

* work performed while interning at TSMC

A High Performance, Low Energy, Compact Masked 128-Bit AES in
22nm CMOS Technology

Yuan-Hsi Chou*

University of Michigan
Ann Arbor, MI USA
yuanhsi@umich.edu

Shih-Lien L. Lu
TSMC

Hsinchu, Taiwan ROC
slluc@tsmc.com

Abstract—Advanced Encryption Standard (AES) is a
specification for electronic data encryption. This standard
has become one of the most widely used encryption method
and has been implemented in both software and hardware.
AES has excellent resistance against linear and differential
cryptanalysis. Although the standard itself is algorithmically
secure, based on the implementation, it can be vulnerable to
attackers through side channels. For example, it has been
shown that by measuring the implementation’s power and
performing statistical analysis on multiple traces the secret
key used can be unveiled. This paper presents an efficient
hardware based 128-bit AES design using a masking scheme
which is resistant to a side channel attack. This masked
design is implemented in TSMC 22nm technology. The
resulting implementation is high in performance, low in
energy and silicon area. It can run at more than 400MHz
translating to a throughput of 5.12Gbps. The total area of the
AES block is 0.0169mm2. The energy consumption is at
9.77pJ/bit or 1.25nJ/block.

Keywords: AES encryption, data masking, side channel analysis,
DPA, CPA, countermeasure, hardware implementation, efficient
CMOS design

I. INTRODUCTION
It has become a pressing issue to ensure Internet of Things

(IoTs) are secure and trusted as they are widely used and gain
popularity. Compromised IoTs may lead to loss of confidentiality,
integrity of not only the device but also the confidentiality of
server systems behind used to support them. Making IoTs resistant
to hardware attacks is challenging since these devices have easier
physical access than servers housed in data-centers.
Cryptographic-system is an important part of total security. It is
used to protect not only the data communicated but also the system
itself. Commonly used cryptosystems are secure algorithmically.
In general, hardware implementation of encryption for standard
security protocols, when implemented correctly, is not only more
efficient in energy but also harder to attack than their software
counterpart. However, if we are not careful about the
implementation of the cipher, it can leak information through side
channels attacks compromising the theoretical strength of the
security protocol.

The Advanced Encryption Standard (AES) is a FIPS-
approved cryptographic algorithm [1] that can be used to protect

electronic data. Although AES has excellent resistance against
algorithmic attacks it is vulnerable under side channel attacks
(SCA) [2]. A well cited SCA named Differential Power Analysis
(DPA) [3] has brought much attention in the literature. DPA is a
more advanced form of side channel attack that can allow an
attacker to discover the intermediate values within cryptographic
computations through statistical analysis of data collected from
multiple cryptographic operations. DPA has been shown in
practice on ASIC AES implementation in details [4].

Masking is a widely used DPA countermeasure as the
intermediate values in the cryptographic algorithm are no longer
correlated to the original internal values. A previously proposed
masking method is provably secure [5]. By performing a function
on the original input with a randomly generated mask, we are able
to protect the design against DPA based on Hamming weights.
This is because correlation has been scrambled. Simple first order
DPA will not be able to infer information on the secret key.

In this paper, a high performance, low energy, compact,
masked 128-bit AES is implemented in TSMC 22nm technology.
We demonstrate through simulation that its resistance against
DPA attack while incurring no performance loss. This design is
very efficient in energy and area and is suitable for IoTs. The rest
of the paper is organized as follows. In section II we briefly
describe the needed background on AES. In section III we
introduce a compact masked AES implementation based on [6].
We also cover how fresh masks are generated each round and the
detail design of the masked S-Box. In section IV we presented the
implementation results and showed that this design is free from
DPA. In section V we briefly discuss how this design can be
improved. Finally, we draw the conclusion.

II. AES CORE DESIGN

A. Background - AES Encryption Algorithm
AES is a symmetric cryptosystem based on a substitution

permutation network. It is a block cipher which has a fixed
plaintext of 128 bits and key size of either 128, 192, or 256 bits. It
has 10, 12 or 14 rounds depending on the key length. The
encryption process starts with KeyExpansion which takes the
input key and expands it into 10, 12, or 14 additional RoundKeys
depending on the key bit length using the Rijndael's key schedule.
An initial encryption round is performed using the original key
and is followed by 10, 12, or 14 encryption rounds. Each round
consists of 4 steps (layers): SubBytes, ShiftRows, MixColumns,

978-1-7281-0655-7/19/$31.00 ©2019 IEEE

and AddRoundKey. AES processes data in byte sized chunks
represented as a 4x4 matrix and the complete set of those data
bytes is called the state. SubBytes involves replacing each byte of
the state with a 8-bit substitution box called the S-box which is a
non-linear transformation. ShiftRows cyclically shifts the each
row of the state matrix by a certain offset. In MixColumns, the four
bytes of each column is combined with an invertible linear
transformation. Lastly, AddRoundKey simply adds or XORs the
current state with the RoundKey. In the final round, the
MixColumns step is omitted and the cipher text is obtained after
completing the AddRoundKey step in the final round. The
complete process is shown in Figure 1 below (where Nr is 10, 12
or 14). Although decryption is not shown, its process is similar to
encryption. Basically the steps are performed in the reverse order
with the corresponding inverse functions.

Figure 1: AES Algorithm

B. Implementation of Unmasked S-box in Galios Field
S-box of the “Substitute Byte” step is sometime implemented

with look-up-table (LUT). However, implementation in
combinational logic base on the Galois Field has reduced area in
ASIC. It also has improved resistance to side channel attacks
compared to the LUT implementation. The Galois Field
implementation of the S-box involves taking the multiplicative
inverse in GF(28) followed by an affine transformation. However,
this approach will cost lots of hardware resources. An alternative
to this is to decompose the GF(28) multiplicative inversion to
lower order fields such as GF(24), GF(22), and GF(2) and convert
back to GF(28). A previously published paper has shown an
efficient design based on this transformation [7]. Here we repeat
some of the derivation to make the paper complete.

In Galois Field arithmetic, any arbitrary polynomial can be
represented as bx+c, given an irreducible polynomial of x2+Ax+B.
Thus, the multiplicative inverse can be found with the following:

(bx+c)-1 = b(b2B+bcA+c2)-1x+(c+bA) (b2B+bcA+c2)-1 (1)
If the irreducible polynomial is x2+x+λ, then the

multiplicative inverse can be simplified to:
(bx+c)-1 = b(b2 λ +c(b+c))-1x+(c+bA) (b2 λ +c(b+c))-1 (2)
Converting this to Galois Field operations in hardware, we

can obtain the following diagram for the multiplicative inversion
module as shown in Figure 2. δ and δ-1 represent isomorphic and
inverse isomorphic mappings to composite fields, and X
represents a multiplication operation in GF(24).

Figure 2: Multiplicative inversion module for the S-Box

III. AES MASKING IMPLEMENTATION
AES encryption consists of both linear and nonlinear

transformations. Nonlinear transformations complicate the
masking process. The idea behind masking is that before data
enters a function, it must be added to a random mask. By this
masking process the actual data values is hidden from any
attackers. To unmask, we simply add the masked output to the
transformed mask. Transformations such as ShiftRows,
MixColumns, and AddRoundKey are linear operations. Masking
and unmasking processes are relatively straight forward. SubBytes
is a nonlinear operation and will require additional effort to obtain
the transformed mask. In this section we cover the design of the
masked AES.

A. Masked AES Architecture and Core Design
The AES implementation consists of the masked AES core

and a 128 bit LFSR to generate the encryption masks. The masked
AES core performs 128 bit encryption. The process is done in 10
cycles, computing 1 round per cycle, with the hardware of each
round being reused to save area verses a fully unrolled
implementation. The proposed masked AES is shown in Figure 3
where the original data (plaintext) is first masked by a random
mask. The masked plaintext and the mask are, then, fed through
the “masked AES core” which encrypt the masked data with the

secret key. Result masked cipher-text is input into the unmasking
module to arrive at the intended cipher-text.

Figure 3: Masked AES Architecture

Plain text
AddRoundKey

SubBytes
ShiftRows

MixColumns
AddRoundKey

SubBytes
ShiftRows

MixColumns
AddRoundKey

SubBytes
ShiftRows

AddRoundKey

…

SubBytes

ShiftRows

MixColumns

AddRoundKey

R
ound 1

SubBytes

ShiftRows

MixColumns

AddRoundKey

R
ound 2

Cipher text

SubBytes

ShiftRows

AddRoundKey
R

ound N
r

K
ey E

xpansion

Key
K

1

K
2

K
3

K
N

r

Figure 4 illustrates the zoom in block diagram of the masked
AES core. Each of the layers in a round in the AES design is
transformed into a masked design. For linear functions the design
is relatively straight forward. The difficult function is the SubByte
layer which is non-linear.

Figure 4: High Level Block Diagram of the Masked AES Core

B. Mask Generation
The mask used in each encryption round should be different

to avoid the risk of being counteracted. A proper design should
include a physical random number generator. For the
demonstration purpose (without loss of generality) we used a 128
bit LFSR with taps at bits 128, 127, 126, 121 to generate fresh
random mask at each round.

C. Masking Linear Transformations
To find the transformed mask for linear operations, it is

simply done by passing the original mask that the data is masked
with, through the same transformation. The reason behind this is
illustrated in equation 3 where f(a+m) represents the masked data
(a+m) transformed by a linear transformation f. The original
output f(a) can be obtained by adding the transformed mask f(m),
since any value XOR’d by the same number twice is the still the
same value.
� f (a+m) = f (a) + f (m)��
�
D. Masking Non-Linear Trnasformations

The only nonlinear transformation in AES encryption is the
S-box, and the root of the nonlinearity comes from the usage of
AND operations mainly found in multipliers. From [6], masked
AND can be implemented with the majority function MAJ.

MAJ (A, B, C) = AB + BC + AC (4)
Substituting A with (A M), B with (B M), and C with

M, we can simplify the expression to (A & B) M, which is the
equivalent to a masked AND operation. However, this setup
requires that both inputs are masked with the same mask, thus a
slight modification is needed to allow different masks to be used
on the inputs as shown in Figure 5 below. The transformed mask
is obtained from the XOR of A’s mask and B’s mask. All AND
operations in the S-box are replaced with this masked AND.

Figure 5: Masked AND Gate

IV. RESULTS AND COMPARISON
Both the unmasked and masked AES designs are synthesized

and place and routed using TSMC’s 22nm technology. The
unmasked AES core uses 6754 cells and fits in a chip area of
100um x 100um. The masked AES uses 16107 cells and fits in a
chip area of 130um x 130um which includes an additional 128-bit
LFSR. This translates to roughly a 1.69x increase in chip area.
Both designs operate at a clock frequency of 400MHz and reaches
a throughput of 5.12 Gbps which shows that the masking method
poses no performance loss. A comparison of performance, power
and area between different side channel attack countermeasures is
shown in Table 1 in the next page.

It is worth to note that the area of this design is scalable and
it only relies on cells in the standard cell library. Design in [11]
has a custom analog element which is not easily scalable. It also
needs to custom build the needed cell from scratch. Moreover, this
design also employs pipelining within a round. There are four pipe
stages each for a function. This will enable higher throughput at
the cost of slightly more area and energy. We believe, for IoT
applications, the throughput of the design described in this paper
achieved is sufficient for most cases.

To evaluate the SCA resistance of the masking scheme
designed, the unmasked and masked AES are both implemented
in TSMC’s 22nm technology. Both designs are fully synthesized
and place and routed. Post-layout netlists with RC annotation are
simulated with CustomSim. Correlation Power Analysis (CPA) is
performed on both designs using the Hamming weight power
model. The chosen attack point is the first SubBytes operation
since every 8 bits of the SubBytes output is determined only by the
same 8 bits of the input. The unmasked AES is successfully
attacked as shown in Figure 6. The peak in correlation corresponds
to the correct key prediction.

Figure 6: CPA on Unmasked AES

Clearly the sub-key value of “84” is identified through correlation
analysis as marked. In contrast, the CPA results of the masked
design showed no peak at value “84”. Thus, the correct key is
hidden from the attacker as shown in Figure 7.

Figure 7: CPA on Masked AES

V. POSSIBLE IMPROVEMENT
The masked design has an area which is around 1.7X of the

unmasked design. One way to reduce the area would be to reuse
hardware in each round to compute the mask transformation.
Since the majority of the AES operations are linear, the
transformation hardware is the same as the round hardware.
Depending on the target throughput, by passing the mask through
the encryption round, it should be able to reduce the chip area by
half at the cost of doubling the latency cycles (thus reducing the
throughput by half) needed for the encryption.

VI. CONCLUSION
A high performance masked 128-bit AES engine has been

implemented in TSMC 22nm technology. The encryption core
runs at 400 MHz and has a throughput of 5.12 Gbps. The total chip
area including a 128-bit LFSR is 130um x 130um, which is
roughly a 1.69X increase compared to the original unmasked
design. The masked design is verified by simulating the post APR
design with CustomSim SPICE simulator and using Correlation
Power Analysis (CPA). The results show that the masking scheme
effectively hides the secret key.

REFERENCES

[1] "Announcing the ADVANCED ENCRYPTION STANDARD
(AES)" Federal Information Processing Standards Publication 197.
United States National Institute of Standards and Technology
(NIST). November 26, 2001

[2] Paul Kocher, "Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems". Advances in
Cryptology—CRYPTO’96. Lecture Notes in Computer Science.

1109: 104–113
[3] Paul Kocher, Joshua Jaffe, and Benjamin Jun, “Differential Power

Analysis,” Crypto 99 Proceedings, Lecture Notes in Computer
Science Vol. 1666, M. Wiener, ed., Springer-Verlag, 1999

[4] Paul Kocher et al. “Introduction to differential power analysis “,

J Cryptogr Eng (2011) 1: 5. https://doi.org/10.1007/s13389-011-
0006-y

[5] Blömer J., Guajardo J., Krummel V. (2004) Provably Secure
Masking of AES. In: Handschuh H., Hasan M.A. (eds) Selected
Areas in Cryptography. SAC 2004. Lecture Notes in Computer
Science, vol 3357. Springer, Berlin, Heidelberg

[6] W. Wei et al., "A compact implementation of masked AES S-box,"
2012 IEEE 11th International Conference on Solid-State and
Integrated Circuit Technology, Xi'an, 2012, pp. 1-3

[7] Edwin NC Mui "Practical Implementation of Rijndael S-Box Using
Combinational Logic" 2007

[8] C. Tokunaga and D. Blaauw, "Secure AES engine with a local
switched-capacitor current equalizer," 2009 IEEE International
Solid-State Circuits Conference - Digest of Technical Papers, San
Francisco, CA, 2009, pp. 64-65

[9] M. Doulcier-Verdier, J. Dutertre, J. Fournier, J. Rigaud, B.
Robisson and A. Tria, "A side-channel and fault-attack resistant
AES circuit working on duplicated complemented values," 2011
IEEE International Solid-State Circuits Conference, San Francisco,
CA, 2011, pp. 274-276

[10] Y. Peng, H. Zhao, X. Sun and C. Sun, "A Side-Channel Attack
Resistant AES with 500Mbps, 1.92pJ/Bit PVT Variation Tolerant
True Random Number Generator," 2017 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Bochum,
2017, pp. 249-254

[11] S. Lu, Z. Zhang and M. Papaefthymiou, "1.32GHz high-
throughput charge-recovery AES core with resistance to
DPA attacks," 2015 Symposium on VLSI Circuits (VLSI
Circuits), Kyoto, 2015, pp. C246-C247

[12] Henrik Fegran, “DPA-Resistant ASIC Implementation of
AES,” MS Thesis, Norwegian University of Science and

Technology, June 2015

TABLE 1. Power/Performance/Area Comparison Table
 [8] [9] [10] [11] [12] This Work

Technology (nm) 130 130 130 65 65 22
Frequency (MHz) 110 50 100 1320 400 400

Throughput (Gb/s) 1.28 - 12.8 16.9 1.32 5.12
Unprotected Area (mm2) 1.28 16500 Gates - 0.097 - 0.01

Protected Area (mm2) 1.37 27400 Gates 183.29K Gates 0.291 53K Gates 0.0169+
Power (mW) 44.34 - - 98.0 167.9 41.6

Energy per block (nJ) - - - 2.45* 17.6* 1.25*

+ 16K Gates
 * Calculated from throughput and power

