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Abstract—Advanced Encryption Standard (AES) is a 
specification for electronic data encryption. This standard 
has become one of the most widely used encryption method 
and has been implemented in both software and hardware. 
AES has excellent resistance against linear and differential 
cryptanalysis. Although the standard itself is algorithmically 
secure, based on the implementation, it can be vulnerable to 
attackers through side channels. For example, it has been 
shown that by measuring the implementation’s power and 
performing statistical analysis on multiple traces the secret 
key used can be unveiled. This paper presents an efficient 
hardware based 128-bit AES design using a masking scheme 
which is resistant to a side channel attack. This masked 
design is implemented in TSMC 22nm technology. The 
resulting implementation is high in performance, low in 
energy and silicon area. It can run at more than 400MHz 
translating to a throughput of 5.12Gbps. The total area of the 
AES block is 0.0169mm2. The energy consumption is at 
9.77pJ/bit or 1.25nJ/block.  
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I. INTRODUCTION 
It has become a pressing issue to ensure Internet of Things 

(IoTs) are secure and trusted as they are widely used and gain 
popularity. Compromised IoTs may lead to loss of confidentiality, 
integrity of not only the device but also the confidentiality of 
server systems behind used to support them. Making IoTs resistant 
to hardware attacks is challenging since these devices have easier 
physical access than servers housed in data-centers. 
Cryptographic-system is an important part of total security. It is 
used to protect not only the data communicated but also the system 
itself. Commonly used cryptosystems are secure algorithmically. 
In general, hardware implementation of encryption for standard 
security protocols, when implemented correctly, is not only more 
efficient in energy but also harder to attack than their software 
counterpart. However, if we are not careful about the 
implementation of the cipher, it can leak information through side 
channels attacks compromising the theoretical strength of the 
security protocol.  

The Advanced Encryption Standard (AES) is a FIPS-
approved cryptographic algorithm [1] that can be used to protect 

electronic data. Although AES has excellent resistance against 
algorithmic attacks it is vulnerable under side channel attacks 
(SCA)  [2]. A well cited SCA named Differential Power Analysis 
(DPA) [3] has brought much attention in the literature. DPA is a 
more advanced form of side channel attack that can allow an 
attacker to discover the intermediate values within cryptographic 
computations through statistical analysis of data collected from 
multiple cryptographic operations. DPA has been shown in 
practice on ASIC AES implementation in details [4]. 

Masking is a widely used DPA countermeasure as the 
intermediate values in the cryptographic algorithm are no longer 
correlated to the original internal values. A previously proposed 
masking method is provably secure [5]. By performing a function 
on the original input with a randomly generated mask, we are able 
to protect the design against DPA based on Hamming weights. 
This is because correlation has been scrambled. Simple first order 
DPA will not be able to infer information on the secret key.  

In this paper, a high performance, low energy, compact, 
masked 128-bit AES is implemented in TSMC 22nm technology. 
We demonstrate through simulation that its resistance against 
DPA attack while incurring no performance loss. This design is 
very efficient in energy and area and is suitable for IoTs. The rest 
of the paper is organized as follows. In section II we briefly 
describe the needed background on AES. In section III we 
introduce a compact masked AES implementation based on [6]. 
We also cover how fresh masks are generated each round and the 
detail design of the masked S-Box. In section IV we presented the 
implementation results and showed that this design is free from 
DPA. In section V we briefly discuss how this design can be 
improved. Finally, we draw the conclusion. 

II. AES CORE DESIGN 

A. Background - AES Encryption Algorithm 
AES is a symmetric cryptosystem based on a substitution 

permutation network. It is a block cipher which has a fixed 
plaintext of 128 bits and key size of either 128, 192, or 256 bits. It 
has 10, 12 or 14 rounds depending on the key length. The 
encryption process starts with KeyExpansion which takes the 
input key and expands it into 10, 12, or 14 additional RoundKeys 
depending on the key bit length using the Rijndael's key schedule. 
An initial encryption round is performed using the original key 
and is followed by 10, 12, or 14 encryption rounds. Each round 
consists of 4 steps (layers): SubBytes, ShiftRows, MixColumns, 

978-1-7281-0655-7/19/$31.00 ©2019 IEEE



and AddRoundKey. AES processes data in byte sized chunks 
represented as a 4x4 matrix and the complete set of those data 
bytes is called the state. SubBytes involves replacing each byte of 
the state with a 8-bit substitution box called the S-box which is a 
non-linear transformation. ShiftRows cyclically shifts the each 
row of the state matrix by a certain offset. In MixColumns, the four 
bytes of each column is combined with an invertible linear 
transformation. Lastly, AddRoundKey simply adds or XORs the 
current state with the RoundKey. In the final round, the 
MixColumns step is omitted and the cipher text is obtained after 
completing the AddRoundKey step in the final round. The 
complete process is shown in Figure 1 below (where Nr is 10, 12 
or 14). Although decryption is not shown, its process is similar to 
encryption. Basically the steps are performed in the reverse order 
with the corresponding inverse functions.  

Figure 1: AES Algorithm 

B. Implementation of Unmasked S-box in Galios Field 
S-box of the “Substitute Byte” step is sometime implemented 

with look-up-table (LUT). However, implementation in 
combinational logic base on the Galois Field has reduced area in 
ASIC. It also has improved resistance to side channel attacks 
compared to the LUT implementation. The Galois Field 
implementation of the S-box involves taking the multiplicative 
inverse in GF(28) followed by an affine transformation. However, 
this approach will cost lots of hardware resources. An alternative 
to this is to decompose the GF(28) multiplicative inversion to 
lower order fields such as GF(24), GF(22), and GF(2) and convert 
back to GF(28). A previously published paper has shown an 
efficient design based on this transformation [7]. Here we repeat 
some of the derivation to make the paper complete. 

In Galois Field arithmetic, any arbitrary polynomial can be 
represented as bx+c, given an irreducible polynomial of x2+Ax+B. 
Thus, the multiplicative inverse can be found with the following: 

(bx+c)-1 = b(b2B+bcA+c2)-1x+(c+bA) (b2B+bcA+c2)-1  (1) 
If the irreducible polynomial is x2+x+λ, then the 

multiplicative inverse can be simplified to: 
(bx+c)-1 = b(b2 λ +c(b+c))-1x+(c+bA) (b2 λ +c(b+c))-1  (2) 
Converting this to Galois Field operations in hardware, we 

can obtain the following diagram for the multiplicative inversion 
module as shown in Figure 2. δ and δ-1 represent isomorphic and 
inverse isomorphic  mappings to composite fields, and X 
represents a multiplication operation in GF(24). 

 
Figure 2: Multiplicative inversion module for the S-Box 

III. AES MASKING IMPLEMENTATION 
AES encryption consists of both linear and nonlinear 

transformations. Nonlinear transformations complicate the 
masking process. The idea behind masking is that before data 
enters a function, it must be added to a random mask. By this 
masking process the actual data values is hidden from any 
attackers. To unmask, we simply add the masked output to the 
transformed mask. Transformations such as ShiftRows, 
MixColumns, and AddRoundKey are linear operations. Masking 
and unmasking processes are relatively straight forward. SubBytes 
is a nonlinear operation and will require additional effort to obtain 
the transformed mask. In this section we cover the design of the 
masked AES. 

A. Masked AES Architecture and Core Design 
The AES implementation consists of the masked AES core 

and a 128 bit LFSR to generate the encryption masks. The masked 
AES core performs 128 bit encryption. The process is done in 10 
cycles, computing 1 round per cycle, with the hardware of each 
round being reused to save area verses a fully unrolled 
implementation. The proposed masked AES is shown in Figure 3 
where the original data (plaintext) is first masked by a random 
mask. The masked plaintext and the mask are, then, fed through 
the “masked AES core” which encrypt the masked data with the 

secret key. Result masked cipher-text is input into the unmasking 
module to arrive at the intended cipher-text.  

 
Figure 3: Masked AES Architecture 
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Figure 4 illustrates the zoom in block diagram of the masked 
AES core. Each of the layers in a round in the AES design is 
transformed into a masked design. For linear functions the design 
is relatively straight forward. The difficult function is the SubByte 
layer which is non-linear. 

Figure 4: High Level Block Diagram of the Masked AES Core 

B. Mask Generation 
The mask used in each encryption round should be different 

to avoid the risk of being counteracted. A proper design should 
include a physical random number generator. For the 
demonstration purpose (without loss of generality) we used a 128 
bit LFSR with taps at bits 128, 127, 126, 121 to generate fresh 
random mask at each round. 

C. Masking Linear Transformations 
To find the transformed mask for linear operations, it is 

simply done by passing the original mask that the data is masked 
with, through the same transformation. The reason behind this is 
illustrated in equation 3 where f(a+m) represents the masked data 
(a+m) transformed by a linear transformation f. The original 
output f(a) can be obtained by adding the transformed mask f(m), 
since any value XOR’d by the same number twice is the still the 
same value. 
� f (a+m) = f (a) + f (m)��������������������������������������������������
�
D. Masking Non-Linear Trnasformations 

The only nonlinear transformation in AES encryption is the 
S-box, and the root of the nonlinearity comes from the usage of 
AND operations mainly found in multipliers. From [6], masked 
AND can be implemented with the majority function MAJ. 

MAJ (A, B, C) = AB + BC + AC    (4) 
Substituting A with (A  M), B with (B  M), and C with 

M, we can simplify the expression to (A & B)  M, which is the 
equivalent to a masked AND operation. However, this setup 
requires that both inputs are masked with the same mask, thus a 
slight modification is needed to allow different masks to be used 
on the inputs as shown in Figure 5 below. The transformed mask 
is obtained from the XOR of A’s mask and B’s mask. All AND 
operations in the S-box are replaced with this masked AND. 

 
Figure 5: Masked AND Gate 

IV. RESULTS AND COMPARISON 
Both the unmasked and masked AES designs are synthesized 

and place and routed using TSMC’s 22nm technology. The 
unmasked AES core uses 6754 cells and fits in a chip area of 
100um x 100um. The masked AES uses 16107 cells and fits in a 
chip area of 130um x 130um which includes an additional 128-bit 
LFSR. This translates to roughly a 1.69x increase in chip area. 
Both designs operate at a clock frequency of 400MHz and reaches 
a throughput of 5.12 Gbps which shows that the masking method 
poses no performance loss. A comparison of performance, power 
and area between different side channel attack countermeasures is 
shown in Table 1 in the next page. 

It is worth to note that the area of this design is scalable and 
it only relies on cells in the standard cell library. Design in [11] 
has a custom analog element which is not easily scalable. It also 
needs to custom build the needed cell from scratch. Moreover, this 
design also employs pipelining within a round. There are four pipe 
stages each for a function. This will enable higher throughput at 
the cost of slightly more area and energy. We believe, for IoT 
applications, the throughput of the design described in this paper 
achieved is sufficient for most cases. 

To evaluate the SCA resistance of the masking scheme 
designed, the unmasked and masked AES are both implemented 
in TSMC’s 22nm technology. Both designs are fully synthesized 
and place and routed. Post-layout netlists with RC annotation are 
simulated with CustomSim. Correlation Power Analysis (CPA) is 
performed on both designs using the Hamming weight power 
model. The chosen attack point is the first SubBytes operation 
since every 8 bits of the SubBytes output is determined only by the 
same 8 bits of the input. The unmasked AES is successfully 
attacked as shown in Figure 6. The peak in correlation corresponds 
to the correct key prediction. 

 
Figure 6: CPA on Unmasked AES 



Clearly the sub-key value of “84” is identified through correlation 
analysis as marked. In contrast, the CPA results of the masked 
design showed no peak at value “84”. Thus, the correct key is 
hidden from the attacker as shown in Figure 7. 

 
Figure 7: CPA on Masked AES 

V. POSSIBLE IMPROVEMENT 
The masked design has an area which is around 1.7X of the 

unmasked design. One way to reduce the area would be to reuse 
hardware in each round to compute the mask transformation. 
Since the majority of the AES operations are linear, the 
transformation hardware is the same as the round hardware. 
Depending on the target throughput, by passing the mask through 
the encryption round, it should be able to reduce the chip area by 
half at the cost of doubling the latency cycles (thus reducing the 
throughput by half) needed for the encryption. 

VI. CONCLUSION 
A high performance masked 128-bit AES engine has been 

implemented in TSMC 22nm technology. The encryption core 
runs at 400 MHz and has a throughput of 5.12 Gbps. The total chip 
area including a 128-bit LFSR is 130um x 130um, which is 
roughly a 1.69X increase compared to the original unmasked 
design. The masked design is verified by simulating the post APR 
design with CustomSim SPICE simulator and using Correlation 
Power Analysis (CPA). The results show that the  masking scheme 
effectively hides the secret key. 
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TABLE 1. Power/Performance/Area Comparison Table 
 [8] [9] [10] [11] [12] This Work 

Technology (nm) 130 130 130 65 65 22 
Frequency (MHz) 110 50 100 1320 400 400 

Throughput (Gb/s) 1.28 - 12.8 16.9 1.32 5.12 
Unprotected Area (mm2) 1.28 16500 Gates - 0.097 - 0.01 

Protected Area (mm2) 1.37 27400 Gates 183.29K Gates 0.291 53K Gates 0.0169+ 
Power (mW) 44.34 - - 98.0 167.9 41.6 

Energy per block (nJ) - - - 2.45* 17.6* 1.25* 

+ 16K Gates        
 * Calculated from throughput and power 


