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Abstract—Automated whole breast ultrasound (ABUS) has 

been widely used as a screening modality for examination of breast 

abnormalities. Reviewing hundreds of slices produced by ABUS, 

however, is time-consuming. Therefore, in this study, a fast and 

effective computer-aided detection (CADe) system based on 3-D 

convolutional neural networks (CNN) and prioritized candidate 

aggregation is proposed to accelerate this reviewing. Firstly, an 

efficient sliding window method is used to extract volumes of 

interest (VOIs). Then, each VOI is estimated the tumor probability 

with a 3-D CNN, and VOIs with higher estimated probability are 

selected as tumor candidates. Since the candidates may overlap 

each other, a novel scheme is designed to aggregate the overlapped 

candidates. During the aggregation, candidates are prioritized 

based on estimated tumor probability to alleviate over-

aggregation issue. The relationship between the sizes of VOI and 

target tumor is optimally exploited to effectively perform each 

stage of our detection algorithm. On evaluation with a test set of 

171 tumors, our method achieved sensitivities of 95% (162/171), 

90% (154/171), 85% (145/171), and 80% (137/171) with 14.03, 6.92, 

4.91, and 3.62 FPs per patient (with 6 passes), respectively. In 

summary, our method is more general and much faster than 

preliminary works, and demonstrates promising results.    

 
Index Terms—Automated whole breast ultrasound, breast 

cancer, computer-aided detection, convolutional neural networks.  

I. INTRODUCTION 

REAST cancer is the second leading cause of death for 

women in the world [1]. Early detection and treatment are 

important in reducing mortality rates [2]. Ultrasonography is 

widely used in detection and diagnosis of breast tumors. 

Conventionally, 2-D handheld breast ultrasound (US) [3, 4] was 

used as an adjunct modality to the mammography [5, 6]. 

Nevertheless, the handheld US is time-consuming, operator 

dependent, and has poor reproducibility. To overcome these 

 
 

limitations, the automated whole breast ultrasound (ABUS) has 

been proposed to scan the whole breast automatically. The 

breast cancer detection rates are significantly increased using 

ABUS in conjunction with mammography for women with 

dense breast tissues [7, 8]. In contrast to handheld US, the 

ABUS is less operator dependent and had demonstrated greater 

reproducibility for follow-up studies [9]. Besides, the ABUS 

produces 2-D slices that can be reconstructed to 3-D volume for 

further review. A sample ABUS slice with a lesion is illustrated 

in Fig. 1. Reviewing hundreds of slices produced by the ABUS, 

however, requires a large amount of time even for expert 

physicians. In order to reduce the reviewing time, several 

computer-aided detection (CADe) systems had thus been 

proposed to assist in the reviewing and forming more accurate 

detection and diagnosis for ABUS images [7, 8, 10-13]. 

A fully automatic scheme for mass detection was developed 

by Ikedo et al. [8]. In this method, edges were detected using 

the Canny edge detector. Near-vertical edges and near-

horizontal edges were discriminated, and the near-vertical 

edges were considered as potential tumor positions. Then, the 

watershed transform was performed for segmentation of the 
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Fig. 1. Illustration of the ABUS image and the tumor detection problem. A 

ground truth tumor is indicated in the red box. 
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located positions and generated the regions of tumor candidates. 

Chang et al. [7] proposed a CADe system to detect breast 

lesions in multi-pass automated breast US. Firstly, the images 

were pre-processed. Then, the tumor candidates were 

segmented with the gray level slicing method. Finally, seven 

quantitative features were extracted for discrimination between 

tumors and non-tumors.  Tan et al. [13] proposed a multi-stage 

CADe system including segmentations of the breast, the nipple, 

and the chest-wall, followed by voxel features extraction, and 

distinguishing between tumors and non-tumors using an 

ensemble of neural network classifiers. Moon et al. [12] 

proposed a method based on multi-scale blob detection, 

followed by  a logistic regression (LR) classifier using blobness, 

internal echo, and morphology features to reduce the number of 

false positives (FPs). Another approach suggested by Lo et al. 

[11] pre-processed 2-D images, applied watershed transform to 

get homogeneous regions, and estimated the probabilities of 

candidates being tumors using the 2-D and 3-D texture, 

intensity, and morphology features with a LR classifier. 

Nevertheless, these approaches have the following drawbacks. 

First, the tumor candidate proposal schemes may be less generic 

and may over-fit the data set. Second, the selection of hand-

crafted features requires specialized domain knowledge, which 

is inconvenient and may not be optimal. Third, these methods 

have relatively insufficient performance for clinical trials in 

terms of both detection rate and execution time. 

To overcome these issues, an efficient algorithm for the 

ABUS tumor detection is proposed in this study. Instead of 

hypothesizing tumor candidates, the sliding window detector, 

which is another commonly used method for object detection 

[14, 15], is adopted to extract volumes of interest (VOIs) 

uniformly around the volume because of its generality and 

application independence. Thereafter, a 3-D convolutional 

neural networks (CNNs) is used for tumor probability 

estimation of each VOI. As opposed to hand-crafted features, 

the explicit definitions of feature designs can be avoided using 

the CNNs. The CNNs are able to learn a hierarchy of 

increasingly complicated features automatically and directly 

from a large amount of data. The learnt features are 

automatically optimized to fit the provided data set. Therefore, 

the focus of CNNs is on designing architectures. The CNNs 

have presented more promising results in several object 

recognition tasks including the handwriting digits recognition 

[16] and the ImageNet challenge [17]. In recent years, the 

CNNs were also gaining more popularity in analyzing medical 

images acquired by various modalities including detection tasks 

[18, 19]. Furthermore, to our best knowledge, the 3-D CNN has 

not been applied in ABUS tumor detection. Finally, a novel 

aggregation scheme is proposed for combination of overlapped 

VOIs with higher tumor probability. 

This paper is organized as follows. In Section II, the used 

data acquisition and information of lesions are presented. 

Section III provides detailed description of the method and the 

evaluation metrics. The experimental results are presented and 

discussed in Section IV and Section V, respectively. Finally, 

Section VI presents the main conclusion. 

II. MATERIALS 

ABUS images used in this study were acquired between 

January and September 2015 in the Breast Center of National 

Taiwan University Hospital from an ACUSON S2000 

Automated Breast Volume Scanner (Siemens Medical 

Solutions, Mountain View, CA, USA) with a 14L5BV linear 

array transducer ranging from 5 to 15 MHz. The ABUS scanner 

produced 318 2-D images with 0.5 mm thickness. The pixel 

spacing along posterior-anterior and left-right axes are 

respectively 0.07 and 0.21 mm per pixel. These are standard 

ABUS views made for diagnostic assessment. To completely 

cover the breast, each patient was scanned in three passes for 

each breast. For each patient, all six passes were collected in 

our dataset. The informed consent of data usage in this 

retrospective study has been obtained from the institutional 

review board. 

There are 230 pathology-proven lesions from 187 patients in 

our dataset, including 90 benign and 140 malignant lesions. 

Each ground truth tumor was labeled by the physician using a 

bounding box around the tumor. In benign lesions, 50 

fibrocystic changes, 33 fibroadenomas, and 7 papillomas are 

included. The malignant lesions include 117 invasive ductal 

carcinomas (IDC) and 23 ductal carcinomas in situ (DCIS). 

Firstly, the data were randomly shuffled. Then, the first 25 

patients were assigned to the training set, the next 25 patients to 

the validation set, and the rest 137 patients to the test set. In the 

literature of machine learning, training set is used to train the 

classifier and adjust the parameters (e.g., weights and biases of 

 TABLE I 

THE DISTRIBUTION OF DIFFERENT LESION TYPES AND BI-RADS 

BREAST DENSITY TYPES IN EACH SET 

 Training 

(25 patients, 
29 tumors) 

Validation 

(25 patients, 
30 tumors) 

Test 

(137 patients, 
171 tumors) 

Total 

T
u

m
o

r 
ty

p
e 

Fibrocystic 

Change 
6 7 37 50 

Fibroadenoma 8 5 20 33 

Papilloma 2 0  5 7 

IDC 11 12 94 117 

DCIS 2 6 15 23 

B
I-

R
A

D
S

 

d
en

si
ty

 t
y
p

e Type A 2 0 10 12 

Type B 8 11 64 83 

Type C 12 13 47 72 

Type D 3 1 16 20 

 
Fig. 2. Histogram of lesion size distribution of all 187 patients. 
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neural networks) within the model; validation set is used to 

tune the hyper-parameters, which refers to the exterior 

parameters (e.g., algorithm design and model selection) set 

prior to the commencement of the learning process; test set is 

used to evaluate the final solution and verify that the hyper-

parameters do not over-fit the validation set. The distribution 

of lesion types and breast density types using Breast Imaging 

Reporting and Data System (BI-RADS) [20] in each set is 

listed in Table I. The histogram of lesion size is illustrated in 

Fig. 2. In addition to the 187 abnormal cases, 37 normal ABUS 

cases (each with 6 passes) without biopsy-proven tumors were 

also collected in test set. 
  

III. METHODS 

In this study, a fast and effective CADe system based on 3-

D CNN is proposed for breast tumor detection in 3-D ABUS. 

Our proposed detection algorithm takes as parameters a list of 

target tumor sizes (Ls) and the degree of aggregation (DoA). 

The algorithm involves three main stages: the VOI extraction, 

tumor probability estimation with the 3-D CNN, and the 

candidate aggregation. At first, an efficient 3-D sliding window 

method is used to extract the VOIs. Then, the 3-D CNN is used 

to estimate the probability being tumor of each VOI, and the 

VOIs with tumor probability greater than a threshold are 

selected as tumor candidates. However, some of the candidates 

may overlap each other. Hence, a candidate aggregation method 

based on the hierarchical clustering [21, 22] is proposed to 

combine the overlapped candidates into a single tumor box, 

where each candidate is scheduled with different priority for 

alleviating the over-aggregation problem. Finally, to detect 

lesions of different sizes, the aforementioned steps are 

performed multiple times at different scales, and a simple 

scheme is adopted for multi-scale tumor VOI aggregation. Fig. 

3 illustrates the schematic flowchart of the proposed CADe 

system. In this section, each step of the detection algorithm will 

be described in details. 

A. VOI Extraction with Sliding Window 

For VOI extraction, the first step of our CADe system 

employs the 3-D sliding window to scan the whole ABUS 

volume. When the sliding window moves with a stride, a VOI 

will be extracted. For a target size L, our CADe system uses the 

stride L to extract VOIs of size 2L for the following reason. 

Although the tumor can be entirely covered with higher 

probability using a small stride, the number of extracted VOIs 

will be very large. In fact, a tumor of size less than or equal to 

L is guaranteed to be completely covered by at least one VOI 

using a sliding window of size 2L and stride ≤ L. Therefore, the 

settings will reduce the execution time while simultaneously 

produce VOIs covering the entire target tumors. Furthermore, 

since the 3-D CNN requires inputs of the same dimension, each 

VOI will be rescaled to the same size 323232. 

B. Tumor Probability Estimation with 3-D CNN 

After the VOI extraction, each VOI will be estimated the 

probability being tumor by the CNN. One way to deal with 3-D 

data is to use 2-D CNN to predict each 2-D slice, and combine 

the results using recurrent neural network techniques such as 

long short-term memory (LSTM) [23]. Recurrent neural 

networks work by caching an internal state of the network that 

allows it to simulate temporal behavior, which mimics the way 

a human physician observes an ABUS volume by considering 

adjacent 2-D slices to find relations in sequences. However, the 

3-D CNN has the ability to extract 3-D features, which more 

directly include information of relationship between adjacent 

voxels from arbitrary directions. Therefore, 3-D CNN is 

adopted in this study. As to the CNN architecture, several 

complicated designs such as AlexNet [17], VGGNet-16 [24], 

 

Fig. 3. Schematic flowchart of the proposed CADe system. 

TABLE II 
THE ARCHITECTURE OF PROPOSED 3-D CNN 

Type 
# 

kernels 

Kernel 

size 
Stride 

# 

nodes 
Input size 

Dropout 

prob. 

Conv. 32 555 111 - 323232 - 

Conv. 32 555 111 - 32323232 - 

Max-

pool. 
- 222 222 - 32323232 - 

Conv. 64 555 111 - 32161616 - 

Conv. 64 555 111 - 64161616 - 

Max-

pool. 
- 222 222 - 64161616 - 

FC - - - 128 32768 0.5 

FC - - - 64 128 0.5 

FC - - - 32 64 0.5 

FC - - - 2 32 - 

Note. Conv., Max-pool., and FC stand for convolutional layers, max-pooling, 

and fully-connected, respectively. 

TABLE III 
THE HYPER-PARAMETERS OF PROPOSED CNN ARCHITECTURE 

Stage Hyper-parameter Value 

Initialization 
Weights Rand. uniform -0.05 ~ 0.05 

Bias 0.0 

LeakyReLU  0.3 

Adam Optimizer 

Learning rate 0.001 

1 0.9 

2 0.999 

ε 1.010-8 

Training 
Epochs 300 

Batch size 25 

VOI extraction 

with sliding window 

Tumor probability estimation 

with 3-D CNN 

Prioritized candidate aggregation 

Multi-scale aggregation 

ABUS volume 

N
ex

t targ
et size 

Detected tumor boxes 
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and ResNet-34 [25] had been proposed and showed excellent 

results in classification of natural images. However, the 3-D 

version of those deep neural network models contain too many 

parameters, and the processing time will increase dramatically. 

Since medical data meet certain acquisition criteria [18], a CNN 

with less trainable parameters suffices. Therefore, a simplified 

3-D CNN architecture was designed in this study. The 

architecture and hyper-parameters of the 3-D CNN are depicted 

in Table II and Table III, respectively. 
  

As shown in Table II, the proposed 3-D CNN architecture 

consists of four convolutional layers with the number of kernels 

32, 32, 64, and 64, respectively. The outputs of the second and 

fourth convolutional layers are down-sampled by the following 

2×2×2 max-pooling layers. The objective of max pooling is to 

reduce computational cost and over-fitting by providing a more 

abstracted form of the input image. In second max-pooling 

layer, the outputs connect to a neural network consisting of 

three fully-connected (FC) layers for binary classification. 

Furthermore, for decreasing the effect of over-fitting, the 

Dropout [26], which removes the neuron from the network with 

probability p during training, is adopted for regularization in the 

FC layers. It behaves as a regularizer by preventing neurons 

from co-adapting to each other. In artificial neural networks, the 

activating function of a neuron defines the output of that neuron 

given an input or set of inputs. The rectified linear units (ReLU) 

[27], defined as f(x)  max(0, x), have been widely used as 

activating function for additional speed-ups, as opposed to 

conventional function such as sigmoid and hyperbolic tangent 

functions. However, the dying ReLU problem will occur when 

a ReLU neuron is pushed into a state in which the gradient 

becomes zero. The leaky rectified linear units (LeakyReLU) [28] 

is a variant of ReLU to cope with this problem by introducing a 

small slope when the neuron is not active. The LeakyReLU is 

defined as f(x) = max(0, x) + ·min(0, x), where  is the leakage 

coefficient. Except for the output layer with sigmoid function 

for binary classification, all the other layers use LeakyReLU as 

the activating functions. Moreover, Adam [29] is used as the 

stochastic optimization solver for improving the speed in 

training CNN, and the cross-entropy is used as the loss function 

to optimize the weights and biases. 

1) Training the 3-D CNN 

In order to train the 3-D CNN, the VOIs of tumor and non-

tumor class have to be provided. A VOI of any size extracted 

from anywhere in the ABUS can be assigned to non-tumor class 

as long as it satisfies the following two conditions. First, the 

center of the VOI is not included by any ground truth tumor box. 

Second, the VOI does not include the center of any tumor. In 

this study, the sizes of the extracted non-tumor VOIs are 

randomly selected in the range from 5 to 40 mm. 

For the tumor class, however, it is unsuitable to simply use 

those VOIs that failed to be assigned to non-tumor as tumor 

VOIs, because many of these VOIs exhibit less essential tumor 

characteristics. For instance, these VOIs may crop the tumor 

overmuch, or only cover a small part of the tumor. Training the 

network with the most representative data conforming to the 

features for each class can decrease the convergence time and 

improves the generalization ability. Hence, instead of using the 

VOIs extracted by the sliding window, the ground truth tumor 

positions and sizes were used to accurately extract the tumor 

VOIs to train the 3-D CNN. The size of the tumor VOIs is two 

times the size of the tumor, which is consistent with the relative 

size between the target tumors and the sliding window. Only 

one 3-D CNN was trained using all tumor and non-tumor VOIs 

of all sizes. 

In addition, since the number of tumor VOIs is much less 

than that of non-tumor VOIs, data augmentation is applied to 

the tumor VOIs. Data augmentation not only increases the 

number of training data but also improves the robustness and 

generalization of the CNN. Therefore, 100 times of shifting (± 

20% relative to the VOI size along three orthogonal axes), 

scaling (± 20%), and flipping (along superior-inferior and left-

right directions) are randomly applied to each tumor VOI. After 

data augmentation, the corresponding number of training and 

validation VOIs for each class is listed in Table IV. However, 

extreme unbalance still exists between each class. An 

unbalanced dataset will bias the model towards the more 

commonly emerged class.  Hence, at the beginning of each 

training epoch, a subset of non-tumor data will be randomly 

sampled to match the number of tumor data during training. The 

flowchart of training the 3-D CNN is illustrated in Fig. 4. 

C. Prioritized Candidate Aggregation 

After tumor probability estimation using the 3-D CNN, the 

tumor candidates are selected from VOIs with probability 

higher than a threshold TH. However, a tumor will probably be 

covered by multiple overlapped candidates. The overlapped 

candidates should be aggregated into a single box. Therefore, a 

candidate aggregation algorithm based on the hierarchical 

clustering (HC) is proposed. In HC, a linkage criterion, which 

is a function of a dissimilarity metric, is used as the measure of 

dissimilarity between data sets. Two sets with dissimilarity less 

than a threshold will be combined into a cluster. The input of 

HC is the centers of tumor candidates and the parameters are 

listed in Table V. The HC will assign neighboring centers into 

 

Fig. 4. Flowchart of training CNN. 

TABLE IV 
THE NUMBER OF TUMOR AND NON-TUMOR VOIS IN TRAINING AND 

VALIDATION SET AFTER DATA AUGMENTATION 

 Training set Validation set 

Non-tumor ~400,000 ~400,000 

Tumor 17,4 18,0 

Extracting VOIs of size 5 – 40 

mm from training set 

Using only non-tumor VOIs 

Extracting tumor VOIs from 
training set using ground truth 

tumor positions 

Data augmentation 

Training CNN for binary classification 

Randomly sampled 
17,400 non-tumor 

VOIs per epoch 

Tumor VOIs 
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a cluster. The dissimilarity threshold used in HC is set to √3L, 

since the longest Euclidean distance between the centers of two 

VOIs of size 2L covering a tumor of size ≤ L is √3L. After 

clustering, the weighted average with the positions of 

candidates in the same cluster is computed and used as the 

position of the aggregated box where the weight assigned to 

each candidate is its estimated tumor probability. The size of 

the aggregated box remains 2L. 

1) Alleviation of Over-aggregation 

When a lower threshold TH is applied for candidate selection, 

lots of candidates will emerge and densely distribute 

everywhere around the ABUS volume. As a result, the nearest 

neighbor criterion used in HC will group too many candidates 

into a cluster. Hence, a tumor box may be displaced from 

correct tumor position and cover the tumor incompletely. To 

address the issue, the cluster size (i.e. the number of candidates 

in a cluster) must be restricted and the candidates with higher 

tumor probabilities should be prioritized for aggregation. In 

particular, the highest threshold TH’ > TH is first applied for 

candidate selection followed by the HC. Then, TH’ is slightly 

decreased to select more candidates. However, a newly selected 

candidate will join its neighboring cluster only if the cluster has 

not reached the maximal size yet, where the maximal cluster 

size is referred to as degree of aggregation (DoA) in our 

algorithm. Because a tumor of size less than L will be entirely 

covered by at most eight VOIs of size 2L, the optimized DoA 

should be no more than eight. Candidate selection and 

clustering are repeated for each TH’ until TH’ equals TH. 

2) Multi-scale Aggregation 

Because the above procedure only handles a single target 

tumor size L, our system allows the physician to input multiple 

target tumor sizes (multiple Ls) and the same procedure will be 

performed multiple times on each target size for multi-scale 

tumor detection. As a consequence, the tumor boxes of multiple 

sizes may be produced and overlap each other. Since each 

tumor box has been obtained by aggregating multiple 

candidates, the maximal probability of the candidates within a 

cluster is used to represent the tumor probability of the 

aggregated tumor box. If a larger tumor box covers the centers 

of any smaller boxes, they will be aggregated using the 

weighted average with both the positions and sizes where the 

weights are the tumor probabilities. 

D. Evaluation 

For evaluating the performance of the proposed CADe 

system, the free-response receiver operating characteristics 

(FROC) curves [30] was adopted to evaluate the trade-offs 

between the sensitivity and number of FPs per patient (with 6 

passes) at different tumor probability thresholds. A tumor box 

is determined to be a true positive if the distance between the 

center of the tumor box and the center of a true tumor is less 

than 10 mm; otherwise, the box is a false positive. For each 

FROC curve, area under the curve (AUC) was computed for 

FPs per patient under 12 (i.e., 2 FPs/pass); the corresponding 

sensitivities at 6 FPs/patient were marked; error bars were also 

computed using standard error of sensitivities at 1, 2, …, 12 

FPs/patient. 

IV. EXPERIMENTS AND RESULTS 

All experiments were accomplished using Theano 

framework [31] on a machine with an Intel Core i7-6700K 4.0 

GHz processor and an NVIDIA GeForce GTX 1080 graphic 

card. 

For comparison with deeper CNN architectures, a simple 2-

D CNN (which had the similar architecture as our 3-D CNN 

described in Table II) and a 2-D VGGNet-16 were evaluated on 

validation set. 2-D CNNs were used instead of 3-D CNNs for 

time efficiency. The LSTM was used to adapt 2-D networks to 

our 3-D data. In subsequent paragraphs, the mention of 2-D 

CNNs implicitly indicates the usage of LSTM unless otherwise 

specified. To show the effectiveness of 3-D CNN, comparison 

between 3-D and 2-D CNNs was also performed on validation 

set. The FROC curves and the corresponding AUC of these 

CNN models are illustrated in Fig. 5. The execution time of 

each CNN model is also compared (Table VI). Since the 3-D 

CNN outperforms the other models in terms of FROC curve, it 

was selected as our classification model in all subsequent 

experiments on test set. 

One of the parameters required by our detection algorithm is 

TABLE V 

PARAMETERS OF HIERARCHICAL CLUSTERING 

Parameter Value 

Dissimilarity metric 
Euclidean distance 

d(a, b) = √∑ (𝑎𝑖 − 𝑏𝑖)
2

𝑖  

Linkage criterion 
Single-linkage (nearest neighbor) 

min(d(a, b): a ∈ A, b ∈ B) 

Dissimilarity threshold √3L 

 
Fig. 5. FROC curves with error bars (using standard error) and the 

corresponding AUC for each CNN model evaluated on validation set. 

TABLE VI 

EXECUTION TIME (IN SECOND) OF OUR METHOD PER PATIENT (6 PASSES) 

WITH DIFFERENT CNNS AND TARGET TUMOR SIZES Ls (IN MILLIMETER) 

L (# VOIs) 
Rescaling 

VOIs 

Classification of boxes by CNN 

2-D VGGNet-

16 

2-D Simple 

CNN 
3-D CNN 

7.5 (13200) 36 12 6 36 

12.5 (2808) 24 ~2 ~1 6 

17.5 (864) 18 ~1 ~1 ~1 
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a list of target tumor sizes (Ls). Three target sizes were used in 

our experiments: 7.5, 12.5, and 17.5 mm. The sizes were 

selected to optimize the performance on validation set. Note 

that since the size in posterior-anterior direction of our ABUS 

volumes is smaller than 40 mm, the target size cannot be greater 

than 20 mm. The FROC curves and AUC using different 

combinations of the three target sizes on test set were computed 

to evaluate the effect of the parameter, as illustrated in Fig. 6. 

The number of extracted VOIs and the corresponding 

processing times for rescaling the extracted VOIs are also 

recorded in Table VI. Rescaling the VOIs and predicting the 

tumor probability by the 3-D CNN dominate the execution time 

of the algorithm and the rest of the steps together takes no more 

than 1 second on average. One of the essential part of the 

proposed algorithm is the aggregation process with a scheme to 

alleviate the over-aggregation phenomenon. The trade-offs 

between different restrictions on the cluster size (DoA) is 

illustrated in Fig. 7. 
  

To examine the generalization of the algorithm, the number 

of FPs per patient of normal and abnormal cases at different 

tumor probability thresholds were also recorded (Table VII). 

The numbers of FPs for abnormal and normal cases do not show 

much difference at all thresholds. In addition, Fig. 8 compares 

FROC curves for benign, malignant, and DCIS lesions. Our 

CADe system achieves similar performance for each lesion 

type. 

In addition to our original validation method, another 

experiment adopting a 5-fold cross-validation scheme was also 

performed. In each round of cross-validation, the dataset was 

partitioned into training (75 patients), validation (75 patients), 

and test set (37 patients). Different round of cross-validation 

contained completely different 37 patients for testing, and the 

rest of the 150 patients were randomly partitioned for training 

and validation. The average FROC curve on test set of the cross-

validation scheme is illustrated in Fig. 9. The result is similar to 

our original scheme. 

In order to illustrate the prediction result of the 3-D CNN, 

Fig. 10 visualizes the estimated probability of each extracted 

VOI in the blue channel using single target size L = 7.5 mm. In 

Fig. 11, the final detection results (after aggregation of multiple 

sizes) of two successful cases are presented. Fig. 12 shows two 

of the misdetection cases at sensitivity over 98%. 

For comparison with previous methods, Table VIII lists 

detection results in terms of processing time and FPs per patient 

 
Fig. 8. FROC curves with error bars (using standard error) for benign, 

malignant, and DCIS lesions evaluated on test set. For each curve, DoA of 4 

and three target sizes (7.5, 12.5, and 17.5 mm) were used. 
 

 
Fig. 6. FROC curves with error bars (using standard error) and the 
corresponding AUC using different target tumor sizes evaluated on test set. 

DoA of 4 was used for each curve. 

 
Fig. 7. FROC curves with error bars (using standard error) for comparison of 

different degrees of aggregation (DoA) evaluated on test set: DoA=1 (no 

aggregation), 2, 4, 8, 12, and 16. Three target sizes (7.5, 12.5, and 17.5 mm) 
were used for each curve. 

TABLE VII 

FPS PER PATIENT OF ABNORMAL AND NORMAL CASES AT DIFFERENT 

TUMOR PROBABILITY THRESHOLDS. EACH ROW COMPARES FPS/PATIENT 

USING THE SAME THRESHOLD. FOR ABNORMAL CASES, THE 

CORRESPONDING SENSITIVITY IS ALSO LISTED. 

FPs/patient of abnormal data 

(sensitivity) 
FPs/patient of normal data 

3.62 (80%) 3.92 

4.91 (85%) 4.78 

6.92 (90%) 7.13 

14.03 (95%) 13.52 

24.38 (97%) 21.22 

 
Fig. 9. FROC curves with error bars (using standard error) and the 

corresponding AUC using our original scheme and the 5-fold cross validation 

scheme evaluated on test set. For each curve, DoA of 4 and three target sizes 

(7.5, 12.5, and 17.5 mm) were used. 
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at different sensitivities reported in the recent literature on 

ABUS tumor detection. Note that the related works used 

different scans and the experiments were accomplished on 

different machines. Therefore, it is difficult to reliably compare 

the performance of different methods. Nevertheless, the results 

can still be used as an indication of differences among the 

methods. 
 

V. DISCUSSION 

A CADe system using an algorithm based on 3-D CNN and 

the prioritized candidate aggregation for ABUS tumor detection 

has been presented in this study. The detection algorithm was 

devised by exploiting the relationship between the size of target 

tumor and VOI to effectively perform each step: the stride (L) 

for sliding window, the dissimilarity threshold ( √3 L) for 

hierarchical clustering, and the criterion on the degree of 

aggregation (DoA ≤ 8). On evaluation with a test set of 171 

tumors, the CADe system demonstrated promising detection 

performance and time efficiency. 

In contrast to previous works in ABUS tumor detection that 

hypothesize candidates using specifically designed image pre-

processing methods [11-13], the sliding window detector is 

 

Fig. 10. Visualization of estimated lesion probability of each 15-mm VOI in 

blue channel. The case is a 31-mm DCIS with the ground truth indicated by 
the red box. 

 

 
(a) 

 
(b) 

Fig. 11. True positive cases with boxes in red and blue respectively denoting 

the ground truth and results produced by our CADe system. (a) A 31-mm 

DCIS. (b) A 24-mm DCIS. 
 

 
(a) 

 
(b) 

Fig. 12. The misdetection cases at 98% sensitivity. (a) A 6-mm fibrocystic 

change. (b) A 11-mm fibroadenomas. 

TABLE VIII 

SENSITIVITIES AND CORRESPONDING FPS/PATIENT OF OUR METHOD AND 

RELATED WORKS 

Sensitivity (%) 

FPs/patient 

Our method 
Lo et al. 

[11] 

Moon et al. 

[12] 

60.00 1.32 9.48 8.46 

70.00 2.10 12.84 -- 

72.06 2.58 -- 16.02 

80.00 3.62 19.98 -- 

82.35 4.92 -- 30.48 

87.50 6.12 -- 37.92 

90.00 6.92 32.52 -- 

93.38 11.64 -- 71.22 

95.59 14.52 -- 81.42 

97.01 24.38 -- -- 

100.00 > 120.00 56.64 105.24 

Number of tumors 171 133 136 

Number of patients 

(abnormal + normal) 
137 + 37 104 + 34 122 + 37 

Execution time per 

patient 
121 s 444 s 78 m 

Note. Since the two compared methods reported results only in terms of FPs 

per pass instead of per patient (each with 6 passes in our dataset), these figures 
were multiplied by 6 to allow fair comparison. 
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more general and application independent. The drawbacks of 

using sliding window include the large number of extracted 

VOIs, the large amount of processing time, and being prone to 

produce more FPs. Nevertheless, the proposed algorithm 

effectively tackled the issues by using a large stride L for the 

sliding window to extract size-2L VOIs without the risk of 

missing target tumors. 

After VOI extraction, each VOI has to be predicted the tumor 

probability using CNN. In comparison between the simple 2-D 

CNN and 2-D VGGNet-16 CNN (Fig. 5), our experiment 

indicates that a more complicated architecture does not 

contribute to the detection performance, and therefore a simpler 

architecture was adopted. Moreover, our proposed 3-D CNN 

outperforms both 2-D CNNs. As a result, a simple 3-D CNN is 

suggested in our study. Note that the number of trainable 

parameters of the 3-D CNN (5,105,026) is even much less than 

that of the 2-D VGGNet-16 (14,672,770), indicating that the 3-

D CNN performs better by learning more essential features 

instead of fitting more parameters.  

Due to the variable lesion sizes, our CADe system allows the 

physician to input a list of target sizes. The different sizes of 

sliding window aim at producing VOIs to bound tumors with 

different scales. Using a smaller sliding window can bound 

small tumors more compactly but may crop larger tumors and 

hence remove large-scale features such as shapes and blob-ness. 

On the other hand, a larger sliding window can cover more sizes, 

but small-scale features required to distinguish between speckle 

noises and small tumors are less recognizable. In the single 

target size comparison (dotted lines in Fig. 6), our system 

achieved better performance using a smaller size since a 

majority of our data consists of smaller tumors (≤ 20 mm). 

Furthermore, even though a tumor may be cropped with small 

L, the 3-D CNN may still be able to recognize it, as illustrated 

in Fig. 10. On the contrary, using a larger L estimates most of 

the large tumors with higher probability but detects small 

tumors much less effectively. The result indicates that features 

relating to tumor margins are more crucial for identification of 

tumors. Moreover, the performance was further improved by 

aggregating results from multiple target sizes. The reason is that 

even for tumors of the same size, different tumors may be best 

recognized by the CNN at different VOI scales. 

Another parameter of the proposed algorithm is the degree of 

aggregation DoA. With the DoA of 1, the algorithm equivalently 

performs no aggregation. As a result, all the candidates remain 

as the final tumor boxes. Without aggregation, however, a 

tumor may be bounded by several overlapped tumor boxes. 

Moreover, no FPs will be aggregated and therefore the number 

of FPs will increase dramatically at higher sensitivities. On the 

other hand, with higher DoA, the overlapped candidates will be 

combined into a single box. Hence, fewer FPs will be produced 

under the same sensitivity and a tumor can be bounded by fewer 

boxes. Besides, the aggregation process helps to achieve better 

localization. For instance, when a tumor of size L is entirely 

covered by eight candidate VOIs of size 2L, aggregating the 

candidates results in a single tumor box with the tumor located 

near its center. A potential problem of using higher DoA is over-

aggregation, where incorrect candidates are combined with the 

correct ones. The jagged FROC curves in our experiments 

demonstrate the over-aggregating phenomenon, where 

decreasing the threshold TH to produce more candidates does 

not necessarily increase the sensitivity. The over-aggregation 

problem becomes more severe with DoA over eight because a 

size-L tumor can be completely covered by at most eight size-

2L VOIs. Our study therefore suggests a compromise of DoA 

between 4 and 8. 

In comparison with the related works, our method did not 

perform well at sensitivity higher than 98% and produced lots 

of FPs. Fig. 12 illustrates two misdetection cases at 98% 

(169/171) sensitivity. The failure reason of the fibrocystic 

change in Fig. 12 (a) probably comes from its small size and the 

plenty of surrounding shadow. The other failure case is a 

fibroadenomas, in Fig. 12 (b), which has obscured margins and 

shows less legible echoes, and the CNN therefore estimated it 

with a lower tumor probability. In spite of the limitation, our 

system outperforms the previous works distinctly at 

sensitivities under 98% and is considerably faster. Moreover, 

the previous works did not verify the generalization of their ad-

hoc image processing methods to propose candidates (e.g., 

topographical watershed and blob-ness detection) and the hand-

crafted features with a separate test set. Although their 

classifiers had been verified using cross-validation, the 

candidate proposal methods and the selected features might still 

over-fit the validation set. On the contrary, with a relatively 

small training and validation set for our method development, 

our reported result evaluated on a separate test set may be more 

reliable. Finally, a recent study reported that the mean ABUS 

interpretation time for radiologists of varied experience is less 

than 3 minutes per patient [32]. Thus, compared to the previous 

works, our method is much more feasible on clinical use 

considering execution time. 

Previously, the CNNs had been adopted for object detection 

by using region proposals such as regions with CNN features 

(R-CNN) and its enhanced descendants [33-35]. In R-CNN, the 

selective search algorithm [36] was used for region proposals. 

However, the selective search was designed by optimally 

exploiting characteristics of natural 2-D images, it does not 

perform well in medical images with single color channel and 

high noise levels. In medical imaging, de Vos et al. [18] 

proposed an approach based on CNN for 3-D anatomical 

structure detection. In this method, each 2-D slice from three 

orthogonal directions is independently classified by a dedicated 

CNN to determine the presence of the target structure. Then, the 

detected 3-D bounding boxes are generated by intersection of 

all slices capturing the presence of the target. However, in our 

task, the tumors usually only occupy a relatively small area of 

a slice, and detecting the presence of tumor using the entire slice 

is less suited. Therefore, the sliding window detector is used in 

our study to analyze more localized VOIs, where an existing 

tumor will become more noticeable. 

There are some drawbacks in our proposed CADe system. 

First, the localization of tumor boxes requires to be further 

strengthened. For instance, the detected boxes may be slightly 

displaced, crop a little tumor margin, or not bound the tumor 

compactly, as shown in Fig. 11. Second, our system does not 
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sketch the contour of the detected tumor. The tumor contour is 

among the most essential features for classification between 

benign and malignant masses. Our future works therefore 

include the investigation of segmentation methods such as 

conventional image analysis techniques (watershed, active 

contours, etc.) or, more recently, the fully convolutional 

networks (FCN) [37] for pixel-wise dense predictions in 

semantic segmentation. Finally, our detection algorithm takes 

target sizes Ls and DoA as parameters. Although our 

experiments have suggested feasible values (i.e., L = 7.5, 12.5, 

and 17.5 mm; DoA = 4), the parameters may not require much 

tuning in clinical trials. Nevertheless, with a scheme for 

automatic parameter selection, the CADe system will be more 

robust and easy to use. 

VI. CONCLUSION 

A CADe system based on 3-D CNN for lesion detection of 

ABUS images is proposed in this study. An application-

independent sliding window detector is adopted for VOI 

extraction. Then, a 3-D CNN is used for tumor probability 

estimation of each VOI, and VOIs of probability higher than a 

threshold are considered as tumor candidates. The overlapped 

candidates are combined with a novel aggregation scheme. 

Finally, the same process is executed multiple times with 

different target sizes for multi-scale lesion detection. The 

performance of our CADe system is evaluated with a database 

containing 171 lesions and 37 normal cases. The proposed 

CADe system achieves sensitivities of 95% (162/171), 90% 

(154/171), 85% (145/171), and 80% (137/171) with 14.03, 6.92, 

4.91, and 3.62 FPs per patient (with 6 passes), respectively. The 

execution time is 21 seconds for each pass. The results 

demonstrate the feasibility of our method. The number of FPs 

at 100% sensitivity, however, should be further reduced. 

Methods for sketching tumor contours will be investigated as 

well. 
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