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Abstract—Retinopathy of Prematurity (ROP) is a retinal
vasproliferative disorder disease principally observed in infants
born prematurely with low birth weight. ROP is an important
cause of childhood blindness. Although automatic or semi-
automatic diagnosis of ROP has been conducted, most previous
studies have focused on “plus” disease, which is indicated by
abnormalities of retinal vasculature. Few studies have reported
methods for identifying the “stage” of ROP disease. Deep neural
networks have achieved impressive results in many computer
vision and medical image analysis problems, raising expectations
that it might be a promising tool in automatic diagnosis of ROP.
In this paper, convolutional neural networks (CNNs) with novel
architecture is proposed to recognize the existence and severity of
ROP disease per-examination. The severity of ROP is divided into
mild and severe cases according to the disease progression. The
proposed architecture consists of two sub-networks connected by
a feature aggregate operator. The first sub-network is designed
to extract high-level features from images of the fundus. These
features from different images in an examination are fused by
the aggregate operator, then used as the input for the second sub-
network to predict its class. A large dataset imaged by RetCam
3 is used to train and evaluate the model. The high classification
accuracy in the experiment demonstrates the effectiveness of
proposed architecture for recognizing ROP disease.

Index Terms—Retinopathy of Prematurity, deep neural net-
works, feature aggregate operator, medical image analysis.

I. INTRODUCTION

AS the primary cause of childhood blindness, Retinopathy
of Prematurity (ROP) is an eye disease occurs frequently

in infants with low birth weight and premature birth [1].
ROP was initially known as Retrolental Fibroplasia (RLF),
and originally observed by Terry in the 1940s [2]. Nowadays,
it is widely accepted that ROP is closely associated with
excessive oxygen use. During gestation, the development of
blood vessels begins in the fourth month of gestation, reaching
the retinal periphery before birth [3]. For premature infants,
relative hyperoxia in the extrauterine environment and the
continuous supply of oxygen can slow down the growth rate
of retinal vasculature and lead to tissue hypoxia. Retinal
neovascularization may then develop at the joint between
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(a) Normal. (b) Stage 2 of ROP. (c) Stage 3 of ROP.

Fig. 1. Fundus photographs imaged by RetCam 3. From left to right are
normal, Stage 2, and Stage 3 of ROP respectively. There is a obvious ridge
at the junction between vascularized and avascular retina in both Stage 2 and
3 of ROP. In Stage 3, fibrovascular proliferation can be observed from the
ridge into the vitreous.

vascular and avascular areas, producing scar tissue causing
retinal detachment through retraction [4].

As the harm caused by this potentially blinding disorder
has become clear, an international group formed by ROP
experts published a detailed classification guideline in 1984
and 1987 to facilitate the development of clinical treatment
and improve understanding of the condition [5], [6]. First, the
guideline defined three zones to better describe the location of
the illness in ROP with each zone centered on the optic disc.
Second, five stages of ROP and a type of ancillary illness
called “plus” were proposed. Symptoms of Stage 1 to 5 are
listed in Table I. Plus disease occurs in conjunction with ROP,
and is characterized by increased dilation and tortuosity in
retinal vessels. Fig. 1 shows images of the fundus in normal
development, and at Stage 2, and Stage 3 of ROP. According
to the reported recommendations [7], any stage of ROP with
plus in Zone I, Stage 3 of ROP without plus in Zone I, and
Stage 2 or 3 with plus in Zone II require early treatment.
There was no appropriate treatment for ROP until the 1980s
and 1990s when laser photocoagulation and cryotherapy were
shown to be effective methods for preventing blindness in
infants [4]. Although these therapies can reduce the incidence
of blindness in infants, they also impact patients’ visual acuity.
Early diagnosis and timely treatment can help to reduce the
adverse outcomes and vision loss [8].

Diagnosis of ROP requires inspecting the fundus of prema-
ture infants from different views using imaging systems like
RetCam 3, which is a digital retinal camera with high image
quality. The imaging data are then interpreted by experienced
ophthalmologists to determine the presence of the symptoms
of ROP or plus disease described above. However, the diag-
nosis can be challenging for several reasons. First, developing
countries such as China and India have an insufficient number
of qualified ophthalmologists to match the number of prema-
ture infants [9], [10]. In these countries, there is a pressing
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TABLE I
SYMPTOMS OF STAGE 1 TO 5 OF ROP

Stage Symptoms

1
a thin demarcation line separates
vascularized and avascular areas

2 line in Stage 1 evolves to a ridge

3 extraretinal fibrovascular proliferation in the ridge

4 partial retinal detachment

5 total retinal detachment

need for ophthalmologists. Second, the quality of imaging is
affected by many factors (e.g., focus, illumination, and eyes
movement). Third, the classification guidelines provide only
qualitative signs rather than quantitative descriptions. Thus,
clinical assessment mainly depends on the ophthalmologist’s
subjective interpretation of the symptoms [11]. As a result,
there exists disagreement in diagnoses between different ex-
perts assessing the same examination. This uncertainty has
been reported when diagnosing the presence of plus disease
and the stage of ROP [12], [13] . To assist ophthalmologists in
the diagnosis of ROP, a number of computer-aided diagnosis
systems have been proposed. Most of the proposed systems
have focused on detecting plus disease, which is an illness
that co-occurs with ROP that can be quantified [14]. However,
few of them focused on the automated stages classification of
ROP.

In the current study, a novel methodology based on deep
neural networks is proposed to automatically recognize ROP
in fundus images. Assessment of ROP is accomplished in two
steps. The first step is designed to recognize whether ROP
disease is present. If ROP is recognized, the second step is
to assess the severity of the disease. Both steps are required
to analyze examination data, which involve variable number
of images in different views. This recognition method faces
several challenges: 1) Unlike the characteristics of plus disease
indicated by the dilation and tortuosity of posterior veins, the
stage of ROP is characterized by the demarcation line between
vascularized and avascular areas. The locations and shapes of
the lines in the fundus vary significantly in each examinations.
2) A massive amount of annotated data is required to learn the
features of ROP from the data. However, the datasets in current
ROP-related researches cannot meet this requirement. 3) Each
examination of the fundus contains a number of images with
different views. To obtain the ROP recognition result, the
model must jointly analyze multiple images in an examination.

To address the first challenge, convolutional neural networks
(CNNs) with powerful abstract ability are used. CNNs have
been widely applied in computer vision related problems, and
have been shown to learn high-level features directly from
data. Meanwhile, transfer learning is used in the paper to
facilitate the training phase. Transfer learning is an effective
method to train the very deep CNNs when the target dataset is
small. It has been widely used in medical imaging applications,
and performs better than models trained from scratch [15]. To

Fig. 2. The proposed architecture with two sub-networks for recognizing of
ROP. The input is multiple fundus images of an examination. The first sub-
network is used to extract features in multiple images in an examination and
the second one is used to classify the ROP disease. The extracted features
from the multiple images in first sub-network is aggregated before fed to the
second sub-network.

solve the second challenge, a large scale dataset annotated
by some experienced clinical ophthalmologists is used. To
our best knowledge, the training dataset used in the current
study is larger than that of the previous ROP-related studies
by an order of magnitude. The large dataset contribute to learn
the disease-related characteristics in CNNs and reduce the
overfitting. To address the third challenge, a novel architecture
of CNNs is proposed. Two sub-networks are included in the
model: the first is designed to extract features from multiple
images in an examination and the second is for classification.
To jointly analyze the extracted features, an aggregate operator
is used for binding features from the first sub-network. The
architecture of the proposed model is shown in Fig. 2. Several
architectures of CNNs pre-trained on ImageNet are explored,
including the VGG (Visual Geometry Group) [16], Inception
[17], [18] and Residual Networks (ResNets) [19], [20].

The current study makes several new contributions:

(i) A large dataset labeled by some experienced clinical oph-
thalmologist is used for automatically diagnosing ROP.
The training dataset is larger than that of the previous
ROP-related studies by an order of magnitude.

(ii) A novel ROP recognition architecture is proposed. The
architecture contains two sub-networks which aim to
extract and classify high-level features in a data-driven
manner.

(iii) Feature aggregation operator is used to bind the features
from different images in an examination. CNNs using
the operator have superior accuracy compared with other
state-of-the-art methods.

(iv) Two tasks are performed in the current study, including
recognition of the existence and severity of ROP. The
classification and visualization results revealed the pro-
posed architecture successfully learned the characteristics
of ROP, providing a potentially useful tool to aid clini-
cians in diagnosing ROP disease.

II. RELATED WORKS

In this section, an overview of previous studies using
traditional methods for ROP diagnosis is presented, followed
by a brief introduction to deep neural networks and their
application in ROP.
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A. Traditional Methods for Diagnosis of ROP

The vast majority of automated or semi-automated meth-
ods for ROP diagnosis are focused on the recognition of
plus disease, which is important for identifying infants with
severe ROP disease. Because the existence and severity of
plus disease are defined by the abnormality of vessels, most
of these methods have attempted to measure statistics of
vessels in fundus, such as diameter and tortuosity. Typically,
three main steps are involved: (a) vessels segmentation; (b)
measurement of the vessel’s diameter (thickness); (c) mea-
surement of the vessel’s tortuosity [11]. The segmentation step
requires accurate identification of the vascular tree from the
retinal image, and the following two steps are based on the
segmented vessels. Combined with these three steps, many
computer-aided systems (CAD) have been proposed to assist
ophthalmologists in improving diagnostic accuracy of ROP.

For example, a system called “ROPTool” has been proposed
[21] to assist ophthalmologist in diagnosing plus disease.
Using this system, operators first determine the area containing
the vessels to be analyzed, which enables the system to track
the vessels automatically using the “ridge/valley traversal”
method [22]. To ameliorate overestimation, tortuosity was
calculated as the total length of the vessel divided by the
generated smooth curve instead of a straight line. Dilation was
calculated by the average of the width over its length, divided
by the area of the optic nerve. Based on the calculated values,
operators can diagnose the existence of plus disease in a
more quantitative way. “i-ROP” [23] was a system designed to
grade plus disease into three types: normal, pre-plus, and plus.
Principal spanning forests [24] algorithm was used to extract
the vessels. It go a step further beyond “ROPTool”, using
11 indices to quantify the tortuosity and dilation, including
Cumulative Tortuosity Index (CTI), Integrated Curvature (IC),
Integrated Squared Curvature (ISC), etc.

Although traditional methods have been found to aid di-
agnosis of ROP, there remain several challenges. Most to be
solved, the precision of the measurement heavily relies on the
vessel segmentation, meaning that errors in segmentation may
be amplified in subsequent measurements. For measuring the
diameter and tortuosity of the segmented vessels, the location
of measurement and the effects of magnification differences
may also impact the results [11].

B. Deep Neural Networks for Diagnosis of ROP

Deep neural networks [16], [25] have received much interest
in the field of machine learning. Two types of neural networks,
including feed-forward neural networks (FNNs) [26], [27]
and recurrent neural networks (RNNs) [28]–[31], have been
heavily studied during the last decades. A recent interesting
result on RNNs can be found in [32]. Since 2012, when
AlexNet [25] has won the ILSVRC-2012 competition [33],
many important breakthroughs in computer vision have been
achieved using deep neural networks. Several critical factors
contribute to these achievements, including novel network
architecture [16], [17], [19], [31], powerful computation ability
by utilizing graphics processing units (GPUs), large-scale
annotated dataset, etc. Compared with traditional classification

methods using hand-craft features, it extracts different levels
of features from low to high as the networks going deeper
in a data-driven manner. Numerous studies have explored
deep neural networks in a range of medical image analysis
applications, including mitosis detection [34], lymph node
detection [35], lung pattern classification [36], and breast
cancer classification [37], etc.

A recent study used an ImageNet pre-trained GoogLeNet to
classify the existence of plus disease in ROP [14], constituting
the first attempt to use deep neural networks to diagnose plus
disease. Two types of classification tasks were explored in the
study, including the per-image and per-examination classifica-
tions. In the per-image classification, the researchers fine-tuned
the convolutional kernel in the 9th inception block along the
last fully-connected layer. Based on the per-image classifica-
tion, the researchers also proposed a per-examination classifier
by assuming the Beta distribution prior over the probability
that an examination is diagnosed with plus disease. Both
the per-image and per-examination classifiers have superior
performance than those of previous methods, demonstrating
that CNNs may provide a promising tool for diagnosing ROP.
Meanwhile, the visualization results revealed that CNNs have
successfully learned the abnormalities in vessels correlated to
plus disease.

The main characteristic in the ROP recognition is that there
are variable number of fundus images in an examination.
To solve this problem, Worrall et al. [14] assumed the Beta
distribution prior in per-examination classification. However,
the assumption of Beta distribution is unfavorable in the
generalization of the learned classifier because the parameters
α and β in Beta distribution can’t be tuned by the gradient-
based optimization method.

According to previous study [7], besides plus disease, the
stage of ROP is an important factor indicating whether early
treatment is needed. In the current study, a novel architecture
based on the neural network model is proposed to identify
ROP disease in per-examination manner. Unlike Worrall et
al.’s method [14], the proposed model learns to recognize
ROP directly from the data, instead of using a predefined
assumption. The recognition is accomplished in two steps. The
first step is to classify the existence of the ROP disease, and
the second is to identify its severity. The proposed model has
been trained and evaluated on a dataset of 2668 examinations,
which is larger than the data in previous studies by an order
of magnitude. To our best knowledge, the current study is the
first attempt to use a large dataset recognizing the existence
and severity of ROP using deep neural networks.

III. DATA AND METHODOLOGY

In this section, the used dataset is first described in detail.
The characteristics of the dataset provide a better understand-
ing of the task. Then the proposed model used in the two-steps
classification tasks are illustrated, including the architecture of
networks and the feature aggregation operator.

A. Data
Before the data is used to train and evaluate the proposed

model, three steps are needed: data imaging, data annotation,
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Multiple fundus images from different shooting angles in an exami-
nation of the left eye. An obvious ridge can be seen in Fig.3d and Fig.3f at
the marked arrows, while Fig.3a, Fig.3b, Fig.3c, and Fig.3e appeared normal
from visual inspection.

and data partition. The first step acquires fundus images in
examinations, and the second annotates the examinations by
experienced ophthalmologists. The annotated examinations are
then partitioned into training, validation, and testing datasets
in the third step. These three steps are described in detail in
the following sections.

Data Imaging: Images of the fundus are obtained using
RetCam 3 from the Chengdu Women and Children’s Central
Hospital (WCCH) from 2014 to 2017. The RetCam 3 can
only capture one fixed view of the fundus at a time. To
observe the fundus thoroughly, the operator typically take
multiple images of the fundus of the infant’s eye in an
examination. An examination of the left eye in Stage 2 of
ROP is presented in Fig. 3. In this examination, the ridge in
the fundus can be observed in (d) and (f). In the current study,
3017 examinations are collected and 349 examinations are
excluded in the annotation phase, which yield the final 2668
examinations from 720 infants. Each examination contains a
variable number of images per eye. The resolution of the image
is 1600 × 1200. The numbers of images per examination,
gestation age, and birth weight are plot as histogram in Fig.
5. The number of images per examination varies from 2 to 26,
and the most frequently occurring number of images is 5. The
gestation ages varies from 25 to 41 weeks, with a mean value
of 32 weeks. 45% infants’ gestation age is under 32 weeks.
The maximum, minimum, and mean birth weights are 4250,
700, and 1994 grams, respectively. 32% of the infants’ birth
weight is less than 1500 grams.

Data Annotation: The reference standard of the annotation
is comply with the symptoms described in Table I. The process
of the annotation is splitted into two phases: first, the ophthal-
mologists annotated examinations into normal and ROP types,
followed by annotation of the severity of ROP. Both the two
phases are annotated by three experienced ophthalmologists
from the department of ophthalmology in Sichuan Academy
of Medical Sciences and Sichuan Provincial Peoples Hospital.
One of the annotator is the chief physician that have more
than ten years of clinical experience of ROP. The other two
annotators are both doctors that have over five years of clinical

(a) (b)

Fig. 4. The quadratic-weighted kappa score between the three ophthal-
mologists. (a) and (b) represent the first and second annotations phases,
respectively.

experience. In the first phase, the examinations with the
consistent labels among the three ophthalmologists are picked
out. The intersection process can minimize the subjective
bias and reduce the risks caused by carelessness. Base on
the examinations annotated as ROP in the first phase, the
second phase requires the ophthalmologists to identify these
examination’s stage. Similar with two previous studies [12],
[38], a high diagnosis variability was observed among experts
due to the subjective assessment. To ameliorate the potential
affects of the bias, only the examinations with consistent labels
among the three ophthalmologists are used. The quadratic-
weighted kappa score between the three ophthalmologists in
the two annotation phases are shown in the Fig. 4. It can be
seen that the first two ophthalmologists have higher agreement
than that of the third ophthalmologist in both annotation
phases.

According to the annotation results, a high level of data
imbalance is observed, where most ROP data are in Stage 2
and 3. There are relatively few ROP data in Stages 1, 4, and
5. There are two potential explanations for this imbalance: 1)
The demarcation line separates the avascular and vascularized
areas in both Stage 1 and 2, although the line is wider in Stage
2. These relative differences are determined subjectively, and
the ophthalmologists tended to annotate them as Stage 2. 2).
In Stage 4 and 5, retinal detachment can be observed. This
phenomenon is rarely found in the current dataset because
effective intervention will be carried out before the disease
become severe. To solve the problem of imbalance, the ROP
data are further divided into mild and severe cases according to
the phase of stage. Stage 1 and 2 are classified as mild, while
Stage 3, 4, and 5 are classified as severe. This type of grading
is consistent with previous study [5], [39], in which Stage 3
is an important phase between the growth of the demarcation
line and the detachment of the retina. The last row in Table II
shows the number of annotated examinations. There are 2668
identified examinations from 720 infants, including 1484 and
1184 examinations in normal and ROP respectively. It should
be noted that only examinations with consistent labels among
the three annotators are included in the table, so the sum of
mild and severe ROP cases is less than 1184.

Data Partition: The dataset used for training, evaluation,
and testing the model are split in random and shown in the
first three rows in Table II. In the classification of normal and
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(a) Number of images in examinations. (b) Examined infant’s gestation age. (c) Examined infant’s birth weight.

Fig. 5. Histograms of the number of images per examination, gestation age, and birth weight.

TABLE II
DATASET USED FOR TRAINING, EVALUATION, AND TESTING THE MODEL

Normal ROP Mild Severe

Train set 1184 884 225 241

Validation set 150 150 50 50

Test set 150 150 50 50

Total 1484 1184 325 341

ROP, 150 examinations of normal and ROP are used as the
validation and test dataset, respectively. The examinations on
the left are used as training data. In the classification of mild
and severe ROP, 50 examinations of mild and severe cases
are used as the validation and test datasets, and the remaining
ROP examinations are used as training data.

B. Methodology

The inputs of our model are the annotated dataset D =
{xi,j ,yj ; i = 1, ..., Ñ , j = 1...M} containing M instances
of examination, with corresponding labels. xi,j ∈ Rw×h×c

where w, h, and c denote the width, height, and channels
of the fundus images, and i, j denote the i-th image in j-
th examination. The Ñ varied from j since each examination
could contain different numbers of fundus images. The goal
is to learn a robust model f(x,y;θ) parameterized with θ,
which mapping the input image space X to the target space
Y .

Architecture of Networks: The model explored in this work
is based on the CNNs. Three types of layers are typically
included in CNNs: convolutional, pooling, and fully-connected
layers. In the convolutional layers, the parameters to learn
are the kernels that connect with the input locally. The
convolutional operation for single channel can be formulated
as:

zl+1
v,u =

Pl−1∑
p=0

Ql−1∑
q=0

Kl−1∑
k=0

wl
p,q,k · alv+p,u+q,k, (1)

where the P , Q, and K denote the dimensions of the kernel,
and the lower-case letters denote the cursor in the kernel. v and
u denote the spatial location of the output zl+1. The shared

kernel wl convolves the input al along its dimensions of width
and height to obtain the output. Then, a non-linear activation
function F is applied to zl+1,

al+1 = F (zl+1). (2)

Pooling is another important layer in CNNs, aiming to reduce
the dimensionality of the inputs, thus decreasing the com-
putational complexity. Two types of pooling are commonly
used, including the max and mean pooling. In the pooling
operation, the filter with fixed size slides over the spatial
dimensions of input feature maps in a certain stride. During
each slide process, the max or mean is calculated when max or
mean pooling is used, respectively. The fully-connected layer
usually appears in the bottom of the CNNs. Differ from the
convolutional layer, which is locally connected, each neuron in
the fully-connected layer has connections with all the neurons
in upper layer.

Fine-tuning with pre-trained networks has been proved as
an effective method for training CNNs. The pre-training of
CNNs denotes the use of another dataset (e.g ImageNet) to
train a model parameterized with θ̃ by minimizing the loss
function. Then, the parameters in the pre-trained model are
used to initialize the model f(x,y;θ) in the current task. In
the current study, several ImageNet pretrained networks are
explored, including VGG [16], Inception [17], and Residual
Networks [19]. The VGG network is stacked with multiple
convolutional layers with very small kernel (3 × 3) and max
pooling. The VGG network shows that the very small kernels
are efficient for constructing CNNs. Inception is a kind of
module that consists of max pooling and convolutional layer
with the kernel size of 1 × 1, 3 × 3, and 5 × 5. To save
computational resources, 1×1 convolutions are adhered to max
pooling, 3×3, and 5×5 convolutions. The intuition behind the
Inception module is let the model itself to learn the optimal
structure among the different kinds of operations. To overcome
the difficulties in training very deep CNNs, residual network
has proposed another type of module that composed of the
residual and cross-layer shortcut connection. The module can
be formulated as al+1 = F l(al) + al, where F l(al) and al

denote the residual and shortcut connections, respectively.

Feature Aggregate Operator: Unlike traditional image clas-
sification task that the input to CNNs is a single image, the
input in the ROP recognition is an examination containing Ñ
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Fig. 6. Architecture of Inception-V2 with feature aggregate operator of max in module 2. The capital letter C, P, and I denote the Convolutional, Pooling,
and Inception operations respectively. The values represent the number of channel, width, and height of the feature maps.

variable images. This requires the model to make decisions
based on multiple images. Consider the examination of ROP
shown in Fig.3, misdiagnose will happen when the model
extracts features only from images in Fig.3a, Fig.3b, Fig.3c,
or Fig.3e. To fully utilize the information in each image
of an examinations, the model should learn to aggregate
features from all of those images. Then the model is supposed
to complete the recognition with the use of the aggregated
features. However, how and where to aggregate features are
two problems should be solved. How represent the strategies
used to aggregate the features. This is critically important for
the model’s accurate recognition because the disease-related
characteristics may only appeared in some of the images in
an examination. Where denote the aggregate location in the
model. This is another major factor since it is unclear which is
the optimal abstract level of the disease-related characteristics.

For the problem of how, inspired by the aggregation strate-
gies used in fusing the spatial and temporal features [40], max
and mean feature aggregate operators are explored in current
study. The max and mean operators compute the max and
average value of the Ñ features at the same spatial location,
respectively. They can be formulated as

ãl
j = max

i∈[1,Ñj ]
al
i (3)

and

ãl
j =

1

Ñj

Ñj∑
i=1

al
i, (4)

where al
i denotes the features of image i, Ñj denotes the

number of images of examination j, and ãl
j denotes the

aggregated features.
For the problem of where, a CNNs based sub-network is first

used to extract features from the variable number of images
in an examination. To reduce the parameters to learn, the first
sub-network is shared among the Ñ images in an examination.
It has been proved that as the layers going deeper, higher level
features are extracted in CNNs. Some previous studies [19],

[20] have shown the deeper and wider networks contribute to
better abstract ability of the CNNs. To explore the optimal
abstract level to aggregate, different l are tested. Based on
the aggregated features, a second sub-network is able to make
the final prediction. The Inception-V2 network with feature
aggregate operator in module 2 is presented in Fig. 6.

Training Method: CNNs with feature aggregate operators
are trained with the back-propagation algorithm by minimizing
the following cross-entropy cost function with respect to the
parameters θ:

L = − 1

M

M∑
j=1

y>j ln(a
L
j ), (5)

where aL denotes the output of the network after applying the
softmax function. The cross-entropy cost function represents
the similarities between the true distributions of labels and the
approximated distributions of the network. The Adadelta [41]
algorithm is used to minimizing the cost function. Differ from
the stochastic gradient descend (SGD) algorithm which has
the fixed learning rate, Adadelta is an adaptive weight updates
optimization method based on the first order information. The
Adadelta algorithm contains two parameters: one is the initial
learning rate and the other is decay rate used in the moving
averages of the squared gradient.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, the experimental setup is presented, includ-
ing the chosen evaluation strategy and implementation of the
proposed method. The experimental results are then presented
in detail.

A. Experimental Setup

Configurations: The input of the model is RGB images
in the size of 1600 × 1200 × 3. To saving computational
resources, the original images are resized to 320×240×3 with
the OpenCV library [42] through the bilinear interpolation.
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TABLE III
THE OUTPUT SIZE OF EACH MODULE IN VGG-16, INCEPTION-V2, AND

RESNET-50 NETWORKS. THE MODULE IN EACH NETWORK IS STACKED BY
BLOCKS. THE INPUT IMAGES ARE DOWN-SAMPLED TO 40× 30 AND

80× 60 IN THE INCEPTION-V2 AND RESNET-50 RESPECTIVELY, THROUGH
THE MAX POOLING AND CONVOLUTION WITH STRIDE 2. FURTHER DETAILS
OF THE NETWORK ARCHITECTURE ARE PROVIDED IN SEVERAL PREVIOUS

STUDIES [16], [18], [20]

Modules VGG-16 Inception-V2 ResNet-50

module1 320× 240 40× 30 80× 60

module2 160× 120 20× 15 40× 30

module3 80× 60 10× 8 20× 15

module4 40× 30 \ 10× 8

module5 20× 15 \ \

The resized images are then divided by 255, ensuring the
pixel value is located into 0 and 1. The number of images
per each examination is set to 12. For the examination with
number of images less than 12, existing images are randomly
chosen several times to round up 12. Otherwise, 12 images
are randomly selected from the examination. The parameters
of the Adadelta optimizer are set according to the suggested
values where the initial learning rate and the decay rate are
1.0 and 0.95, respectively. The weight updates are performed
in mini-batches where the number of examinations per batch
is 5. The training process finished when up to 100 epochs.

Modern CNNs are typically constructed using blocks (e.g
Inception or Residual block) and divide into several modules.
A module is composed of several blocks, and the feature maps
in a module have identical sizes. To explore the effect of
network architecture on the ROP recognition task, the VGG-
16, Inception-V2, and ResNet-50 networks are tested. For
VGG-16, the last two fully-connected layers are replaced by
the global average pooling [43] which average the feature
maps along spatial dimension to reduce overfitting. Table III
shows the output size of each module in the networks. For
each module in a specific network, the feature maps of the
last block are aggregated.

Implementation: The proposed method is implemented by
TensorFlow [44]. All experiments are performed using a server
with Linux OS and hardware of CPU Intel Xeon E5-2620 @
2.4GHz, GPU NVIDIA Tesla K40m, and 64 GB of RAM.

Evaluation Metrics: The training process is carried out on
the training set, while the validation set is used to fine-tune
the model. The overall performance of each model is assessed
on the test set. Different metrics are calculated, including
Accuracy, Sensitivity, Specificity, Precision, and F1-score. The
Receiver Operating Characteristic (ROC) and the Area Under
Curve (AUC) are calculated to compare performances between
models.

B. Results

1) Feature Aggregate Operators: The performance of the
proposed feature aggregate operators is described below. Table

TABLE IV
TEST ACCURACY OF THE PROPOSED METHOD IN DIFFERENT NETWORK

ARCHITECTURES FOR CLASSIFICATION OF NORMAL/ROP AND
MILD/SEVERE ROP

Networks Modules
Normal and ROP Mild and Severe

max mean max mean

VGG-16

module1 0.853 0.903 0.670 0.650

module2 0.903 0.910 0.720 0.710

module3 0.920 0.943 0.660 0.710

module4 0.910 0.950 0.670 0.810

module5 0.900 0.923 0.770 0.700

Inception-V2

module1 0.963 0.953 0.840 0.690

module2 0.970 0.967 0.840 0.670

module3 0.946 0.956 0.790 0.750

ResNet-50

module1 0.893 0.886 0.720 0.680

module2 0.920 0.900 0.820 0.620

module3 0.930 0.880 0.820 0.680

module4 0.933 0.880 0.810 0.800

IV shows the test accuracy of the proposed method for
classification of normal/ROP and mild/severe type of ROP.
Performance between different networks is first compared. As
seen in the table, Inception-V2 exhibit superior performance
compared with VGG-16 and ResNet-50 in the two tasks. The
high classification accuracy of Inception-V2 mainly benefited
from the multiple operations in the Inception block (e.g.,
convolutional kernel size of 1× 1, 3× 3, and 5× 5). These
operations can extract variable features in multiple scales. For
VGG-16 and ResNet-50, although the two CNNs are designed
to be deep enough to extract high-level features of the inputs,
their performance oscillated more than that of Inception-V2
when aggregate in different modules. This is mainly caused
by the fixed size of convolutional kernel (e.g., 3× 3).

For the max and mean aggregation operators in Inception-
V2, it can be seen from Table IV that the max operator exhibit
higher performance, except for the module 3 in classification
of normal and ROP cases. Comparison of the performance of
different modules in Inception-V2 in classification of normal
and ROP cases reveals the optimal feature for aggregation is
in the middle of the network (e.g., module 2 with max aggre-
gation operator yields the highest test accuracy of 0.97). Both
module 1 and 2 with the max aggregation operator achieved
accuracy of 0.84 in classifying mild and severe of ROP cases.
It should be noted that test accuracy in the classification of
normal and ROP is much higher than that of mild and severe
ROP cases, indicating the latter task is substantially more
difficult for the CNNs. This is consistent with the clinical
diagnosis. Recognition of the severity of ROP is an intractable
problem even for the experienced ophthalmologists.

Fig. 7 shows the training loss in Inception-V2 between the
max and mean aggregation operators. The different aggrega-
tion modules in the max operator are also compared. Fig.
7a and Fig. 7b show that the convergence speed of module
1 and module 2 are higher than those of module 3 in the
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(a) Training loss of Inception-V2 with max aggregation in classification
of normal and ROP cases.

(b) Training loss of Inception-V2 with max aggregation in classification
of mild and severe of ROP cases.

(c) Training loss of Inception-V2 with max and mean aggregation in
classification of normal and ROP cases.

(d) Training loss of Inception-V2 with max and mean aggregation in
classification of mild and severe of ROP cases.

Fig. 7. Comparison of training loss in Inception-V2 with different configurations.

two classification tasks, suggesting that the classification sub-
network in Fig. 2 is important for learning. Although the
Inception-V2 with max aggregation operator in module 2
achieves the highest test accuracy of 0.97, greater oscillation
can be observed after the 50th epoch. From Fig. 7c, it can be
seen that the convergence speed of the max operator is slightly
higher than the mean in the classification of ROP and normal
cases. The difference is magnified in the classification of mild
and severe of ROP cases in Fig. 7d, where the training loss of
max aggregation declined rapidly compared with the mean.

2) Comparison With the State of the Art: Table V shows
a comparison of the proposed model with the first automated
ROP detection system [14], which achieved better performance
than traditional hand-craft features. To implement the method
proposed by Worrall et al., a per-image classifier is established
by assuming the images in an examination shared the same
type of label. The classifier is based on an ImageNet pre-
trained GoogLeNet and optimized by the RMSProp [45]
algorithm, as in Worrall et al.’s study. The model exhibiting
the highest accuracy with the validation set is used in the per-
examination classifier. For classification of normal and ROP

TABLE V
COMPARISON OF THE PROPOSED MODEL WITH WORRALL ET AL.’ METHOD

Metrics
Normal and ROP Mild and Severe of ROP

Worrall et al. Proposed Worrall et al. Proposed

Raw Acc 0.940 0.970 0.730 0.840

Sensitivity 0.926 0.960 0.820 0.820

Specificity 0.953 0.980 0.640 0.860

Precision 0.952 0.979 0.694 0.854

F1 0.939 0.969 0.752 0.836

cases, the proposed model exhibited superior performance on
all metrics. The test accuracy of the proposed model is 3%
higher than that of Worrall et al.’s method, and the F1 score is
also considerably higher. For classification of mild and severe
of ROP cases, the proposed model outperform Worrall et al.’
method on most metrics except sensitivity, where the two
models exhibit the same level of performance. The sensitivity
and specificity of Worrall et al.’s method are 0.82 and 0.64
respectively, suggesting the model is preferable for predicting
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(a)

(b)

Fig. 8. ROC analysis for the proposed model and Worrall et al’s in the
classification of normal/ROP and mild/severe of ROP.

severe ROP. In the terms of F1 score, the performance of the
proposed model is almost 11% higher than that of Worrall et
al.’s method.

For a more detailed comparison at different operating points,
ROC analysis is performed. Fig. 8 shows the ROC curves
and the AUC values for the proposed model and Worrall et
al.’s method. In the classification of normal and ROP cases,
the proposed model achieves superior performance. The ROC
values of the proposed model and Worrall et al.’s method
are 0.9922 and 0.9754, respectively. The superiority of the
proposed model is more clearly observed in the classification
of mild and severe of ROP cases, in which the AUC value of
the proposed model is 15% higher than that in Worrall et al.’s
method.

There are several possible explanations accounting for the
superior performance of the proposed model compared with
the method reported by Worrall et al.: (i) In the per-image
classifier, Worrall et al. assumed that the images from an
examination have the same type of label because the labels
are based on the examination instead of the image. This
assumption can’t be fully verified, because the images are
taken from different views and with different artifacts. In some
cases, it is difficult to determine whether an image exhibits

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Visualization of the input images in the test dataset that most activate
the softmax layer with the guided backpropagation algorithm. The three rows
represent the images of the true positive, false negative, and false positive
examinations.

disease-related characteristics or not from visual (e.g., 3a, 3b,
3c, and 3e in Fig.3). (ii) In Worrall et al.’s model, recognition
of ROP in an examination is based on the Beta distribution,
which is determined by statistics based on the number of
images classified as healthy and diseased in the training data.
The parameters of Beta distribution should be explicit set up
and can’t be tuned by the gradient-based optimization method.
In the current paper, the proposed model is trained to learn
the disease-related characteristics from the data. Because the
proposed method does not require prior knowledge about the
distribution of the dataset, it may be more generalizable.

3) Visualization: Visualization of the input images that most
activate the softmax layer is presented in Fig.9. The results
is based on the guided backpropagation algorithm [46] in the
classification of normal and ROP cases. The guided backprop-
agation algorithm computes the gradient of the activation of
the specific neuron with regard to the inputs. The negative
gradients which have inhibitory impact on the target neuron are
masked out. Note that to improve visualization performance,
the generated gradient images are binarized. The images in the
first row are from true positive examinations. By comparing
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the input images with the corresponding visualization results, it
is clear that the output of the softmax layer is highly correlated
with the ridge area in the input images. This is consistent
with the guidelines for clinicians, in which the ridge in the
fundus is important for the diagnosis of ROP. The visualization
results demonstrate that the proposed model learned to extract
the essential features for the diagnosis of ROP, despite the
shapes and orientations of the ridge. For example, the model
recognized the ridge in Fig. 9a and Fig. 9b, locating at the left
and right parts of images, respectively. Even when the ridge
has a different shape, the model is still able to recognize it
(e.g., Fig. 9c).

The second row in Fig. 9 shows images from a false negative
examination. The Fig. 9d shows that the ridge located in the
top-left part of the image is successfully identified, along
with the down-left area which has no obvious disease-related
features from the visual. The fundus image in Fig. 9f shows
apparent ROP-indicative features. However, the model failed
to accurately recognize the all of the lesions, but only the left
part of it. The images belong to a false positive examination
can be seen at the third row of Fig. 9. As shown in Fig. 9g,
the model associate the prediction result with the optic disc
and the lower area in the fundus image. From the Fig. 9h and
Fig. 9i, it can be seen that the model falsely recognize the
reflection of light as the ridge of ROP, leading to an incorrect
prediction result.

4) Analytic Experiments: In this sub-section, two experi-
ments are performed to validate the proposed model. One is
to test the impact of the number of ROP-related images on the
model, and the other is to examine the model’s classification
performance of examinations from premature infants.

The model’s performance change according to the number
of ROP-related images in test dataset is illustrated in Table
VI. The second row in Table VI represents the number of
examinations annotated as ROP case. The third row represents
the number of misclassified examinations. It can be seen from
the table that there are two and three examinations with one
and two ROP-related images misclassified, respectively. The
model misclassified one examination with four ROP-related
images. Examinations with more than five ROP-related images
are all correctly predicted as ROP.

To further validate the proposed model, 406 examinations
collected in January 2018 from 195 premature infants (birth
weight ≤ 2500 grams or gestational age ≤ 28 weeks) are used
as test dataset after the annotation phases. The data annotation
phases are kept the same as described in Section III. These
premature infants have not appeared in the dataset used to
construct the model. Fig. 10a and Fig. 10b show the confusion
matrix of the normal/ROP and mild/severe ROP classification
tasks, respectively. It can be seen from Fig. 10a that the model
accurately recognized most normal examinations (352 out of
356), but misclassified five ROP examinations. This is mainly
due to the diversity of the characteristics of ROP. In classifica-
tion of mild/severe of ROP, the model only misclassified one
examination in each class. The results further demonstrate the
effectiveness of the proposed model in diagnosing ROP.

TABLE VI
STATISTICS OF THE NUMBER OF ROP-RELATED IMAGES IN TEST DATASET.

Number of ROP-related images 1 2 3 4 5 6 ≥7
Number of examinations annotated as ROP 35 38 20 24 10 12 11
Number of wrong predicted examinations 2 3 0 1 0 0 0

(a) (b)

Fig. 10. The confusion matrix of the two classification tasks. (a) and
(b) represent the normal/ROP and mild/severe of ROP classification tasks,
respectively.

V. CONCLUSION

In this paper, a novel architecure of CNNs is proposed to
recognize the existence and severity of ROP. The architecture
is composed of a feature extract sub-network, followed by
a feature aggregate operator to bind features from variable
images in an examination. The prediction is accomplished
using a second sub-network with the aggregated features as
inputs. Max and mean aggregate operators are explored based
on the architecture. Several ImageNet pretrained networks are
tested in the study, including VGG-16, Inception-V2, and
ResNet50. The proposed architecure is verified with a large
dataset of 2668 examinations of the fundus in infants. The
experimental results demonstrate that the Inception-V2 with
the max aggregate operator in module 2 is a proper network
architecture for the recognition of the existence and severity of
ROP. Compared with the mean aggregate operator, the max has
better classification accuracy and convergence speed. Mean-
while, a patient’s multiple examinations in train, validation,
and test datasets has little impact on model’s performance,
mainly because the characteristics of the eyes of the premature
infants are varied over time.

The visualization results demonstrate that the proposed
architecture learned the clinical characteristics of ROP, despite
the location and shape of the ridge in ROP. However, the
reflection of light in the image may impact the recognition
result of the model. The proposed model also outperformed
the state-of-the-art, verifying the effectiveness of our proposed
architecture. In future studies, we will extend the method to
diagnose the plus disease in ROP and integrate the recognition
of stage and plus disease to aid ophthalmologist in clinical
diagnosis.
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