain the product of the multiplication
involved and also the throughput, the initial overhead and
internal propagation delay of the XOR gates within the
architecture can create a detrimental effect on the speed of
execution. Also, in most of these approaches, a large number
of XOR gates are utilized in turn increasing the area
overhead of the design.

Another popular method to perform the mix column
multiplication is by utilizing pre calculated multiplication
look up tables (LUT). The authors in [20] created two LUT’s
– a logarithmic L table and an exponential E Table, which
can be used together to find the product of two numbers in
the Galois field. Since the values are pre-computed, this
method has an upper edge with respect to calculation time in
comparison with other methods. However, in an area-on-chip
perspective the method proves to be futile due to its
enormous memory requirement overhead [21].

In [22], the authors describe a method to reduce the on
chip area requirement by the aforementioned method, by
combining the L table and E tables into a single LUT. By
doing so the area requirement reduces by 50%. However, the
authors claim that this methodology would be viable only for
encryption since the MDS matrix comprises of 2, 3 and 1 of
which multiplication with 2 could be implemented with a
shifter and that with 3 could be carried out with this new
LUT. They further state that this method would prove to be
pointless for decryption since there would be an increase in
the total number of LUTs – one for each input 0xEh, 0xBh,
0xDh and 0x9h., thus increasing the on-chip area two fold.

The authors in [23] suggest performing multiplication by
splitting the coefficients of the MDS matrix into powers of 2
using the distributive nature of the values and then carry out
the multiplication operation using bit shifting. Though this
method is area friendly, the utilization of barrel shifters
introduces a combinational path delay which in turn
compromises the total speed efficiency. Another aspect of
major importance is that the output of the above mentioned
operation does not compute the final product since the
resultant is not yet limited to the GF 28. Hence there is a
requirement of further processing to confine the output to an
8 bit number. In order to do so, the resultant obtained above
is XORed with the generator polynomial mentioned
previously which is now converted in hexadecimal format as
0x11Bh. The XORing is performed by bit shifting 0x11Bh to
the left such that its most significant bit (MSB) now
corresponds to that of the resultant. This process is repeated
until the final product obtained is less than or equal to 8 bits
[22]. Fig. 3 shows an example for more clarity. It can be
clearly seen that the whole process requires an additional 4Δt
seconds for a 12 bit number and the same would increase in
case of a partial resultant with an increased bit-width. This
further adds to the processing time proving disadvantageous
in terms of speed efficiency.

Fig. 3. Example showing a 4Δt second requirement for reducing a 12 bit
number to an 8 bit number

In order to overcome the disadvantage of the previous
method due its use of barrel shifters, the authors in [24] came
up with a methodology to perform multiplication using a
modification of the ancient Vedic mathematic sutra or rule –
the Urdhwa Tiryakbhyam Sutra which was discovered by Sri
Bharti Krishna Tirthaji [25], between 1911 and 1918. The
main advantage of this method was a reduction in hardware
and also an improvisation in speed, in comparison with
popular techniques of multiplication such as the Booth or
Modified Booth approaches [26]. This was mainly due to the
fact that multiplication was now reduced to a series of 16
equations mainly comprising of only XOR gates and AND
gates. In continuation to this research, the authors in [22]
further reduced these equations to 11 and in turn reduced the

 (a) (b)

182

total number of XOR gates required to 21 and AND gates to
around 32. Though promising, this method too suffers the
same issue as the splitting method described previously,
since the resultant obtained has to be further reduced to a
Galois field - 28. This implies a further 4Δt second delay to
obtain one multiplication output for a 12 bit partial result.

In the next section, the proposed methodology is
described wherein an earnest attempt has been made to
further reduce the hardware required in comparison to the
methods described in this section. In addition to this, a novel
methodology to reduce the total time duration for reduction
of the result to Galois field by a mere Δt second has also
been elaborated.

III. PROPOSED METHODOLOGIES

As mentioned in Section 1, the main aim of the work
carried out in this paper is to improvise the speed efficiency
of the AES algorithm and also to minimize the on-chip area
occupied as well. In order to achieve the same, two major
optimizations were identified and are elaborated below. The
first deals with the optimization of the multiplication unit of
the mix column step whilst the second method addresses
improving the efficiency of the stage which reduces the
multiplier output to Galois field - 28.

A. Performing the mix column operation utilizing
traditional multiplication
As explained in the previous section and Section 1, the

first step in the mix column operation is to multiply the input
with the coefficients of the MDS matrix. It can be seen from
Fig.2 that the values to be multiplied for encryption are 2, 3
and 1. Multiplication by 2 can be performed by bit shifting
the input by one position to the left. There is no operation
required for multiplication with 1, since the product is the
input itself. With respect to multiplication by 3, if the
traditional approach is to be followed, the steps along with
the output obtained for an example can be seen in Fig. 4.

On close inspection it can be clearly seen that the final
product can be obtained by simply XORing the input with a
bit shifted version of the same. This can be mathematically
represented by (1).

 P3 = A (A << 1) (1)

Where P3 is the partial product obtained and A is the
input.

Fig. 4. Multiplication by 0x3h using the traditional approach

This further implies that, barring a bit shifter for
multiplication by 2 and 9 XOR gates for multiplication with
3, no additional hardware is required for an input to be
multiplied with a single row of the MDS encryption matrix
viz. 2, 3 and 1. This forms a true improvisation in terms of
hardware in comparison with the requirement of 14 XOR
gates and 32 AND gates which were needed for performing

mix column multiplication for the same input set as
elaborated in [22].

With respect to decryption, the MDS values to be
multiplied are 0xEh, 0xBh, 0xDh and 0x9h as shown in Fig.
2b. In the binary notation these values are represented as
1110b, 1011b, 1101b and 1001b. It can be clearly seen that
in order to multiply the input with 0xEh through the
traditional approach, the input has to be shifted once, twice
and thrice and XORed together. This can be represented by
(2) and can be best understood with the help of the example
shown in Fig. 5.

 PE = (A << 3) (A << 2) (A << 1) (2)

Where PE is the partial product obtained and A is the
input.

Fig. 5. Multiplication by 0xEh using the traditional approach

Though the same approach can be followed for
multiplication with 0xBh, 0xDh and 0x9h, it can be closely
observed that all three values when represented in binary
have a common MSB and LSB bit, which is 1. In other
words, multiplication of the input with 0x9h can be first
performed and the result of the same could be used for
multiplication with 0xBh and 0xDh. Utilizing the same
traditional approach applied in the above examples,
multiplication with 0x9h can be performed by XORing the
input with a three-time bit shifted version of the same. This
can be seen in (3).

 P9 = A (A << 3) (3)

Where P9 is the partial product obtained.

The result P9 thus obtained can now be XORed with a
single-bit left shifted version of the input for multiplication
with 0xBh and with a two-bit left shifted version for
obtaining the product with 0xDh. An example for
multiplication with all 3 numbers can be seen in Fig. 6 and
the mathematical representation of the same can be seen in
(4) and (5).

 PB = P9 (A << 1) (4)

 PD = P9 (A << 2) (5)

As was with the case of encryption, decryption by
adopting the traditional multiplication approach elaborated
above also shows a promising reduction in hardware and also
time consumed. In total, for performing a single round of
multiplication with the MDS matrix values 0xEh, 0xBh,
0xDh and 0x9h, only 35 XOR gates are required as opposed
to the Vedic approach which required 84 XOR gates and 128
AND gates [22].

183

Fig. 6. Galois multiplication with 0x9h and utilizing the result for
multiplication with 0xDh and 0xBh.

Similar to the splitting technique and the Vedic method
explained in the previous section, the resultant obtained
performing the above method also requires to be reduced to
the Galois Field - 28. An efficient method to do the same has
been elaborated next.

B. Reducing the product obtained to the Galois field - 28
As mentioned in the previous section and also in Section

1, the resultant products obtained after multiplication with
the MDS matrix have to be confined to the Galois field - 28.
The existing procedure to do the same has been elaborated in
the previous section and it can be seen that a processing time
of 4Δt seconds was required to obtain the final resultant in
the case of a 12 bit product. This would prove to be highly
inefficient in terms of speed and in order to overcome this
issue a novel methodology has been elaborated below.

In the case of encryption, since the maximum value with
which any input is to be multiplied is 0x3h, the maximum bit
width an output could possibly attain is 9 bits. Hence in a
worst case scenario wherein the product is 9 bits, it can be
seen that a single time XORing with 0x11Bh would suffice
to reduce the partial output. Therefore for encryption the
maximum time for obtaining the final output is by default Δt
seconds. However, this is not the case with its decryption
counterpart.

With respect to decryption, the largest probable bit width
of the product resulting from the multiplication operation
would be around 12 bits. In such a case the total number of
times 0x11Bh is to be left shifted and XORed is 4, which is
equal to the total number of ‘1’s preceding the 8th bit of the
partial product. This can be better understood from the
example already shown in Fig. 3. However, instead of
shifting and XORing 0x11Bh at each step of the reduction
process, this calculation can actually be pre-computed, stored
and then finally XORed with the product obtained. Fig. 7a
shows the pre-calculated value obtained in the case the first 4
bits of the partial product obtained are ‘1’ and Fig. 7b shows
the same XORed with the input utilized in Fig. 3.

It can be clearly seen that both results (Fig. 3 and Fig 7b)
obtained coincide with each other. Also, with the help of pre-
calculation the total time required to perform reduction to
Galois field reduces to only Δt seconds. Table 1 shows the
pre-computed values of 0x11Bh for a few combinations of
the first 4 bits of the 12 bit product – B11 to B8 where B
represents the bit position. Though it might seem there is an
area overhead due to a requirement of a look up table, this is

in turn negligible in comparison with the overall bit shifters
required and also the time delay expenditure.

 (a) (b)

Fig. 7. (a) Pre-calculated value (PV) of the number to be XORed in the
case the first four bits of the product is 1. (b) Resultant obtained after
XORing (PV) with the product in just Δt seconds

TABLE I. A FEW PRECOMPUTED VALUES OF 11BH BASED ON MSB OF
THE PRODUCT OBTAINED

Most significant bits of
partial products (B11 - B8)

Precomputed values of
11Bh to be XORed

0000 N/A

0110 65Ah

1011 BF5h

1111 F99h

The next section gives a comparison in terms of speed
and area of the existing methodologies mentioned in the
previous section, along with the combination of the above
mentioned methods.

IV. RESULTS
Since most of the previous methodologies were designed

on different hardware and also given that a fair and just
comparison is required, the approaches mentioned in the
previous two sections were redesigned, synthesized and
implemented for a Xilinx Artix 7 (XA7A15TCSG324-2I)
Series FPGA. Synthesis and implementation were performed
for a timing constraint of 10ns, to ensure a proper
comparison. Also, it was found through experimentation that
previous evaluations, as elaborated in [22], [23] and [24],
failed to take into account the time required for reduction of
the product to Galois field - 28. Since this paper concentrates
on a novel method to improvise the timing efficiency of the
reduction process as well, the total speed calculated is a
summation of both the time taken for multiplication as well
as confining the same to an 8 bit number.

Further to this since [22] has already proved that the
modified Vedic approach is better than its predecessors,
comparison with those methods have not been performed.
The synthesis, post synthesis and also place and route for all
designs were performed using the Vivado 2017.2 version.
All designs were compared in terms of speed of execution
and on-chip area occupied. All values were tabulated and the
same can be seen in Table 2.

It can be clearly seen from Table 2 that in terms of area,
the proposed approaches for encryption and decryption
occupy 2.78 and 2.98 times less area than the previous
respective approaches using Vedic math. This can also be
seen in a logic gate perspective as the total number of gates
required for decryption is a mere 35 by the proposed method,
as opposed to 212 which was required by the Vedic
approach. In terms of speed, the new approaches for

184

encryption and decryption are 1.6 times and 1.41 times faster
than their respective Vedic approach counterparts. Thus, this
establishes that both methods prove promising in terms of
area and speed efficiency.

TABLE II. COMPARISON OF AREA AND SPEED OF VARIOUS MIX
COLUMN METHODS

Approach Area
(in %)

Speed
(in
ns)

Modified Vedic Math method for encryption [22] 3.83 2.370

Modified Vedic Math method for decryption [22] 10.06 2.939

Proposed approach for encryption 1.38 1.478

Proposed approach for decryption 3.38 2.084

V. CONCLUSION AND FUTURE SCOPE
In this paper, two novel approaches to perform the Galois

Field multiplication (28) for the mix column stage of AES,
have been elaborated and explained. In both methods, a
significant improvisation in area and speed were obtained.
Similar types of methodologies could be explored for the
other stages of AES as well. Application of these techniques,
to other encryption methods such as visual cryptography,
could open up a new paradigm into the world of research in
the fields of network security and management.

REFERENCES
[1] S. R. Rupanagudi et al., "A low area & low power SOC design for the

baseband demodulator of an indoor local positioning system," 2015
International Conference on Computing and Network
Communications (CoCoNet), Trivandrum, 2015, pp. 689-695.

[2] S. R. Rupanagudi, B. S. Ranjani, P. Nagaraj and V. G. Bhat, "A cost
effective tomato maturity grading system using image processing for
farmers," 2014 International Conference on Contemporary
Computing and Informatics (IC3I), Mysore, 2014, pp. 7-12.

[3] S. R. Rupanagudi et al., "A novel and secure methodology for keyless
ignition and controlling an automobile using air gestures," 2016
International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Jaipur, 2016, pp. 1416-
1422.

[4] I. M. Abdul Ghani Azmi, S. Zulhuda and S. P. Wigati Jarot, "Data
breach on the critical information infrastructures: Lessons from the
Wikileaks," Proceedings Title: 2012 International Conference on
Cyber Security, Cyber Warfare and Digital Forensic (CyberSec),
Kuala Lumpur, 2012, pp. 306-311.

[5] S. Chandra, S. Paira, S. S. Alam and G. Sanyal, "A comparative
survey of Symmetric and Asymmetric Key Cryptography," 2014
International Conference on Electronics, Communication and
Computational Engineering (ICECCE), Hosur, 2014, pp. 83-93.

[6] M. Meena, A. Komathi, " A Study and Comparative Analysis of
Cryptographic Algorithms for Various File Formats", International
Journal of Science and Research (IJSR), Volume 5 Issue 8, August
2016, pp. 991 - 995

[7] Fischer, T. (2014, Dec). Private and Public Key Cryptography and
Ransomware [Online]. Available: https://www.cisecurity.org/wp-
content/uploads/2017/03/Cryptography.pdf

[8] Rodriguez-Henriquez, F., Saqib, N.A., Díaz Pérez, A., Koc, C.K. , “A
Brief Introduction to Modern Cryptography”, in Cryptographic
Algorithms on Reconfigurable, Springer, Boston, MA, 2015, ch. 2,
pp. 7-8.

[9] Aleisa, N. "A Comparison of the 3DES and AES Encryption
Standards." International Journal of Security and Its Applications”,
2015, vol. 9, issue. 7, pp- 241-246.

[10] W. Stallings, “Advanced Encryption Standard” in Cryptography and
Network Security: Principles and Practices, 4th ed., Pearson
Education, India, 2006, ch. 5, sec. 2, pp. 140-160.

[11] Announcing the Advanced Encryption Standard (AES), Federal
Information Processing Standards, Publication 197, November 26,
2001.

[12] S. Arrag, A. Hamdoum, A. Tragha, and S. E. Khamlich, "Design and
implementation a different architectures of MixColumns in FPGA",
International Journal of VLSI design and Communication Systems,
Vol. No. 3, Iss. No. 4, 2012, pp. 11-22.

[13] P. Parikh and S. Narkhede, "High performance implementation of
mixing of column and inv mixing of column for AES on
FPGA," 2016 International Conference on Computation of Power,
Energy Information and Commuincation (ICCPEIC), Chennai, 2016,
pp. 174-179.

[14] M. Biglari, E. Qasemi and B. Pourmohseni, "Maestro: A high
performance AES encryption/decryption system," The 17th CSI
International Symposium on Computer Architecture & Digital
Systems (CADS 2013), Tehran, 2013, pp. 145-148.

[15] J. Daemen, V. Rijmen, The design of Rijndael AES The Advanced
Encryption Standarad, Springer-Verlag, ISBN 3-540-42580-2.

[16] V. Gopi and E. Logashanmugam, "Design and analysis of nonlinear
AES S-box and mix-column transformation with the pipelined
architecture," 2013 International Conference on Current Trends in
Engineering and Technology (ICCTET), Coimbatore, 2013, pp. 235-
238.

[17] S. S. Chawla, S. Aggarwal, S. Kamal and N. Goel, "FPGA
implementation of an optimized 8-bit AES architecture: A masked S-
Box and pipelined approach," 2015 IEEE International Conference on
Electronics, Computing and Communication Technologies
(CONECCT), Bangalore, 2015, pp. 1-6.

[18] J. Balamurugan and E. Logashanmugam, "Low power and high speed
AES using mix column transformation," 2013 International
Conference on Current Trends in Engineering and Technology
(ICCTET), Coimbatore, 2013, pp. 216-219.

[19] K. Sathya and V. Manimala, "Minimized architecture for Mix
Column representation," 2016 IEEE International Conference on
Engineering and Technology (ICETECH), Coimbatore, 2016, pp.
1166-1171.

[20] N. R. Wagner, “The Advanced Encryption Standard (AES)”, in The
Laws of Cryptography with Java Code, ch. VI, sec. 20, pp. 124-126

[21] Wu SY., Lu SC., Laih C.S. (2004) Design of AES Based on Dual
Cipher and Composite Field. In: Okamoto T. (eds) Topics in
Cryptology – CT-RSA 2004. CT-RSA 2004. Lecture Notes in
Computer Science, vol 2964. Springer, Berlin, Heidelberg

[22] S. R. Rupanagudi et al., "Optimized area and speed architectures for
the mix column operation of the advanced encryption standard," 2017
International Conference on Robotics, Automation and Sciences
(ICORAS), Melaka, 2017, pp. 1-5.

[23] Hua Li and Z. Friggstad, "An efficient architecture for the AES mix
columns operation," 2005 IEEE International Symposium on Circuits
and Systems, 2005, pp. 4637-4640 Vol. 5.

[24] S. R. Huddar, S. R. Rupanagudi, R. Ravi, S. Yadav and S. Jain,
"Novel architecture for inverse mix columns for AES using ancient
Vedic Mathematics on FPGA," 2013 International Conference on
Advances in Computing, Communications and Informatics
(ICACCI), Mysore, 2013, pp. 1924-1929.

[25] M. Ramalatha, K. D. Dayalan, P. Dharani and S. D. Priya, "High
speed energy efficient ALU design using Vedic multiplication
techniques," 2009 International Conference on Advances in
Computational Tools for Engineering Applications, Zouk Mosbeh,
2009, pp. 600-603.

[26] Huddar S.R., Rupanagudi S.R., Janardhan V., Mohan S., Sandya S.
(2013) Area and Speed Efficient Arithmetic Logic Unit Design Using
Ancient Vedic Mathematics on FPGA. In: Unnikrishnan S., Surve S.,
Bhoir D. (eds) Advances in Computing, Communication, and
Control. Communications in Computer and Information Science, vol
361. Springer, Berlin, Heidelberg

185

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

