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ABSTRACT Detecting forest fire smoke during the initial stages is vital for preventing forest fire events. 

Recent studies have shown that exploring spatial and temporal features of the image sequence is important 

for this task. Nevertheless, since the long distance wildfire smoke usually move slowly and lacks salient 

features, accurate smoke detection is still a challenging task. In this paper, we propose a novel Attention 

Enhanced Bidirectional Long Short-Term Memory Network (ABi-LSTM) for video based forest fire smoke 

recognition. The proposed ABi-LSTM consists of the spatial features extraction network, the Bidirectional 

Long Short-Term Memory Network(LSTM), and the temporal attention subnetwork, which can not only 

capture discriminative spatiotemporal features from image patch sequences but also pay different levels of 

attention to different patches. Experiments show that out ABi-LSTM is capable of achieving best accuracy 

and less false alarms on different types of scenarios. The ABi-LSTM model achieve a highly accuracy of 

97.8%, and there is 4.4% improvement over the image-based deep learning model. 

INDEX TERMS Smoke detection, attention, LSTM, spatiotemporal features.

I. INTRODUCTION 

An efficient and stable vision-based smoke detection 

algorithm is critical for the initial forest fire detection. On one 

hand, forest fires present a significant challenge to human life 

and natural ecological environment. If a forest fire cannot be 

promptly extinguished, it will have a bad impact on a wide 

area. Reaction time is one of the key factors that determine the 

success of forest fire suppression. On the other hand, there 

were extensive research on photoelectric- or ionization-based 

fire smoke detectors. However, these sensors are limited by 

the fact that these always serve as point sensors in space, 

which are unsuitable at monitoring larger areas such as early 

forest fire detection. The limitations of current smoke sensors 

have prompted researches on vision-based smoke detection 

methods. 

Pan-tilt-zoom (PTZ) IP cameras are excellent for viewing 

large areas. They can be placed in auto-patrol modes where 

they automatically step through predetermined positions. This 

paper proposes a novel methods to detect forest fire using PTZ 

IP cameras. Figure 1 illustrates the pan-tilt-zoom (PTZ) long 

range camera for forest fire detection and a snapshot of a 

typical forest fire smoke at the initial stages captured by a 

forest watch tower. The main manifestation of early forest 

fires is smoke because of tree shelter and terrain. Therefore, 

forest fire monitoring system always focus on smoke 

identification. 

A considerable volume of research effort within the last 

decade focused mainly on the identification of specific 

features of smoke. Existing methods of smoke detection can 

be divided into two categories: image-based smoke detection 

[1]-[3] and video-based smoke detection [4]-[5]. The general 

smoke detection algorithms usually combine motion detection, 

feature extraction and classification method. Image-based 

smoke detection methods are usually independent of inter-

frame context information. Video-based methods usually not 

only analyze spatial features in single frame images, but also 

extract temporal features between frames.  

Under certain conditions, single-frame-based detection 

method is a good choice when it is difficult to obtain stable 

and reliable image sequence. Tian et al. [1] recently proposed 

to separate a frame into quasi-smoke and quasi-background 

components by convex optimization. Deep learning with 
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convolutional neural networks (CNNs) has achieved great 

success in image classification and target detection. In [2], 

researchers proposed a deep normalization and convolutional 

neural network (DNCNN) with 14 layers to implement 

automatic feature extraction and classification. Yuan et al. [3] 

proposed a smoke detection method that combines local 

binary pattern (LBP) like features, kernel principal component 

analysis (KPCA), and Gaussian process regression (GPR).  

However, dynamic feature is one of the essential features in 

forest fire smoke recognition task. The human vision system 

is incredibly good at recognizing complex moving smoke in 

sequence image, because it analyzes dynamic characteristics 

when judging. If dynamic features can be extracted and 

modeled better, it would be helpful for improving the 

recognition accuracy. Dimitropoulos et al. [4] introduced a 

higher order linear dynamical system (h-LDS) descriptor for 

multidimensional dynamic texture analysis. There are also 

researchers applying deep learning to forest fireworks 

identification. Lin et al. [5] proposed a joint detection 

framework based on faster RCNN and 3D CNN. However, the 

application of this algorithm is restricted by the large 

computational complexity in practice. 

Because the moving speed and direction of smoke in the 

image are related to the monitoring distance and weather, it is 

necessary for the model to adapt to a variety of scenes. The 

difficulties of accurate forest fire smoke recognition lie in two 

aspects, (1) learning efficient spatiotemporal representation of 

fire smoke; (2) early forest fire smoke has different motion 

saliency in different frames, so the model should pay different 

attention to each frame. 

Given the aforementioned concerns, we propose our novel 

attention enhanced bidirectional LSTM Network (ABi-

LSTM) for forest fire smoke recognition. The foreground 

detection algorithm is used to extract candidate image patch 

sequences from video. And the block-based detection scheme 

is used to expand the recognition scope (the background 

information around the motion pixels can be obtained 

effectively) and roughly locate the smoke fire area.  

This paper focuses on the candidate image patch sequences 

classification. The contributions of this paper are summarized 

as follows: 

 We propose a novel attention enhanced bidirectional 

LSTM network (ABi-LSTM) to tackle the early forest 

fire smoke recognition problem. 

 We consider spatiotemporal representation of smoke 

candidate patch by applying CNN and bidirectional 

long short-term memory network from forward and 

backward time direction. 

 This is the first publication to apply attention 

mechanism for video-based forest fire smoke 

recognition. In our specific implementation, an 

attention network is designed to self-adaptively focus 

on discriminative frames with a soft attention 

mechanism that can automatically emphasize motion 

information in temporal domain. 

 We construct more challenging forest fire smoke data 

sets to increase the reliability of the experiment. 

Experimental results demonstrate that the proposed 

method outperforms existing methods for forest fire 

smoke recognition. 

 

FIGURE 1.  A pan-tilt-zoom (PTZ) long range camera for forest fire detection and a snapshot of a typical forest fire smoke at the initial stage 
captured by a forest watch tower. 

 

The rest of this paper is organized as follows. The proposed 

ABi-LSTM framework is described in Section 3. The first part 

of this section describes the spatial features extraction network, 

which is actually an Inception V3 network [23]; the second 

part briefly review the Recurrent Neural Network (RNN), and 

Long Short-Term Memory (LSTM) and build a multi-layer 

bidirectional LSTM model by feed spatial feature of single 

patch to extract temporal features from forward and backward 
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order; the third part proposes an attention network to optimize 

classification process with a soft attention mechanism. In 

Section 4, experimental results are presented, and the ABi-

LSTM framework is compared with other smoke recognition 

algorithms. Finally, conclusions are drawn in Section 5. 

 
II.  RELATED WORK 

Although there is little literature on early forest fire smoke 

detection, there is substantial literature on video based smoke 

detection and fire detection [6,7]. Many researchers have 

attempted to address the problem of smoke detection focusing 

mainly on the recognition of spatiotemporal features of smoke. 

As mentioned in the previous section, existing methods of 

smoke detection can be divided into two categories: image-

based smoke method and video-based smoke method.  

A.  IMAGE-BASED METHOD 

From the point of view of image-based method, there is a vast 

literature about the investigations of the static characteristics 

of smoke. Inspired by the airlight-albedo ambiguity model, a 

novel approach to detect smoke using transmission is 

proposed in [8]. In order to improve the performance, Yuan [9] 

proposed a double mapping framework which concatenates 

histograms of edge orientation, edge magnitude and Local 

Binary Pattern (LBP) bit, and densities of edge magnitude, 

LBP bit, color intensity and saturation. Tian et al. [1,10,11] 

formulated the smoke separation problem as convex 

optimization that solves a sparse representation problem. In 

[10], three different models that constrain the smoke 

component are proposed to separate the smoke component 

from a given frame. In [11], the sparse coefficients associated 

with an over-complete dictionary representation is used to 

detect smoke as a new feature. Furthermore, Tian et al. [1] 

solved the sparse representation problem using dual 

dictionaries for the smoke and background components, 

respectively, and developed a method based on the concept of 

image matting to separate the smoke and background 

components from a single image frame.  

However, important dynamic information is often lost in a 

single frame image, which is one of the main reasons for the 

difficulty of image-based method. 

B.  VIDEO-BASED METHOD 

As one of essential features, the motion information of smoke 

will undoubtedly improve the smoke recognition accuracy in 

theory. In [12], a smoke detection method using color, motion 

and growth properties are proposed. Dimitropoulos et al. [4] 

introduced a higher order linear dynamical system (h-LDS) 

descriptor to analyze the smoke candidate image patches in 

each subsequence. Undoubtedly, the extraction of dynamic 

information in the process of recognition improves the 

performance of mode to some extent.  

The above methods usually focus on the boundary of smoke 

or the effects of smoke on the edges of objects covered by 

smoke by hand crafted features. Traditional hand crafted 

feature based smoke detection methods can achieve high 

accuracy in a small amount of samples but generalization 

performances are less than satisfactory due to sensitivity to the 

parameter setting of the detection algorithm. Moreover, hand 

crafted feature based methods usually recognize smoke from 

small size blocks (often < 50×50), which limits the accuracy 

of smoke recognition. 

C.  DEEP LEARNING METHOD 

In recent years, Deep Learning approaches (e.g. Convolutional 

Neural Networks and Recurrent Neural Networks) has led to 

very good performance on a variety of problems, such as 

visual recognition [13], speech recognition [14] and natural 

language processing [15]. Yin et al. [2] proposed a deep 

normalization and convolutional neural network (DNCNN) 

with batch normalization to extract features for smoke 

detection. In [16], researchers demonstrated the effectiveness 

of saliency detection method and CNN in localization and 

recognition of wildfire in aerial images. Liu et al. [17] 

proposed a dual convolution network using dark channel prior 

(DarkC-DCN) to further improve the recognition accuracy of 

image-based CNN model. To ease the limitations of smoke 

image samples, an end-to-end trainable framework based on 

fast detector SSD and MSCNN for smoke detection is 

proposed, which can optimize the model from synthetic and 

real smoke samples. 

Moreover, there is also video-based method using deep 

learning [5]. A joint detection framework based on faster 

RCNN [19] and 3D CNN [20] is proposed to detection smoke, 

in which an improved faster RCNN with non-maximum 

annexation is responsible for the smoke target location and 3D 

CNN is responsible for smoke recognition by combining 

dynamic spatial–temporal information. Although this video-

based method takes into account the dynamic characteristics 

between different frames, it can hardly be used in practical 

scenarios because of the high computational cost. 

Besides CNN, Recurrent Neural Network (RNN) is another 

important structure of deep learning, which has made 

significant breakthroughs in various tasks, especially sequence 

processing [21]. However, the vanishing gradient problem is a 

difficulty found in training recurrent neural network with 

Back-Propagation Through Time. Long Short Term Memory 

(LSTM) is specifically designed to tackle this problems 

[22,24]. There have been some meaningful works about RNN 

and LSTM[32]-[34]. Attention mechanism is another most 

influential ideas in the Deep Learning community, which is 

used in various problems like neural machine translation, 

human action recognition and so on [25,26]. The attention 

mechanism can focus on discriminative features in a longer 

sequence, which can be used in many difficult tasks. 

Our key motivation of ABi-LSTM is that: a) compared with 

the hand crafted feature, CNN has more powerful feature 

extraction ability, and the block size used for forest fire smoke 

recognition in this paper is larger, which is helpful for CNN 

model to refer to the surrounding information of suspected fire 
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smoke in the prediction process; b) bidirectional LSTM can 

learn captures long-term information from forward and 

backward time direction; c) attention mechanism can guide the 

classification network focus on key frames from a long image 

sequences. 
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FIGURE 2.  Framework of the proposed ABi-LSTM for forest fire smoke recognition, which consists of the spatial features extraction network, the 
bidirectional LSTM network, and the temporal attention subnetwork. The input images are fed into the ABi-LSTM network one by one. 

III. APPROACH 

In this section, we propose a novel Attention Enhanced 

Bidirectional LSTM architecture for forest fire smoke 

recognition.  

A.  Overview of Methodology 

As illustrated in Figure 2, the proposed ABi-LSTM is mainly 

composed of three components: the spatial features extraction 

network, the Bidirectional LSTM network, and the temporal 

attention subnetwork. The spatial features extraction network 

is employed to extract spatial features from candidate patches, 

which are captured by ViBe[32] background subtraction 

method. The Bidirectional LSTM network learns long-term 

smoke-related information from spatial features. In order to 

make full use of both the past and future context information 

of a sequence in classification, a bidirectional LSTM is 

employed to extract temporal features from forward and 

backward order. In this model, the orange arrows indicate the 

direction of information flow in forward LSTM and the blue 

arrows indicate the direction of information flow in backward 

LSTM. In order to concentrate on discriminative frames which 

contribute more on forest fire smoke recognition, an attention 

subnetwork is designed to automatically emphasize motion 

information with a soft attention mechanism in temporal 

domain. We'll provide a detailed explanation of each 

component later. 

B.  Spatial Features Extraction 

CNNs have achieved excellent performance in computer 

vision tasks. The Inception network was an important 

milestone in the development of CNN classifiers. GoogLenet 

is known as Inception V1 [27], and the researchers have 

subsequently proposed improved models such as Inception V2 

[28] and Inception V3 [23]. In this paper, instead of building a 

model from scratch, a pretrained Inception V3 model is used 

to capture spatial information from each individual frame.  

Inception V3 is a heavily engineered network, which used 

a lot of upgrades to increase the accuracy and reduce the 

computational complexity: (1) Factorize 5×5 convolution to 

two 3x3 convolution operations to improve computational 

speed. (2) Factorize n×n convolution to a combination of 1×n 

and n×1 convolutions. (3) Expand the filter bank outputs to 

remove the representational bottleneck. (4) Combination of 

additional regularization with batch-normalized auxiliary 

classifiers and label-smoothing.  

In this study, the output of the "avg_pool" layer of Inception 

V3 is used as spatial feature instead of the fully-connected 

layer. The 2048-dimensional image features at each time-step 

will form spatial features sequence that are learned by 

subsequent bidirectional LSTM. 

C.  BIDIRECTIONAL LSTM 

In this section, we briefly review the Recurrent Neural 

Network (RNN), and Long Short-Term Memory (LSTM) to 
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make the paper self-contained. RNN is an extension of feed-

forward neural networks and has yielded promising results in 

sequence learning. Figure 3-a demonstrates an RNN neuron. 

The input of the RNN is a sequence data {𝑥1, 𝑥2, … , 𝑥𝑇}. 
As shown in Figure 3-a, the hidden state of all RNN units at 

the 𝑡th time step is determined by the current input 𝑋𝑡 and the 

previous hidden state ℎ𝑡−1 at the (𝑡 − 1)th time step.  

 ℎ𝑡 = 𝜎(𝑊𝑥ℎ ∙ 𝑋𝑡 +𝑊ℎℎ ∙ ℎ𝑡−1 +  ℎ)    (1) 

 𝑦𝑡 = 𝑔(𝜎(𝑊ℎ𝑜 ∙ ℎ𝑡 +  𝑜))    (2) 

where 𝜎  is a nonlinear activation function, 𝑔 denotes the 

operation of the fully-connected layer,  ℎ  and  𝑜  are bias 

vectors, 𝑊𝑥ℎ, 𝑊ℎℎ and 𝑊ℎ𝑜 denote weight matrices from the 

current input layer to hidden layer, the previous hidden layer 

to current hidden layer and the current hidden layer to output 

layer, respectively. RNN is an important model for sequential 

date modeling of the deep learning family. However, it comes 

with some challenges in modelling long-term dependencies 

such as vanishing and exploding gradient problems during the 

training phase. Our model builds on LSTM cells, which is an 

advanced RNN architecture explicitly designed for tackling 

this problem. Our key motivation of chosen LSTM is that it 

can learn long-term dependencies and avoid exploding and 

vanishing gradient problems that traditional RNN suffers from 

during back propagation optimization. LSTM has been 

successfully applied to handwriting recognition, machine 

translation and so on. The difference between LSTM and RNN 

is that the later adds several gates to the cell to judge whether 

the information is useful or not [39].As illustrated in Figure 3-

b, a LSTM neuron updates its memory cell state 𝐶𝑡  from 

different sources at given time step 𝑡: the current input 𝑋𝑡, the 

hidden state from LSTM themselves at the last time step ℎ𝑡−1 

as well as previous memory cell state 𝐶𝑡−1. 

At each time step, the LSTM neuron can choose to input, 

forget, and output the memory cell state governed by four 

important parts: input gate  𝑖𝑡 , output gate  𝑡 ,forget gate 𝑓𝑡 
and candidate cell state  �̃�𝑡 . Based on these parts, LSTM 

neuron memory cell state and output can be computed by: 

 𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∙ 𝑋𝑡 +𝑊ℎ𝑖 ∙ ℎ𝑡−1 +  𝑖)    (3) 

 𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∙ 𝑋𝑡 +𝑊ℎ𝑓 ∙ ℎ𝑡−1 +  𝑓)    (4) 

  𝑡 = 𝜎(𝑊𝑥𝑜 ∙ 𝑋𝑡 +𝑊ℎ𝑜 ∙ ℎ𝑡−1 +  𝑜)    (5) 

 �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝐶 ∙ ℎ𝑡−1 +𝑊𝑥𝐶 ∙ 𝑋𝑡 +  𝐶)    (6) 

 𝐶𝑡 = 𝑓𝑡 ⨀𝐶𝑡−1 +  𝑖𝑡 ⨀  �̃�𝑡   (7) 

 ℎ𝑡 =  𝑡 ⨀𝑡𝑎𝑛ℎ (𝐶𝑡)   (8) 

where 𝑡𝑎𝑛ℎ presents hyperbolic tangent function, ‘∙’ is a 

matrix multiplication operator, ‘⨀’ denotes the products with 

a gate value, and  𝑖 ,  𝑓 ,   𝑜  and  𝐶  are bias vectors. The 

weight matrix subscripts have obvious meaning. For example, 

𝑊ℎ𝑖 , 𝑊𝑥𝑜  and 𝑊ℎ𝑜  denote hidden-input gate matrix, input-

output gate matrix and hidden-output gate matrix, respectively. 

In the proposed ABi-LSTM, multi layers LSTM are stacked 

to learn long term dependencies in sequence data. 

ℎ𝑡−1

𝑥𝑡
ℎ𝑡

  𝑖𝑡

   𝑡

   𝑡

  𝑓𝑡

ℎ𝑡−1

𝑥𝑡
ℎ𝑡

𝑦𝑡

(𝑎) ( )
 

FIGURE 3.  Structures of the neurons. (a) RNN, (b) LSTM. 

 

In order to make full use of both the past and future context 

information of a sequence in classification, we build a 

bidirectional LSTM model by feed spatial feature of single 

patch to extract temporal features from forward and backward 

order. The bidirectional LSTM model consists of two parts: 

forward LSTM and backward LSTM as illustrated in Figure 4. 

The forward LSTM updates its memory cell state 𝐶𝑡
⃗⃗  ⃗, starting 

at time 𝑡 = 1(from 𝑥1 𝑡  𝑥𝑇). Similarly, the backward LSTM 

updates its memory cell state 𝐶𝑡
⃖⃗ ⃗⃗ , starting at time 𝑡 = 𝑇(from 

𝑥𝑇 𝑡  𝑥1). Formally, the bidirectional LSTM model works as 

follows, for raw image patch 𝐼𝑡, forward memory cell state 𝐶𝑡
⃗⃗  ⃗ 

and backward memory cell state 𝐶𝑡
⃖⃗ ⃗⃗ , the encoding performs as 

 𝑋𝑡 = 𝒞(𝐼𝑡 , Θ𝒞)  , 𝐶𝑡
⃗⃗  ⃗ = �⃗� ( 𝑋𝑡 , Θ�⃗� )  , 

 𝐶𝑡
⃖⃗ ⃗⃗ = �⃖⃗�( 𝑋𝑡 , Θ�⃖⃗�)   

 
(9) 

 𝑂𝑡 = ℳ( 𝑋𝑡 , Θℳ)    (10) 

where 𝒞 ,  �⃗� ,  �⃖⃗�  represent CNN, forward LSTM and 

backward LSTM respectively and Θ𝒞 , Θ�⃗�  and Θ�⃖⃗�  are their 

corresponding weights.  𝑋𝑡  is the spatial feature of a single 

frame extracted by CNN. ℳ presents multi-layer LSTM and 

Θℳ  is multi-layer LSTM weights.
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FIGURE 4.  A single layer bidirectional LSTM. We feed spatial features in both forward (red arrows) and backward (blue arrows) 

order which allows our model learns both the past and future context information context information from both left and right 

side over time. 

 

D.  ATTENTION MECHANISM 

For a long image patch sequence, the amount of valuable 

information provided by different frames is in general not 

equal. We employ an attention network to adaptively focus on 

discriminative frames with a soft attention mechanism that can 

automatically measure the importance of different frames. 

As mentioned previously, for consecutive 𝑇  frames, the 

multi-layer bidirectional LSTM learns spatiotemporal 

information and outputs fire smoke related representation 𝑂 =
{𝑂1, 𝑂2, … , 𝑂𝑇} . The illustration of the spatial attention 

network is shown in Figure 5. At each time step 𝑡, the scores 

 𝑡  for indicating the importance of the 𝑇 frames are jointly 

obtained as 

 𝑡 = 𝑈𝑠𝑡𝑎𝑛ℎ( 𝑊𝑥𝑠𝑋𝑡 +  𝑊𝑜𝑠𝑂𝑡 +   𝑠)  

+   𝑢𝑠  

 
(11) 

where 𝑈𝑠, 𝑊𝑥𝑠, 𝑊𝑜𝑠are the weight matrices learned from the 

network and   𝑠,   𝑢𝑠 are bias vectors. 𝑋𝑡 is the spatial features 

extracted by CNN. 𝑂𝑡  is the spatiotemporal information 

extracted by Bi-LSTM. For the 𝑘th  frame, the importance 

value is computed as 

𝛼𝑡 =
 𝑥𝑝( 𝑡)

∑  𝑥𝑝( 𝑖)
𝑇
𝑖=1

 
 
(12) 

which is a normalization of the scores. Among the sequences, 

the larger the score, the more important this frame is for 

determining the type of classes. We regard importance values 

as attention weights. Instead of assigning equal degrees of 

importance to all the spatiotemporal information 𝑂𝑡, the final 

output of the attention network is modulated to 𝑂𝑡
′ = 𝛼𝑡⨀𝑂𝑡 . 

Finally, we concatenate all the time step output of attention 

network and add a softmax layer on top of the model for 

classification. 

 

FIGURE 5.  The graphical illustration of the attention model. 

IV.  EXPERIMENTS 

In this section, we will introduce the experimental setting in 

detail. Then we design several groups of experiments to 

measure the performance of proposed ABi-LSTM. Finally, we 

test the computational efficiency of the proposed framework. 

A.  DATASET 

There is currently no large scale forest fire smoke dataset for 

algorithmic train and test. We build a large-scale forest fire 

smoke video dataset with Nanjing Enbo Technology Co., Ltd. 

We collect a large number of real early forest fire video to 

create our dataset, all videos were captured from forest fire 

monitoring system with an image size of 1920×1080.  

Considering that dynamic feature is one of the essential 

features of smoke. In this paper, the foreground detection 

algorithm is used for the candidate patch proposal. After 

comparing the performance and stability of some foreground 

detection algorithms, the ViBe[32] background subtraction 

method is selected to detect the candidate patch. When the 

number of individual foreground target pixels exceeds a 

threshold (50 in this paper), the area in which the foreground 

target is located is considered to be a suspected target. The 

299×299 image sequence centered on the moving target is fed 
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to ABi-LSTM. The top half of the Figure 6 is the raw video 

sequence, and the bottom half is the foreground map obtained 

by VIBE.  

The sequence sample is 5 frames per second, with a total 

length of 20 frames. The total number of sequences is 2000, 

including 1000 smoke containing sequences and 1000 non-

smoke sequences. For purpose of training and testing, the 

dataset is split into training and test sets, with an 80-20 split. 

The details of dataset are described in Table Ⅰ. 

 

FIGURE 6.  Using background subtraction technique to get the moving 
targeted region. Positive sequences are highlighted in red boxes, 
negative sequences are highlighted in yellow boxes. 

 

TABLE I 
UNITS FOR MAGNETIC PROPERTIES 

Type # of sets # of frames Purpose 

Positive 800 16000 Training 

Negative 800 16000 Training 

Positive 200 4000 Testing 

Negative 200 4000 Testing 

B.  IMPLEMENTATION DETAILS 

Experiments were conducted on a personal computer with 

CPU of Intel Core i5-6500 and GPU of NVIDIA GTX1080. 

The proposed ABi-LSTM architecture is implemented on the 

TensorFlow framework.  

In most of the literature, researchers normally computed 

accuracy based at patch-level because there is little test data. 

However, we evaluate the accuracy based on suquence-level 

evaluation that is smoke and non-smoke sequence 

classification accuracy in our work. The proposed ABi-LSTM 

framework is trained stage by stage. 

In the first stage, we use Adam optimizer for Inception V3 

network training. Instead of randomly initializing the weights, 

we use the pre-trained Inception V3 model on ImageNet to 

finetune, with learning rate of 0.00001, batch size of 32, input 

size of 3×299×299, and train epoch of 30. Since our forest fire 

smoke recognition task is different from the ImageNet, we 

define a new top-level classifier on the basis of Inception V3 

neural network by adding a fully connected layer. The newly 

stacked fully connected layer uses relu as the activation 

function and uses softmax for classification. In training phase, 

we chose to train only the top 2 inception blocks and newly 

stacked layer, and freeze the other 172 layers. 

In the second stage, the output of the "avg_pool" layer in 

Inception V3 are extracted as spatial feature for each frame. 

The learned spatial feature and sequence label are fed to train 

the subsequent model. We use RMSprop optimizer for ABi-

LSTM network training, with learning rate of 0.00001, batch 

size of 32, input size of 2048×20, and train epoch of 50. 

 

FIGURE 7.  Smoke sequences used in our method. 
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FIGURE 8.  Non-smoke sequences used in our method. 

C.  RESULTS AND COMPARISONS 

In this section, we first introduce the evaluation protocol 

including statistical measures. Then we evaluate the 

performance our ABi-LSTM method with other methods. 

Thirdly, we do the ablation experiments of each sub-model of 

the proposed ABi-LSTM. 

1) EVALUATION PROTOCOL 

For binary classification of image patch sequence, the 

sequence can be divided into true positive (TP), false positive 

(FP), true negative (TN), false negative (FN) four groups 

based on its combination of true class and predicted class. The 

predicted class is the output of the ABi-SLTM. The specific 

classification is as follows: 

 True Positive (TP): Correctly classified as the smoke 

sequence 

 True Negative (TN): Correctly classified as the non-

smoke sequence 

 False Positive (FP): Incorrectly classified as the 

smoke sequence 

 False Negative (FN): Incorrectly classified as the 

non-smoke sequence 

Performance of binary classifier are usually evaluated by 

the following widely used statistical measures: true positive 

rate (TPR), true negative rate (TNR) and Accuracy Rate (AR). 

The relative number of TP with respect to the overall number 

of positives is called the true positive rate (TPR), which is also 

known as sensitivity. The true negative rate (TNR) measures 

the proportion of actual negatives that are correctly identified 

as such. Another, Accuracy Rate (AR) is an overall measure 

for the relative number of correct classifications of both 

positives and negatives, which can be used to compare the 

overall performance of the different algorithms. 

Mathematically, these statistical measures can be expressed as: 

𝑇 𝑅 =
𝑇 

𝑇 + 𝐹𝑁
  (13) 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹 
  (14) 

𝐴𝑅 =
𝑇 + 𝑇𝑁

𝑇 + 𝐹𝑁 + 𝑇𝑁 + 𝐹 
  (15) 

In our ABi-LSTM model, the cross entropy loss function layer 

is the end with two parts: the predicted probability value 𝑞𝑖 
and the true label 𝑝𝑖 . For each sequence 𝑥, the probability of 

the output y = 1  is given by 𝑞𝑦=1 = �̂� , Similarly, the 

probability of the output y = 0  is simply given by𝑞𝑦=0 =
1 − �̂�. The true probabilities can be expressed similarly as 

𝑝𝑦=1 = 𝑦  and  𝑝𝑦=0 = 1 − 𝑦 . The loss function for the 

example is formulated as: 

 (𝑝, 𝑞) = −∑ 𝑝𝑖𝑖   𝑔𝑞𝑖 = − 𝑦  𝑔�̂� −

(1 − 𝑦)  𝑔(1 − �̂�)    

 
(16) 

2)  EXPERIMENTS RESULTS 

We first used the test sets to find the optimal setting of our 

approach: learning rate, number of LSTM layers, number of 

LSTM hidden units, and so on. 

To show the superiority of the proposed ABi-LSTM, we 

compare our method with Inception V3[23], CNN+MLP, 

3DCNN[20], TSN[35], ECO[36]and three common smoke 

and fire recognition methods [29, 30, 31]. Table Ⅱ shows the 

comparison results of different methods and parameters on our 

dataset. In order to analyze the influence of parameters on the 

accuracy and complexity of the model, we compared the 

experimental results of CNN+MLP and ABi-LSTM under 

different parameters. The x in CNN-MLP-x indicates the 

number of hidden cells in the MLP. Similarly, ABi-LSTM-x 

indicates the number of bidirectional LSTM cells. The input 

to the other models is chronological patch sequences, except 

that the input to the Inception V3 is single patches. And we 

report the average runtime required to process 20 frame 

sequences in Table Ⅱ. 

 

 

IT 8.1
Typewritten text
IEEE Journals & Magazines Volume: 7 , October 2019



 

 
 

TABLE Ⅱ 

COMPARISON WITH OTHER METHOD ON OUR DATASET. 

Methods TPR TNR AR 

Runtime 

for 

sequence 

Method in [29] 88.3% 89.1% 88.7% - 

Method in [30] 88.9% 89.7% 89.3% - 

Method in [31] 91.1% 91.9% 91.5% - 

3DCNN [20] 96.3% 96.1% 96.2 % 0.5465s 

ECO [36] 93.8% 94.4% 94.1% 0.0861s 

TSN-Inception V3 97.1% 96.7% 96.9% 0.0741s 

CNN-MLP-128 95.1% 95.3% 95.2% 0.0748s 

CNN-MLP-256 94.8% 95.4% 95.1% 0.0749s 

CNN-MLP-512 95.0% 95.6% 95.3% 0.0752s 

Inception V3 [23] 93.2% 93.6% 93.4% 0.0738s 

ABi-LSTM-64 97.5% 98.0% 97.8% 0.0964s 

 

As shown in Table Ⅱ, the ABi-LSTM framework achieves 

the total accuracy of 97.8% with rue positive rate 97.5% and 

rue negative rate 98.0%. From Table Ⅱ, we can see that the 

results of our proposed ABi-LSTM outperform 4.4% than 

image-based Inception V3 model. The comparison results 

prove that the ABi-LSTM is optimal for sequence-based forest 

fire smoke recognition. 

For clarity, the confusion matrix of ABi-LSTM is shown in 

Table Ⅲ. Furthermore, we conduct an ablation study to 

evaluate the performance of each sub-model of the proposed 

ABi-LSTM. In this research, we conduct three models for 

comparison: 

 Inception V3 is a single frame image model, and its 

experimental results are mentioned in Table 2, which 

is considered as baseline in ablation experiments. 

 Uni-directional LSTM-x is a single-direction LSTM, 

in which x represents the number of hidden units. Uni-

directional LSTM consists of two sub-model: the 

spatial features extraction network and the uni-

directional LSTM network. 

 Bi-LSTM consists of two sub-model: the spatial 

features extraction network and the Bidirectional 

LSTM network. The input patches are fed into the Bi-

LSTM network one by one. 

 ABi-LSTM consists of all the three sub-model: the 

spatial features extraction network, the Bidirectional 

LSTM network, and the temporal attention 

subnetwork. The input patches are fed into the ABi-

LSTM network one by one. 

 
 

TABLE Ⅲ 

CONFUSION MATRIX FOR THE CLASSIFICATION OF SMOKE AND NON-SMOKE BASED ON THE ABI-LSTM-64. 

 

Output 

 
Smoke sequence Non-smoke sequence 

Truth 

Smoke sequence 
195 

48.8% 

5 

1.3% 

97.5% 

2.5% 

Non-smoke sequence 
4 

1.0% 

196 

49.0% 

98.0% 

2.0% 

 
98.0% 
2.0% 

97.5% 
2.5% 

97.8% 
2.2% 

 
TABLE Ⅳ 

THE ABLATION ANALYSIS OF THE ABI-LSTM. 

Methods TPR TNR AR 

Inception V3[23] 93.2% 93.6% 93.4% 

Uni-directional LSTM-32 94.5% 95.1% 94.8% 

Uni-directional LSTM-64 94.8% 95.4% 95.1% 

Uni-directional LSTM-128 94.7% 95.3% 95.0% 

Bi-directional LSTM-32 94.8% 95.6% 95.2% 

Bi-directional LSTM-64 95.2% 95.8% 95.5% 

Bi-directional LSTM-128 94.9% 95.7% 95.3% 

ABi-LSTM-64 97.5% 98.0% 97.8% 

 

As shown in the Table Ⅳ, the Bi-LSTM network improves 

the accuracy of the Inception V3 imaged-based model by 2.1%, 

and the temporal attention subnetwork improves the accuracy 

of the Bi-LSTM model by 2.3%. The ablation experiments 

justify our initial design idea. 
 

TABLE V 

AVERAGE COMPLEXITY COMPARISONS OF AN IMAGE. 

Methods GFLOPs 
Million 

Parameters 
AR 

3DCNN [20] - 178.7 96.2% 

TSN-Inception V3 5.746 23.8 96.9% 

CNN-MLP-128 5.748 26.4 95.2% 

CNN-MLP-256 5.749 34.2 95.1% 

CNN-MLP-512 5.752 44.1 95.3% 

Inception V3 [23] 5.746 23.8 93.4% 

ABi-LSTM-64 5.761 26.1 97.8% 

 

The proposed model can be deployed easily, which can be 

used to recognize the suspected smoke patches in practical 

application. Figure 9 shows the recognition results of proposed 

model. 
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FIGURE 9.  Results of the Forest fire smoke Monitoring System. The detected smoke was marked in red boxes.  

 

V.  CONCLUSIONS 

In this paper, we propose an attention enhanced bidirectional 

LSTM network (ABi-LSTM) for early forest smoke 

recognition. Specifically, the proposed approach can be 

summarized as three parts: 

a) an Inception V3 network which is used to extract spatial 

features from smoke candidate patch step by step; b) Bi-

LSTM model which is designed to extract temporal features 

from forward and backward order by feed spatial feature of 

single patch; c) attention network is employed to optimize 

classification process with a soft attention mechanism that can 

automatically measure the importance of different frames. 

Extensive experiment results show that the proposed ABi-

LSTM framework obtains higher accuracy in early forest fire 

smoke recognition compared with other methods. Moreover, 

ablation study is conducted to evaluate the performance of 

each sub-model in ABi-LSTM. 

The proposed ABi-LSTM has been inspired by the attention 

mechanism in neural machine translation, which can 

adaptively focus on discriminative frames. As a result, this 

framework may be suitable for early forest fire smoke 

detection. An interesting question is whether attention 

mechanism can be used in a single frame image to enable the 

model to learn more discriminatory spatial information. This 

will be investigated in the future. 
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