
0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2895074, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 1

Concurrent Error Detectable Carry

Select Adder with Easy Testability

Nobutaka Kito, Member, IEEE,

and Naofumi Takagi, Senior Member, IEEE

Abstract—A concurrent error detectable adder with easy testability is

proposed. The proposed adder is based on a multi-block carry select

adder. Any erroneous output of the adder caused by a fault modeled

as a single stuck-at fault can be detected by comparing the predicted

parity of the sum with the parity of the sum, i.e., the XORed value of

the sum bits, and comparing the duplicated carry outputs. The adder

is also testable with only 10 input patterns under single stuck-at fault

model. This property eases detection of a fault before the occurrence

of a second fault. Both the concurrent error detectability to detect er-

roneous results and the easy testability to find a fault during operation

are important for realizing reliable systems. Both the concurrent error

detectability and the easy testability of the proposed adder are proven.

A 32-bit adder has been designed. Its hardware overhead is about 70%.

Its concurrent error detectability and 100% test coverage through the 10

patterns has been confirmed by fault simulation.

Index Terms—Concurrent error detection, carry select adder, design for

testability.

✦

1 INTRODUCTION

AS the process shrink of integrated circuits advances and the
integration density increases, reliability of integrated circuits
in field becomes an issue [1], [2], [3]. For critical systems
such as server class computers and embedded systems,
concurrent detection of errors is important.

Addition is the most basic arithmetic operation, and a lot
of adders are used in VLSIs. Reliable adders are important
for realizing reliable systems. Adders with concurrent error
detectability were proposed [4], [5], [6], [7]. In [4] and [7],
parallel prefix adders with concurrent error detectability
were shown. Any erroneous output of these adders can be
detected based on parity prediction. Namely, they produce
a predicted parity of the result, and any erroneous output
can be detected by comparing the predicted parity with the
parity of the result, i.e., the XORed value of the resultant
sum bits. In [5] and [6], carry select adders with concurrent
error detectability were shown. Any erroneous output can
be detected by comparing two internal values in the carry
select adders.

In these previously proposed concurrent error detectable
adders, any erroneous output caused by a single fault can be
detected. However, an erroneous output caused by multiple
faults is not guaranteed to be detected. If a second fault has
occurred before the first fault is found through detection
of an erroneous output, the concurrent error detectability
can be lost. For reliable adders, it is crucial that the first
fault is noticed before a second fault occurs. Therefore, it is

• N. Kito is with the School of Engineering, Chukyo University, Toyota,
470–0393, Japan.
E-mail: nkito@sist.chukyo-u.ac.jp

• N. Takagi is with the Graduate School of Informatics, Kyoto University,
Kyoto, 606–8501, Japan.

important for a concurrent error detectable adder that it also
has easy testability so that a fault in it can be found easily
at maintenance or at reboot, or even during operation. In
this brief, hard errors cause by degradation [2], [8], such as
electromigration [9], [10] and stress migration [11], [12], are
considered. The VLSI chips are assumed to have no fault
before a fault occurs and faults appear gradually. Thus, a
fault modeled as a stuck-at fault is considered. The same
fault model is considered in [4], [5], [6].

In this brief, we propose a concurrent error detectable
adder which also has easy testability. Although several eas-
ily testable adders were proposed [13], [14], [15], [16], [17],
[18], [19], none of them has concurrent error detectability. In
those researches, C-testability, i.e., a property to be testable
with a test set of constant size regardless of bit-width of a
circuit, has been considered as the most powerful property.
The adder to be proposed is C-testable. This property is also
useful for testing during operation.

The adder to be proposed is based on a multi-block
carry select adder. The multi-block carry select adder uses
the idea of calculating the sum result by selecting a result
from two candidates, one assuming 0 as the carry input
and the other assuming 1 as the carry input, according to
the actual value of the carry input [20]. The adder to be
proposed has concurrent error detectability based on parity
prediction. Any erroneous output of the adder caused by
a fault modeled as a single stuck-at fault can be detected
by comparing its predicted parity output with the parity of
its sum result and comparing its duplicated carry outputs.
The adder is also testable with only 10 patterns under single
stuck-at fault model. Both the concurrent error detectability
and the easy testability are proven.

We have designed a 32-bit adder and showed that
its hardware overhead is about 70%. We have confirmed
its concurrent error detectability by fault simulation with
random patterns. We have also confirmed the 100% test
coverage through the 10 input patterns by fault simulation.

This brief is organized as follows. In the next section, a
multi-block carry select adder is briefly reviewed. In Sec-
tion 3, a concurrent error detectable adder with easy testa-
bility is proposed. Its concurrent error detectability and easy
testability are proven. Its gate-level design is also shown.
In Section 4, error detectability and easy testability of the
proposed adder is confirmed, and its hardware overhead
is evaluated. Its power consumption and delay are also
estimated. In Section 5, this brief is concluded.

2 MULTI-BLOCK CARRY SELECT ADDER

Fig. 1 shows a basic design of an n-bit multi-block carry
select adder. Its inputs are the augend X : [xn−1 . . . x0] and
the addend Y : [yn−1 . . . y0], and its outputs are the sum
S: [sn−1 . . . s0] and the carry output cn. It is composed of
b blocks. We number the blocks from the lowest one which
is block0. We let the bit-width of the k-th block blockk be
nk. nk’s can differ from each other. blockk has carry input
cink and carry output coutk. block0 is an n0-bit ripple carry
adder, which consists of a row of full adders. In the figure,
each full adder is composed of a half adder (HA) and an
incrementer (INC). An INC has three input terminals for a 2-
bit binary number and a carry bit, and two output terminals



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2895074, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 2

sn-1cn
sn0+n1-1

INC

MUXMUX MUX

xb-1,nb-1-1

sb-1,0sb-1,1sb-1,nb-1-1

xb-1,1 yb-1,1
xb-1,0 yb-1,0

xn-1 yn-1

blockb-1
yb-1,nb-1-1

MUXMUX MUX

x1,n1-1

s1,1s1,n1-1

cin1

cout1

x1,1 y1,1 x1,0 y1,0

block1
y1,n1-1

x0 y0x1 y1

s0s1

block0

yn0+n1-1xn0+n1-1

sn0

xn0-1 yn0-1

sn0-1sn0+1

xn0
yn0

xn0+1 yn0+1

x0,n0-1 y0,n0-1 x0,1 y0,1 x0,0 y0,0

yn-nb-1
xn-nb-1

yn-nb-1+1xn-nb-1+1

sn-nb-1
sn-nb-1+1

cinb-1

coutb-1

c0
1,1

c1
1,1c1

1,2

c0
1,2c0

b-1,1

c1
b-1,1c1

b-1,2

c0
b-1,2

c1
1,n1

c0
1,n1

c1
b-1,nb-1

c0
b-1,nb-1

HA HA HA

s1,0

HAHAHA

INC

INCINC

INC INC

INCINC

(a)

(b)

HA INC MUX

x y
t0t1

cout

s

cin

i1 i0

sel

ot0t1

HA HA HA

INC INC

F
u
ll 

a
d
d
e
r

IN
C

0b-1
IN

C
1b-1

IN
C

01
IN

C
11

Fig. 1. Multi-block carry select adder (a), and the gate-level designs of HA, INC and MUX (b).

for a 2-bit sum result. Each of the other blocks consists of a
row of HAs, two rows of INCs, i.e., INC0 and INC1, and
a row of 2:1 multiplexers (MUXs). Fig. 1(b) shows gate-
level designs of HA, INC, and MUX. In each block except
block0, two candidates of the sum result, i.e., one assuming
the carry input cink being 0 and the other assuming cink

being 1 are calculated by INC0 and INC1, respectively, and
the correct one is selected by the row of MUXs.

In this brief, when a signal name has two subscripts,
the first subscript represents the index of the block and
the second one represents the position in the block. For
example, xk,j and yk,j(0 ≤ j < nk) represent the input
bits of the position j in blockk. Here, xk,j = xl where

l = j +
∑k−1

m=0
nm. When a signal name has a superscript,

it represents the row of INCs which the signal belongs to.
s0k,j(0 ≤ j < nk) represents the output of position j of the

INC0 in blockk. c0k,j and c1k,j represent the carry signals from

position j−1 in INC0
k and INC1

k, respectively. The operands
of blockk are Xk: [xk,nk−1 . . . xk,0] and Yk: [yk,nk−1 . . . yk,0],
and the sum result of the block is Sk: [sk,nk−1 . . . sk,0].

3 CONCURRENT ERROR DETECTABLE ADDER

WITH EASY TESTABILITY

We propose a concurrent error detectable adder with easy
testability. In Section 3.1, we show a design of the adder
and a configuration of its adder blocks. In Section 3.2 and
Section 3.3, we prove concurrent error detectability and easy
testability of the adder. In Section 3.4, we discuss hardware
overhead of the adder.

3.1 Configuration

Fig. 2(a) shows a design of the proposed adder. In addition
to operands X and Y , it receives their parities pX and pY ,

i.e., the XORed value of X and the XORed value of Y . In
addition to sum output S, it produces the predicted parity
pS of the sum output and two carry outputs cn and c′n. We
restrict the block length nk to be even.

Any erroneous output of the adder caused by a fault
modeled as a single stuck-at fault can be detected by com-
paring the predicted parity pS with the parity of sum output
S and comparing cn and c′n. One inconsistency in the two
input pairs, i.e., a pair of X and pX or a pair of Y and pY ,
can also be detected.

Each addition block except block0 has two carry inputs.
Each addition block has two carry outputs, and produces
parity pCk

of carry signals which has the same value as
ck,nk−1 ⊕ · · · ⊕ ck,1 ⊕ cink in case of correct operation,
where ck,nk−1, · · · , ck,1 are carry bits generated during the
addition of Xk, Yk, and cink.

Addition block blockk (k ≥ 1) of the proposed adder
is shown in Fig. 2(b). The addition block receives two
operands Xk and Yk, and produces sum result Sk. In
addition to those inputs and output, it receives two carry
inputs cink and cin′

k, and produces parity of carries pCk

and two carry outputs coutk and cout′k. coutk and cout′k are
connected to cink+1 and cin′

k+1
, respectively.

Fig. 2(c) shows gate-level designs of HA’, INC’, and
MUX’. Both of HA’ and INC’ have two carry outputs to
obtain concurrent error detectability. One carry bit is used
for addition, and the other is used for parity prediction.

HA’ and INC’ are designed so that effects of a single
stuck-at fault in an INC’ or its ascendant HA’s never ap-
pear in both its sum output and one of its carry signals
simultaneously because such a faulty operation generates
an erroneous sum result and a predicted parity consistent
with the erroneous sum result. In MUX’ and INC’, we



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2895074, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 3

pX pY

x1,n1-1

s1,0s1,1s1,n1-1

cout’1

x1,1 x1,0

cout1

y1,n1-1 y1,1 y1,0

xn0-1

s0,0s0,1s0,n0-1

cout’0

x1 x0

cout0

yn0-1 y1 y0

xb-1,nb-1-1

cout’b-1

xb-1,1 xb-1,0

coutb-1

yb-1,nb-1-1
yb-1,1 yb-1,0

s0s1sn0-1sn0
sn0+1sn0+n1-1sn-nb-1

sn-nb-1+1sn-1

sb-1,0sb-1,1sb-1,nb-1-1

cnc’n

x0,n0-1 y0,n0-1 x0,1 y0,1 x0,0 y0,0

xn0
yn0

xn0+1yn0+1xn0+n1-1 yn0+n1-1

xn-nb-1

yn-nb-1
xn-nb-1+1 yn-nb-1+1xn-1 yn-1

blockb-1 block1

block0

cin1

cin’1

cinb-1

cin’b-1

INC’

xk,nk -1

INC
0
k

sk,0sk,1sk, nk -1

cink

cout’k

xk,1 xk,0

HA’ HA’ HA’

MUX’ MUX’ MUX’

INC’

INC’ INC’

MUX’

coutk

MUX’

cin’k

yk,nk -1 yk,1 yk,0

c’0
k,1

c0
k,1

c1
k,1

c’1
k,1

c’0
k,nk

c0
k,nk

c1
k,nk

c’1
k,nk

(a)

(b)

blockk

pCb-1
pC1

pC0

pCk

pS

INC
1
k

HA’

MUX’

(c)

INC’

HA’

INC’

HA’

INC’

HA’

x y

t1 t’1

cincout

c’out

t0 i1 i0

sel

os

p0
Ck

p1
Ck

t1 t’1 t0

HA’

MUX’

INC’

INC’

xk,nk -2 yk,nk -2

sk, nk -2

Fig. 2. Concurrent error detectable adder with easy testability (a), the design of blockk (k ≥ 1) for the adder (b), and the gate-level designs of HA’,
INC’ and MUX’ (c).

use XOR gates to improve testability. Because XOR gates
prevent masking of effects of a fault, effects of a fault can be
observed easily.

In each addition block, an XOR gate is placed for every
bit position of INC0

k and INC1
k except the most significant

position and the least significant position. For parity output
pCk

, two intermediate candidates are calculated in the two
rows of INCs. One is p0Ck

which is calculated as c′0k,nk−1
⊕

· · · ⊕ c′0k,1 in INC0
k, and the other is p1Ck

which is calculated

as c′1k,nk−1
⊕ · · · ⊕ c′1k,1 in INC1

k. The leftmost MUX’ selects
one of them according to the value of carry input cink, and
the XOR gate at the output of the MUX’ produces the parity
of the carry bits including cin′

k. With the obtained pCk
, the

adder calculates predicted parity pS of the sum as (pX ⊕

pY ) ⊕ (pCb−1 ⊕ · · · ⊕ pC0
) with XOR gates because si is

equal to xi ⊕ yi ⊕ ci in the correct operation.

3.2 Concurrent Error Detectability

Effects of a single stuck-at fault in an INC’ or its ascendant
HA’ never appear in both its sum output and one of its
two carry signals simultaneously as described in Section 3.1.
Therefore, effect of a fault in an INC’ or its ascendant HA’
appears on either (1) one of the two carry signals of the INC’,
(2) the sum signal, or (3) all the three signals (two carries and
the sum). In any case, any erroneous result caused by a fault
can be detected by comparing the predicted parity pS with
the parity of S and comparing cn and c′n.

In case (1), one of the two carry signals of INC’ is used for
addition, and the other is used for parity prediction. When
the carry signal for parity prediction is erroneous, only one-
bit of carry bits for the parity prediction is affected and the
sum result is correct. Thus, erroneous results caused by the
fault can be detected. When the carry signal for addition
is erroneous, we let ck,j be the carry that is affected by
the fault occurred at an INC’. Then, the error affecting ck,j
induces also an error at the sum signal sk,j , and if it is
not propagated in any subsequent positions, the error is
detected because the carry signal affected by the fault is
not used for parity prediction. On the other hand, if the
erroneous value of ck,j is propagated at q subsequent carry
signals ck,j+1, · · · , ck,j+q , they will also induce errors in the
q sum signals sk,j+1, · · · , sk,j+q . Thus, the q+1 sum signals
sk,j , sk,j+1, · · · , sk,j+q will be erroneous. Here, as the logic
generating the carry signals c′k,j+1

, · · · , c′k,j+q is identical
to the logic generating the carry signals ck,j+1, · · · , ck,j+q ,
and they have both the same carry inputs, i.e. the
carry signals ck,j , ck,j+1, · · · , ck,j+q−1, the q carry signals
c′k,j+1

, · · · , c′k,j+q will be also erroneous. Therefore, q + 1
sum signals sk,j , sk,j+1, · · · , sk,j+q will be erroneous, and
q carry signals c′k,j+1

, · · · , c′k,j+q will be erroneous. Thus,
the predicted parity (pX ⊕ pY ) ⊕ (pCb−1

⊕ · · · ⊕ pC0
) will

be computed by means of q erroneous signals, while the
parity of the sum signals will be computed by means of q+1
erroneous signals. Therefore, as the number of the erroneous
signals used in these two parity computations differ by 1,



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2895074, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 4

M
e

m
o

ry
 o

r R
e

g
is

te
r F

ile

Operand

Parity

Operand

Parity

C
o

n
c
u

rre
n

t E
rro

r D
e

te
c
ta

b
le

 A
d

d
e

r
w

ith
 E

a
s
y
 T

e
s
ta

b
ility

Result

Predicted Parity

M
e

m
o

ry
 o

r R
e

g
is

te
r F

ileParity
Checker

cn c’n

X

Y

pX

pY

S

pS

Fig. 3. Example of a datapath circuit with the proposed adder in a system
using parity-based error detection.

these two parities will be different and thus the error will be
detected.

In case (2), a bit of the sum result is inverted and the
parity of the sum result is different from the parity of the
correct one. On the other hand, the predicted parity is
calculated correctly because all the carry bits used for the
prediction are correct. The effect of a fault is detected by
comparing the predicted parity with the parity of the sum
result.

In case (3), all of the carry bits and the sum bit from the
INC’ are incorrect. Because both of the two carry bits are
incorrect, there is no inconsistency among the obtained sum
bits and carry bits used for parity prediction in the upper
positions than the position of the faulty INC’. In the lower
positions of the INC’, though carry bits for parity prediction
are correct, the sum bit from the INC’ is inverted. Therefore,
parity of the sum result is different from the predicted parity.

In the adder, each adder block has two carry inputs
cink and cin′

k. If there is an error on cink then sk,0 will
be erroneous. Furthermore the error on cink can also induce
errors on several other sum outputs (let us say at q sum
outputs). Also, similarly to the arguments given in case (1),
it will also create errors at q carry signals c′k,i. Thus, there
will be q + 1 erroneous sum outputs and q erroneous carry
signals c′k,i, and based to the same arguments as those given
in case (1) these errors will also be detected.

The output of an XOR or a MUX’ affects only one sum
or carry bit or the predicted parity. Therefore, the effect of a
fault in them is detected by comparing the predicted parity
with the parity and comparing two carry outputs of the
adder.

Note that inconsistency of one of the input operands and
its parity input causes an incorrect result of the predicted
parity because the parity input is used for the parity predic-
tion. Therefore, it is also possible to detect inconsistency of
X and pX or inconsistency of Y and pY when there are no
faults in the adder.

The proposed adder is suitable for systems using parity-
based error detection as shown in Fig. 3. The parity-based
error detection of arithmetic circuits was used in real designs
[21], e.g. in [22]. Parities fed from a memory or a register
file are used as pX and pY for operands X and Y , and the
predicted parity obtained by the proposed adder is used
for the parity bit of the result. Any erroneous output of

TABLE 1
Input test patterns for block0.

Pattern x0,jy0,j
j ≥ 1 j = 0

t0 01 11
t1 11 11
t2 10 10
t3 00 11
t4 11 01
t5 01 11
t6 11 00
t7 00 11
t8 00 11
t9 00 00

TABLE 2
Input test patterns for blockk (k ≥ 1) shown in Fig. 2(b).

Pattern xk,jyk,j cink

j ≥ 1 j = 0 cin′

k
t0 01 11 0
t1 11 11 0
t2 10 10 0
t3 00 11 0
t4 11 01 0
t5 01 01 1
t6 11 11 1
t7 10 00 1
t8 00 01 1
t9 00 00 1

the adder is detected by observing the parity checker of the
system and comparing two carry outputs cn and c′n.

3.3 Easy Testability

We show that the proposed adder is testable with 10 input
patterns under the single stuck-at fault model, through
designing test patterns. Each test pattern is obtained by
packing (concatenating) input patterns for testing the addi-
tion blocks. First, we design test patterns for each addition
block.

Table 1 shows the test patterns for block0. In each
pattern, the bit values for the positions j ≥ 1 are the
same. In addition to the consideration for concurrent error
detection, INC’ and HA’ are designed carefully considering
testability. For an INC’ and its ascendant HA’, the three
patterns derived carefully, (x y cin) = 100, 011, and 111,
are sufficient for testing. Note that at least three patterns
are necessary for testing inputs and an output of a 2-input
AND gate, and the set of those three patterns is smallest
for an INC’ and its ascendant HA’. Those three patterns are
fed to all of INC’s and HA’s, and effects of a fault appear
as erroneous sum results or as erroneous predicted parities
through XOR gates. All XOR gates for parity prediction are
testable with the 10 patterns.

Table 2 shows the test patterns for blockk (k ≥ 1). In each
pattern, the bit values for the positions j ≥ 1 are the same.
By the patterns in Table 2, each component in blockk, such as
a MUX’, receives patterns shown in Table 3. For a MUX’, the
two patterns derived carefully, (i0 i1 sel) = 110 and 111, are
sufficient for testing outputs of the internal AND gates and
the NOT gate. Testing for its inputs and its output is done
as testing for rows of INCs. As shown in Table 3, the two



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2895074, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 5

TABLE 3
Input patterns of components in blockk (k ≥ 1).

INC’ and its ascendant HA’ (x y cin) MUX’ (i0 i1 sel) XOR for parity prediction
In INC0 In INC1 For pCk

For coutk For sk,j Receiving c′0
k,j+1

Receiving c′1
k,j+1

j > 1 j = 1 j > 1 j = 1 and cout′
k

j > 1 j = 1 j : even j : odd j : even j : odd

t0 011 011 011 011 110 110 000 000 10 11 10 11
t1 111 111 111 111 110 110 110 110 10 11 10 11
t2 100 100 101 101 010 010 100 100 00 00 10 11
t3 000 001 000 001 110 000 000 110 01 01 01 01
t4 111 110 111 111 010 110 110 010 11 10 10 11
t5 010 010 011 011 011 011 101 101 00 00 10 11
t6 111 111 111 111 111 111 111 111 10 11 10 11
t7 100 100 100 100 001 001 111 111 00 00 00 00
t8 000 000 000 001 011 001 001 011 00 00 01 01
t9 000 000 000 000 001 001 001 001 00 00 00 00

TABLE 4
Generation rules of test patterns for the multi-block adder.

Pattern for coutk Pattern for
blockk (=cink+1) blockk+1

t0 1 t9
t1 1 t8
t2 0 t2
t3 0 t3
t4 1 t7
t5 1 t5
t6 1 t6
t7 0 t4
t8 0 t1
t9 0 t0

patterns are fed to all MUX’s. As described before, the three
patterns, (x y cin) = 100, 011, and 111, are sufficient for
testing an INC’ and its ascendant HA’. Those three patterns
are fed to all of INC’s and HA’s, and the effect of a faulty
gate in them propagates to circuit output through MUX’s.
All XOR gates are testable with the 10 patterns.

We use generation rules in Table 4 defining relations
between the patterns of blockk and those of blockk+1 to pack
the patterns for testing addition blocks into test patterns of
the whole adder. By using the rules, a test set of 10 patterns
can be designed so that the set applies patterns from t0 to t9
to all blocks. For each of the test patterns, its bits from ones
for block0 to ones for blockb−1 are designed according to the
rules in Table 4. As a result, a set of 10 patterns is obtained
for testing the whole adder consisting of multiple blocks.

As an example, a test set for a 32-bit adder consisting of
four 8-bit blocks is shown in Table 5. In the table, t0 to t9
are arranged in the column for block0. The other columns
are derived with the rules in Table 4. For example, we show
the derivation of the top row of Table 5. In the top row, t0 is
assigned to block0. By the top row of Table 4, we use t9 for
block1. In the same way, we use t0 for block2 by the bottom
row of Table 4, and use t9 for block3. The rightmost column
of Table 5 shows the corresponding additions to the test
patterns in hexadecimal. As we can see from the column,
the adder is testable through those 10 additions.

3.4 Hardware Overhead

We estimate circuit size and hardware overhead for the
addition block of the proposed adder. In Table 6, the number
of gates in the addition block of the proposed adder and

that in the addition block of Fig. 1 are shown. In the bottom
row of the table, the estimated circuit size in the equivalent
number of 2-input NAND gates is presented.

In the estimation, an XOR cell is considered as 2.5 gate
equivalents because in CMOS technology without transmis-
sion gates, an XOR gate and a 2-input NAND gate can be
realized by 10 transistors and 4 transistors, respectively. A
NOT gate, a 2-input OR gate, and a 2-input AND gate are
considered as 0.5, 1.5, and 1.5 gate equivalents, respectively.

When bit-width nk is large, hardware overhead of the
addition block of the proposed adder is 87.5% (=17.5/20).
Note that all AND gates in HA’s, INC’s, and MUX’s except
the HA’ at the least significant position of each block can
be replaced with NAND gates because XOR is self-anti-
dual. Error detectability and testability of the addition block
hold after the replacement. When AND gates are replaced
with NAND gates, hardware overhead is 67.5% (=13.5/20).
Thus, the proposed adder is smaller than duplication which
requires overhead more than 100% and was used in real
designs such as server processors [23], [24] and controllers
for automotive applications [25].

4 EXPERIMENTAL RESULTS

We evaluated error detectability, test coverage of the pro-
posed adder, and its circuit area. We prepared the netlist of
the proposed adder by instancing each gate as the corre-
sponding standard cell. Rohm 0.18µm standard cell library
provided through VDEC [26] was used for the evaluation.
The netlist prepared for the evaluations was a 32-bit design
of the proposed adder composed of four 8-bit blocks.

We examined concurrent error detectability of the pro-
posed adder including the error detection unit shown in
Fig. 4. The error detection unit consists of a parity generator
and a dual-rail checker also known as a two-rail checker
[27]. The generator calculates parity of the sum. The checker
compares the parity with the predicted parity, and also
compares two carry outputs. Two input pairs of the checker
are assumed to be complementary, and the pair of its output
is kept complementary as long as the assumption is hold.
Errors are found by detecting break of the complement in
the checker output. Even when a fault occurs in the checker,
it does not fall into false negative , i.e., it is fault-secure [27].
We can use the circuit-level design of the checker [28] which
considers various types of faults to harden the adder design.
For the netlist of the design, we examined error detectability



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2895074, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 6

TABLE 5
Example of test patterns for a 32-bit 4-block adder (where n3, n2, n1, and n0 were 8).

block3 block2 block1 block0

x31y31 . . . x24y24 cin3 x23y23 . . . x16y16 cin2 x15y15 . . . x8y8 cin1 x7y7 . . . x0y0 X + Y

t9 : 00 · · · 00 00 1 t0 : 01 · · · 01 11 0 t9 : 00 · · · 00 00 1 t0 : 01 · · · 01 11 00010001 + 00ff00ff

t8 : 00 · · · 00 01 1 t1 : 11 · · · 11 11 0 t8 : 00 · · · 00 01 1 t1 : 11 · · · 11 11 00ff00ff + 01ff01ff

t2 : 10 · · · 10 10 0 t2 : 10 · · · 10 10 0 t2 : 10 · · · 10 10 0 t2 : 10 · · · 10 10 ffffffff + 00000000

t3 : 00 · · · 00 11 0 t3 : 00 · · · 00 11 0 t3 : 00 · · · 00 11 0 t3 : 00 · · · 00 11 01010101 + 01010101

t7 : 10 · · · 10 00 1 t4 : 11 · · · 11 01 0 t7 : 10 · · · 10 00 1 t4 : 11 · · · 11 01 fefefefe + 00ff00ff

t5 : 01 · · · 01 01 1 t5 : 01 · · · 01 01 1 t5 : 01 · · · 01 01 1 t5 : 01 · · · 01 11 00000001 + ffffffff

t6 : 11 · · · 11 11 1 t6 : 11 · · · 11 11 1 t6 : 11 · · · 11 11 1 t6 : 11 · · · 11 00 fffffffe + fffffffe

t4 : 11 · · · 11 01 0 t7 : 10 · · · 10 00 1 t4 : 11 · · · 11 01 0 t7 : 00 · · · 00 11 fefefe01 + ff00ff01

t1 : 11 · · · 11 11 0 t8 : 00 · · · 00 01 1 t1 : 11 · · · 11 11 0 t8 : 00 · · · 00 11 ff00ff01 + ff01ff01

t0 : 01 · · · 01 11 0 t9 : 00 · · · 00 00 1 t0 : 01 · · · 01 11 0 t9 : 00 · · · 00 00 01000100 + ff00ff00

TABLE 6
Comparison of gate count.

Original Proposed
NOT nk nk + 2

2-AND 5nk − 2 8nk

2-OR 3nk − 1 0

2-XOR 3nk − 1 10nk − 1

Total 20nk − 7 37.5nk − 1.5

(# of 2-NAND equivalents) or 33.5nk − 0.5

cn cn’

Dual-Rail Checker

X

Y

pX

S

Error Detection Unit

Check Result

pY

pS

Parity Generator
(Tree of XOR gates)

C
o
n
c
u
rre

n
t E

rro
r 

D
e
te

c
ta

b
le

 A
d
d
e
r 

w
ith

 E
a
s
y
 T

e
s
ta

b
ility

Fig. 4. Error detection unit for evaluation of error detectability.

by simulating every faulty circuit containing a single stuck-
at fault with random patterns. 10,000 random patterns were
used for each of the simulation. It was confirmed that the
checker always reports inconsistency if S is erroneous.

We also confirmed easy testability of the proposed adder.
Synopsys TetraMax was employed for evaluation of test
coverage. 10 patterns in Table 5 were applied for the 32-
bit design. By the evaluation, it was confirmed that effect of
any single stuck-at fault appears at the circuit outputs with
at least one of the patterns.

We evaluated circuit area of the proposed adder. The
netlist of the original design in Fig. 1 was prepared. It was
also a 32-bit design composed of four 8-bit blocks. The
circuit area of the original design was 7,016µm2 and that
of the proposed design was 11,959µm2 when NAND gates
were used in place of AND gates. Area overhead of the
proposed design was about 70.5%, and it was close to the
estimation in Section 3.4. We also evaluated circuit area of
the proposed adder including the error detection unit in
Fig. 4. Its circuit area was 13,038µm2, and its overhead was
still smaller than 100%.

We estimated power consumption and delay of the
proposed adder. We used the netlists without the error
detection unit and employed Synopsys PrimeTime for the
estimation. The estimated power consumption of the orig-
inal design was 9.51mW, and that of the proposed design
was 15.96mW. Therefore, the overhead of the proposed
design in power consumption was 67.8%, and was close to
the overhead in circuit area. The delay of the original design
was 6.92ns. The delay of the proposed design was 7.68ns
for the sum result and was 8.41ns for the predicted parity.
The overhead in delay time for the sum result was 11.0%
because XORs with larger fanout used for carry calculation
in the proposed design are slower than ORs in the original
one.

For comparison, we evaluated the circuit area of a design
using duplication in which the original design in Fig. 1 was
duplicated and a dual-rail checker was used for checking
the pair of their sum results. Its circuit area was 16,239µm2,
and its area overhead was 131.5%. We also estimated power
consumption and delay of the design using duplication.
Its estimated power consumption was 25.27mW and the
delay of its checker output was 8.52ns. The circuit area of
the proposed design was smaller than that of the design
using duplication, and the delay of the predicted parity was
comparable to the design using duplication.

5 CONCLUSION

A concurrent error detectable adder with easy testability is
proposed. The proposed adder is based on a multi-block
carry select adder. It receives parities of two operands in
addition to the operands, and produces predicted parity of
the sum result and two carry outputs in addition to the
sum result. Any erroneous output of the adder by a fault
modeled as a single stuck-at fault is detected by parity
checking and comparison of the two carry outputs. The
adder is also testable with 10 patterns under single stuck-
at fault model. This property eases testing of the adder to
find a fault before the occurrence of a second fault.

For future intelligent autonomous systems such as au-
tonomous cars, both concurrent error detectability and easy
testability for detecting a fault during operation before fatal
accidents are crucial. More investigations of circuits with
both of concurrent error detectability and testability and
coping with various faults such as delay faults and soft
errors are desirable for realizing reliable systems.



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2895074, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 7

ACKNOWLEDGMENTS

This work was supported in part by JSPS KAKENHI Grant
Number JP16H02795, and by VLSI Design and Education
Center (VDEC), The University of Tokyo with the collabora-
tion with Synopsys Corporation.

REFERENCES

[1] J. H. Stathis, “Reliability limits for the gate insulator in CMOS
technology,” IBM Journal of Research and Development, vol. 46, no.
2/3, pp. 265–286, 2002.

[2] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “The impact of tech-
nology scaling on lifetime reliability,” Proc. International Conference
on Dependable Systems and Networks (DSN ’04), pp. 177–186, June
2004.

[3] D. K. Schroder and J. A. Babcock, “Negative bias temperature
instability: Road to cross in deep submicron silicon semiconductor
manufacturing,” Journal of Applied Physics, vol. 94, no. 1, pp. 1–18,
2003.

[4] M. Nicolaidis, “Carry checking/parity prediction adders and
ALUs,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 11, no. 1, pp. 121–128, Feb. 2003.

[5] B. Kumar and P. Lala, “On-line detection of faults in carry-select
adders,” Proc. International Test Conference (ITC ’03), vol. 1, pp. 912–
918, Sep. 2003.

[6] D. Vasudevan and P. Lala, “A technique for modular design
of self-checking carry-select adder,” Proc. 20th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT ’05),
pp. 325–333, Oct. 2005.

[7] N. Kito and N. Takagi, “Low-overhead fault-secure parallel prefix
adder by carry-bit duplication,” IEICE Transactions on Information
and Systems, vol. E96-D, no. 9, pp. 1962–1970, Sep. 2013.

[8] J. Rivers, M. Gupta, J. Shin, P. Kudva, and P. Bose, “Error tolerance
in server class processors,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 30, no. 7, pp. 945–959,
July 2011.

[9] J. R. Black, “Electromigration - a brief survey and some recent
results,” IEEE Transactions on Electron Devices, vol. 16, no. 4, pp.
338–347, April 1969.

[10] C. K. Hu, R. Rosenberg, H. S. Rathore, D. B. Nguyen, and B. Agar-
wala, “Scaling effect on electromigration in on-chip Cu wiring,”
Proc. IEEE International Interconnect Technology Conference, pp. 267–
269, May 1999.

[11] E. T. Ogawa, J. W. McPherson, J. A. Rosal, K. J. Dickerson, T. C.
Chiu, L. Y. Tsung, M. K. Jain, T. D. Bonifield, J. C. Ondrusek, and
W. R. McKee, “Stress-induced voiding under vias connected to
wide Cu metal leads,” pp. 312–321, April 2002.

[12] H. Matsuyama, T. Suzuki, T. Nakamura, M. Shiozu, and H. Ehara,
“Re-think stress migration phenomenon with stress measurement
in 12 years,” Proc. IEEE International Interconnect Technology Con-
ference and IEEE Materials for Advanced Metallization Conference
(IITC/MAM), pp. 307–310, May 2015.

[13] B. Becker, R. Drechsler, and P. Molitor, “On the generation of area-
time optimal testable adders,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 14, pp. 1049–1066, Sep.
1995.

[14] R. D. Blanton and J. P. Hayes, “Testability of convergent tree
circuits,” IEEE Transactions on Computers, vol. 45, pp. 950–963, Aug.
1996.

[15] S. Kajihara and T. Sasao, “On the adders with minimum tests,”
Proc. Sixth Asian Test Symposium (ATS ’97), pp. 10–15, Nov. 1997.

[16] W. R. Moore, “Minimal C-testable tests for block-CLA adders,”
International Journal of Electronics, vol. 85, no. 5, pp. 611–628, 1998.

[17] R. D. Blanton and J. P. Hayes, “On the design of fast, easily testable
ALU’s,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 8, pp. 220–223, Apr. 2000.

[18] D. Gizopoulos, M. Psarakis, A. Paschalis, and Y. Zorian, “Easily
testable cellular carry lookahead adders,” Journal of Electronic
Testing, vol. 19, pp. 285–298, June 2003.

[19] N. Kito, S. Fujii, and N. Takagi, “A C-testable multiple-block carry
select adder,” IEICE Transactions on Information and Systems, vol.
E95-D, no. 4, pp. 1084–1092, Apr. 2012.

[20] O. Bedrij, “Carry-select adder,” IRE Transactions on Electronic Com-
puters, vol. EC-11, no. 3, pp. 340–346, June 1962.

[21] T. Li, J. A. Ambrose, R. Ragel, and S. Parameswaran, “Processor
design for soft errors: Challenges and state of the art,” ACM
Computing Surveys, vol. 49, no. 3, pp. 57:1–57:44, Nov. 2016.

[22] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita,
T. Muta, T. Motokurumada, S. Okada, H. Yamashita, Y. Satsukawa,
A. Konmoto, R. Yamashita, and H. Sugiyama, “A 1.3GHz fifth
generation SPARC64 microprocessor,” Proc. 40th annual Design
Automation Conference (DAC ’03), pp. 702–705, 2003.

[23] T. J. Slegel, R.M. Averill III, M. A. Check, B. C. Giamei, B. W.
Krumm, C. A. Krygowski, W. H. Li, J. S. Liptay, J. D. MacDougall,
T. J. McPherson, J. A. Navarro, E. M. Schwarz, K. Shum, and
C. F. Webb, “IBM’s S/390 G5 microprocessor design,” IEEE Micro,
vol. 19, no. 2, pp. 12–23, Mar. 1999.

[24] T. J. Slegel, E. Pfeffer, and J. A. Magee, “The IBM eServer z990
microprocessor,” IBM Journal of Research and Development, vol. 48,
no. 3-4, pp. 295–309, May 2004.

[25] Texas Instruments, “Hercules safety MCUs,” http://www.ti.com/
microcontrollers/hercules-safety-mcus/overview.html, Accessed on
Aug. 17, 2018.

[26] VLSI Design and Education Center (VDEC), http://www.vdec.
u-tokyo.ac.jp/ , Accessed on Aug. 17, 2018.

[27] P. K. Lala, Self-checking and Fault-tolerant Digital Design. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001.

[28] J. C. Lo, “Novel area-time efficient static CMOS totally self-
checking comparator,” IEEE Journal of Solid-State Circuits, vol. 28,
no. 2, pp. 165–168, Feb. 1993.


