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Abstract—Counting on-road vehicles in the highway is fun-
damental for intelligent transportation management. This paper
presents the first highway vehicle counting method in compressed
domain, aiming at achieving comparable estimation performance
with the pixel-domain methods. Counting in compressed domain
is rather challenging due to limited information about vehicles
and large variance in vehicle numbers. To address this problem,
we develop new low-level features to mitigate the challenge
from insufficient information in compressed videos. The new
proposed features can be easily extracted from the coding-related
metadata. Then we propose a Hierarchical Classification based
Regression (HCR) model to estimate the number of vehicles
from the compressed-domain low-level features for individual
frame. HCR hierarchically divides the traffic scenes into different
cases according to the density of vehicles such that the large
variance of traffic scenes can be effectively captured. Beside the
spatial regression in each frame, we propose a locally temporal
regression model to further refine the counting results, which
exploits the continuous variation characteristics of the traffic flow.
We extensively evaluate the proposed method on real highway
surveillance videos. The experimental results consistently show
that the proposed method is very competitive compared with
the pixel-domain methods, which can reach similar performance
with much lower computational cost.

Index Terms—vehicle counting, hierarchical classification, re-
gression, compressed domain.

I. INTRODUCTION

ESTIMATING the number of on-road vehicles is one
of the most important tasks in intelligent transportation

system (ITS), which can be used to monitor the traffic status
and provide information for traffic control and optimization,
e.g., better driving routes through bypassing the congested
roads [1]. In this paper, we consider to solve the vehicle
counting problem by developing the video analysis based
methods. Compared with the systems employing specialized
sensors (e.g. infrared or inductive loop detector), the visual
counting system is easier to deploy by reusing the roadside
cameras, and thus much less costly [2].

In a typical traffic surveillance system, the central subsystem
connects all terminal cameras through a private network and
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Fig. 1. The Hierarchical Classification based Regression (HCR) model. The
traffic scenes are firstly classified into k categories representing different
vehicle densities. To tackle the fuzzy cases produced by the first-layer
classifier, the second layer classifiers are introduced to distinguish the samples
located in the boundary area (i.e. B1 to Bk−1). Afterwards, the regression
models are used to each category.

receives the surveillance videos. In practice, however, only a
part of video streams can be simultaneously accessed with
variable bit-rate due to the bandwidth limitation [3]. Though
acquiring such partial information is sufficient for monitoring
with free stream switch, it is insufficient for semantic video
analysis that needs all of the video streams for fully capturing
the traffic status. Therefore, one usually conducts the analysis
in terminal devices (e.g., surveillance workstations). To reduce
the overall cost, these devices are usually equipped with
cheaper systems than central servers. Therefore, the video
analysis algorithms are expected to have low computational
complexity for fulfilling the computation resource limitation
on these cheaper systems.

Video analysis algorithms can be implemented in either
the pixel or the compressed domain. Particularly, the pixel-
domain algorithms first decode the compressed surveillance
videos into raw frames and then operate on the frame pix-
els. Due to involving such decoding procedure and massive
pixels to process, the computational complexity is usually
tremendously high [4]. In contrast, the compressed-domain
video analysis algorithms are able to directly operate on the
compressed video [5], and are far more less expensive. Hence
the compressed-domain algorithms are more appropriate for
real-time large-scale video analysis. Therefore, we propose
to address the vehicle counting problem in the compressed
domain.

The video analysis in compressed domain mainly relies on
the encoding metadata, which can be easily extracted from
video bitstreams, e.g. the motion vector (MV), DCT coeffi-
cients, and macro-blocks (MB) partition modes [5]. However,
there are two challenges for vehicle counting in compressed

Compressed-domain Highway Vehicle Counting
By Spatial and Temporal Regression

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology  Volume: 29 , Issue: 1 , Jan 2019 



domain. First, the critical metadata in compressed videos (i.e.
motion estimation and compensation vectors) are designed
for compression efficiency rather than video analysis [6].
Consequently, the features extracted from video bitstreams
are noisy and cannot accurately describe moving vehicles
compared with the raw frames. Second, the traffic scenes
usually change fast, present varying numbers of vehicles, and
vulnerable to the external factors (e.g. weather conditions,
and illumination changes) [7]. These challenges make it quite
difficult to accurately model the realistic traffic scenes for
vehicle counting.

In this paper, we propose a multi-regression method for
highway vehicle counting in the compressed domain, aiming at
achieving comparable prediction performance with the pixel-
domain methods. To our best knowledge, this is the first
research attempt on this challenging problem. Specifically,
we first develop new low-level features to capture the crucial
information useful for counting vehicles. These features can
be easily computed from the provided MVs and block par-
tition modes, and cover the size, shape, motion, and texture
information of traffic scenes. Combining these features can
effectively mitigate the challenges of information insufficiency
for counting vehicles in the compressed domain. Then we
propose a Hierarchical Classification based Regression (HCR)
model for counting vehicles in a video frame. As illustrated
in Figure 1, HCR divides the traffic scenes into multiple cases
according to the vehicle density (e.g. heavy, medium, and
light). Then HCR adopts the most suitable regression model
for each individual case. Indeed, introducing such division can
better approximate the large variance over characteristics of
traffic scenes. Furthermore, we add one more classification
layer for handling the ambiguity cases produced by the first-
layer classifiers. As a result, the large estimation deviation
incurred by misclassification can be greatly alleviated. Besides
the spatial regression, we further propose a locally temporal
regression method to refine the per-frame counting results,
which exploits the continuous characteristics of the traffic
flow. By combining the spatial and temporal regression, our
proposed method can produce robust and accurate vehicle
counting results.

We evaluate the proposed method on the real highway
surveillance videos captured under various traffic scenes. The
experimental results show that our method is very competitive
with the conventional pixel-domain methods. Our method
gives the similar performance while consumes much lower
computational resource. This paper is an extended version of
our previous work that appeared in [8]. It differs from [8] in
the following aspects:

(1) We propose a locally temporal regression method to re-
fine the estimated vehicle counts, and consequently the
vehicle counting performance can be further improved.

(2) We propose a new compressed-domain LBP feature,
which can be computed faster than the previous version
in [8] without performance drop.

(3) We introduce a new vehicle counting dataset, US101
Highway, which more comprehensively justifies the
effectiveness of the proposed method.

(4) We provide more details of the method and conduct
more experiments.

The remainder of the paper is organized as follows. Sec-
tion II discusses the related works. Section III elaborates on
the proposed vehicle counting system, and Section IV exper-
imentally evaluates the proposed method. Finally, Section V
concludes this work.

II. RELATED WORKS

Object counting is one of the classic visual recognition tasks
that aims to estimate the number of specific objects within an
image [9]. According to the adopted strategy, existing object
counting approaches can be divided into three categories:
counting by detection, counting by clustering, and counting
by regression [10]. Among them, the most intuitive approach
is the detection based one [11], [12]. The DPM model [13],
which builds on HOG features [14], was a common choice
for object detection [15], [16], [17]. More recent works [18],
[19], [20] have resorted to deep convolutional neural network
(DCNN), which has remarkably boosted the performance.
However, the methods by detection [21] and clustering [22],
[23] need to explicitly segment the objects or track the feature
points, and may fail in presence of heavy serious occlusions or
scene clutters. In contrast, the regression based methods [24],
[25], [26] directly learn a mapping from the extracted features
to density values. Such a strategy can effectively alleviate
the negative effects of unavoidable interference and is more
preferred in practice. Hence the regression model is usually
considered more applicable to object counting for the realistic
scenes.

The regression methods have made significant progress for
object counting in images. Davies et al. [27] proposed a
linear regression model to map the holistic features to the
people counting results. Chan et al. [24] proposed a perspec-
tive normalization method to handle the diversity of camera
perspectives along with a bank of complementary features.
To tackle the visual diversity of vehicle appearance (e.g.
truck vs. car), a three-level cascaded regression model was
proposed in [2]. In addition, some semi-supervised counting
methods [28], [29] were also developed, which exploit the
continuity and consistency between unlabeled samples and
their temporally adjacent samples. These methods can exploit
more unlabeled data, e.g. via transfer learning [30], and thus
perform better for complex crowd scenes that are difficult
to annotate. Recently, convolutional neural network (CNN)
is introduced for crowd counting. For example, Zhang et
al. [26] proposed a cross-scene counting model, which is fine-
tuned upon a pretrained model for a new scene by feeding
the retrieved similar training samples. In order to mitigate
the negative influence of perspective distortion, Zhang et
al. [31] proposed to employ filters of different sizes to handle
large variation of people/head sizes. Onoro-Rubio et al. [32]
proposed the Hydra CNN to learn a multi-scale nonlinear
regression model with a pyramid of image patches at multiple
scales. Another remarkable work was proposed in [33], where
multi-scale features from the pre-trained ResNets [34] are
combined to estimate vehicle density.
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Fig. 2. The framework of the proposed highway vehicle counting system, which includes four key stages: (1) video preprocessing, (2) feature extraction, (3)
estimation with spatial regression, and (4) refinement with temporal regression. The preprocessing stage is to extract the encoding information from input video
bitstream, and then prepares the necessary data for feature extraction. Then these data are translated into various features to represent complex traffic scenes.
Next, the number of vehicles in a frame is estimated using the proposed HCR. Finally, the temporal regression method is applied to refine the estimation
results.

However, to our best knowledge, no compressed-domain
methods have been investigated for object counting. Actually,
most works in compressed domain focus on the detection and
segmentation of moving object [35], [36], object tracking [4],
[37], face detection [38], and crowd flow segmentation [39].
Some related works mainly focus on estimating the traf-
fic parameters, e.g., the congestion level and vehicle speed.
Specifically, Porikli et al. [40] proposed a traffic congestion
estimation method by analyzing the MPEG-encoded videos,
where the DCT coefficients and MVs are exploited. Tusch et
al. [41] introduced four features related to the vehicle density
to estimate level of service (LOS). Yu et al. [42] proposed to
estimate the mean vehicle speed using the MVs of MPEG-
encoded videos. Obviously, these works are different from the
problem we will addressed in this work.

III. OUR APPROACH

A. Overview

The main challenges to highway vehicle counting in com-
pressed domain lie in the limited and inaccurate information
and large variance of traffic scenes. In this work, we tackle
these challenges by constructing rich low-level features, which
can effectively exploit the available data and fully represent
the traffic scenes. We also propose a novel counting model,
i.e., the Hierarchical Classification based Regression (HCR),
which applies a suitable submodel for the given traffic scene
in an adaptive manner to its presenting characteristics.

Figure 2 shows the framework of the proposed counting
method. It contains the following four stages: (1) video
preprocessing, (2) feature extraction, (3) estimation with spa-
tial regression, and (4) refinement with temporal regression.
Specifically, in the preprocessing stage, we first parse the input
video bitstream to extract the video encoding information,
and then prepare the necessary data for following feature
extraction. Then we translate these data into various features
that can accurately represent complex traffic scenes. Next
we estimate the number of vehicles in each frame using
the proposed HCR method. Finally, we refine the counting
results by applying the proposed temporal regression method.
In this paper, H.264 codec [6] is adopted considering its high
encoding efficiency and wide application in the real video

surveillance systems. For a given compressed video bitstream,
we mainly extract the metadata of Motion Vector (MV) and
Macro-block (MB) partition modes.

B. Preprocessing

The preprocessing stage targets to produce the metadata of
standardized format from the raw video bitstream, which in-
clude the motion vector normalization, macro-block weighting,
foreground segmentation, and perspective normalization.

1) Motion vector normalization: In the H.264 compressed
format, MB is the basic unit of video encoding [6]. The MBs
can be encoded in various block partition modes, such as
16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8, and 4 × 4,
and each block corresponds to an MV. In addition, multiple
reference frames can be used for one frame in order to improve
the efficiency of inter-frame encoding. Thus the MVs in the
same frame often have different temporal scales. In this work,
we use the temporal interpolation to normalize the MVs to a
uniform temporal scale. Let Bij denote the MB at the location
(i, j), where i and j denote the index of MB along the X-axis
and Y-axis in the video frames, respectively. The MV of Bij at
the time t is denoted by Vij(t). The corresponding normalized
MV is defined as:

Ṽij(t) =
Vij(t)

t− r
, (1)

where r is the time of the reference MB.
The mode of the smallest block in H.264 is 4× 4. In order

to obtain a uniform MV field, we split all the blocks into 4×4,
e.g. one 8× 16 would be partitioned into 8 pseudo-MBs with
the size of 4× 4. Particularly, the MVs of 4× 4 pseudo-MBs
are straightforwardly assigned using the MV of corresponding
parent MB. Additionally, for the intra-coded blocks that have
no MVs, we adopt the Polar Vector Median (PVM) [4] method
to compute their MVs, i.e., the vectors are computed in the
polar coordinates. Formally, let P = (v1,v2, · · · ,vn) be the
list of MVs collected from the neighboring 4 × 4 blocks of
the current intra-coded MB, where the elements are sorted
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Fig. 3. Foreground segmentation: (a) original frame, (b) ROI, (c) foreground
mask, and (d) foreground image.

according to their angles from −π to +π. We identify the
index ī with m = (n+ 1)/2 as

ī = argmin
j

j+m−2∑
i=j

θi, (2)

where θi denotes the angle between the vectors vi and vi+1

(let v1 ≡ vn+1 here). Then we construct a collection of
vectors as Ps = (vī,vī+1, · · · ,vī+m−1), which actually
contains approximately half of the original vectors in P such
that the sum of the angles between them is the minimal.
Finally, we generate the MV of the intra-coded block vector as
follows: the angle is set as the median of angles of the vectors
in Ps, while its magnitude is set as the median of magnitudes
of the vectors in P . In this way, we obtain a normalized MV
field Ṽ for each frame.

2) Macro-block weighting: There are seven different parti-
tion sizes in H.264 with the application of deformable macro-
block technique. Particularly, the areas around moving objects
usually have small partition sizes for higher compression
efficiency [37]. Therefore, the blocks with smaller partition
sizes are more likely to represent the actual vehicle motion. We
assign MBs different weights according to the MB partition
modes. Let fm(Bij) denote the partition mode of Bij . Then
the weights are computed as follows:

Wij =


1 if fm(PBij) is 16× 16
2 if fm(PBij) is 16× 8 or 8× 16
3 if fm(PBij) is 8× 8
4 if fm(PBij) is 8× 4 or 4× 8
5 if fm(PBij) is 4× 4

, (3)

where PBij denotes the parent block of the 4×4 pseudo-block
Bij .

3) Foreground segmentation: This process is to separate
the foreground regions from background in the normalized
MV field. To this end, we adopt the thresholding strategy
to produce the foreground segments, i.e. the block Bi inside
the ROI is labeled as foreground if its MV is larger than the

preset threshold Tf . A binary region of interest (ROI) is also
applied to mask the foreground segments outside the region
of interest. Figure 3 presents an example segmentation result.
It can be observed that the moving vehicles can be roughly
localized by the segmented foreground regions although a part
of backgrounds may also be involved.

4) Perspective normalization: In the frames of surveillance
video, further vehicles appear smaller than nearer ones due
to the perspective effects. Consequently, the features extracted
from the same object with different scene depths would be
diverse. To deal with such an issue, the perspective normaliza-
tion is usually performed. Practically, each block is associated
with a weight, and larger weights are assigned to the further
vehicle candidates.

The perspective effect is almost fixed for a certain camera
or workstation. Thus we only need to periodically sample the
video frames and then update the perspective normalization
map (denoted by S with each block one value). In this paper,
we first adopt the method in [24] to compute the perspective
normalization map in the pixel domain, and then transform it
into the desired map S in the MV filed by down-sampling.

C. Feature extraction
We elaborate on details of feature extraction in this sub-

section. Ideally, the features should capture the significant
information associated with vehicle count or density. To this
end, we develop a new batch of low-level features, which cover
the size, shape, motion, and texture.

Size: The size features can capture the magnitude of holistic
foreground segment. Here we particularly use two metrics, i.e.
area and perimeter length.
• Area: It is defined as the total number of blocks belonging

to the segmented foreground. This feature is calculated
from the perspective normalization map S and MB type
weights Wij , i.e.

fa =
∑

Bij∈F
Wij · Sij , (4)

where F represents the foreground area.
• Perimeter length: It is defined as the total number of

blocks lying on the perimeter of foreground segment.
Formally, this feature is weighted using MB type weights
Wij and square root of perspective normalization map S
as in [24]:

fl =
∑

Bij∈P
Wij ·

√
Sij , (5)

where P denotes the set of perimeter blocks.
Shape: Aside from the Perimeter length, which captures the

global properties of the segments, the orientation of perimeter
blocks also carries significant shape information due to pre-
senting some local and internal pattern. In this paper, therefore,
we define the shape feature as an orientation histogram of
perimeter blocks, where eight bins are used. For the block
Bij , the orientation oij and magnitude mij are calculated as
follows:

oij = tan−1{gy(Ṽij)/gx(Ṽij)}
mij =

√
gx(Ṽij)2 + gy(Ṽij)2

, (6)
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where gx(Ṽij) and gy(Ṽij) denote the horizontal and vertical
components of Ṽij , respectively. In addition, the voting weight
of Bij is adjusted by W and S in computing the histogram,
which is set as (mij ·Wij ·

√
Sij).

HOMV: MVs reflect the motion orientation and magnitude
of objects represented by MBs. In this paper, we propose to use
the Histogram of Oriented Motion Vector (HOMV) feature to
present such information. The calculation of HOMV is similar
to the shape feature, except for the MB range and weight. To
be specific, all foreground MBs are used for HOMV, and the
voting weight for Bij is set as (mij ·Wij · Sij).

Texture: The texture features are strongly correlated with
vehicle density in traffic scenes. Compared with the scenes of
low density, the scenes of high density tend to present finer
patterns [43]. So we extract the texture feature to capture such
a clue. In object counting, two texture features are widely used,
i.e. Gray-level co-occurrence matrix (GLCM) [44], [24] and
local binary pattern (LBP) [45]. In this work, we particularly
consider LBP due to its simplicity and effectiveness. We
then propose a compressed-domain LBP feature based on
MV which is similar to LBP in pixel domain. Actually, LBP
has a variety of extensions and modifications developed for
better robustness, discriminativeness, and applicability, e.g.
VLBP [46], CS-LBP [47], SILTP [48], and MRELBP [49].
After investigating these descriptors, we finally use CS-LBP
in this paper since it trades-off better efficiency and counting
performance. The underlying idea of CS-LBP is to compare
the pairs of pixels in the centered symmetric directions instead
of comparing the central pixel to its neighbors in the original
LBP. This halves the number of comparisons for the same
number of neighbors, and finally produces 16 (24) binary
patterns different from 256 (28) of the original LBP. Formally,
the LBP operator of the target MB Bij is defined as:

LBPij =

(P/2)−1∑
i=0

s(d(Ṽi, Ṽi+(P/2))) · 2i, (7)

where P = 8 represents the number of neighboring MBs of
Bij , and d(·) is a distance metric function to measure the
similarity between two MVs, which is defined as:

d(Ṽi, Ṽj) = exp

{
− ‖Ṽi − Ṽj‖2

‖Ṽi‖2 + ‖Ṽj‖2

}
. (8)

In addition, s(·) is a sign function:

s(x) =

{
1 x ≥ Ts
0 x < Ts

. (9)

Ts is a threshold.
The final texture feature in this paper is the histogram of

the LBP outputs accumulated over all foreground MBs. All of
proposed features are then concatenated together to form the
feature vector of one frame.

D. Counting with spatial regression

Now we explain the vehicle counting method that is used
to estimate the number of vehicles in a frame. In the previous
works, the regression based methods have shown promising

Fig. 4. Example frames from the UCSD highway traffic dataset. The sample
frames present various vehicle densities: light (top), medium (middle), and
heavy (bottom).

performance [10], [50]. Thus we adopt the regression as the
base model. Note that this work is the first research attempt
to the vehicle counting in compressed domain, while the
previous works mainly focus on the crowd counting in pixel
domain, e.g., on the UCSD pedestrian dataset [24] or Mall
dataset [25]. For crowd counting, the foreground areas vary
nearly linear with the number of people. However, such a
correlation does not hold for vehicle counting due to larger
variation of vehicles, especially in compressed domain.

To intuitively show the characteristics of traffic scenes,
Figure 4 and Figure 5 provide some realistic highway images,
and Figure 6 demonstrates the relationship between the vehicle
count and foreground area. It can be seen that the correlation
is much more complicated than simple linearity. In princi-
ple, the major factors causing such complication include the
broad variation of vehicle appearance, inaccurate information
provided by compressed videos, and wide visual field of
surveillance cameras. To tackle these challenges, we propose a
Hierarchical Classification based Regression (HCR) model in
this work. HCR utilizes the local correlation which is valid if
the vehicle density1 only varies within a small range. Namely,
the traffic scenes containing different numbers of vehicles
would present the density-specific patterns. This assumption is
reasonable in practice, as validated by the results in Figure 6.

The HCR model is illustrated in Figure 1. Specifically, we
first apply a multi-class classifier to divide the traffic scenes
into k categories representing different ranges of vehicle
density. According to the patterns shown in Figure 6(a), k = 3
is adopted for the UCSD dataset in our experiments (i.e. heavy,
medium, and light), which is in accord with the setting in
the original work [51]. Indeed, we conduct the comparative
experiments with different settings (e.g., k = 2 and k = 4) and
in practice the current setting achieves the best performance.
Similarly, k is set to 2 for the US101 dataset according to
the patterns shown in Figure 6(b). For the purpose of vehicle
counting, the estimation error may be rather significant if the
input traffic scene is misclassified. Thus we introduce the
second-layer classifiers to deal with the ambiguity cases. The
second layer together with the first-layer classifiers form a
soft-segmented multiple classifiers. Here the (k − 1) binary
classifiers are deployed in the second layer, and each of them

1It is equivalent to the vehicle count for a fixed camera vision.
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Fig. 5. Example frames from the US highway 101 traffic dataset. The sample
frames present the transition between uncongested and congested conditions,
and full congestion.

takes charge of one boundary area. When a new traffic scene
arrives, it would be separately classified by both classifier
layers, and two or three confidence scores are produced. In
particular, only the samples with the scores in the second layer
larger than a given threshold Tc are identified to belong to the
boundary area. As a result, the input scene is finally assigned
to one of the (2k − 1) classes.

In our implementation, we adopt the SVM classifier with
radial basis function (RBF) kernel [52] to perform the clas-
sification. In addition, we use Gaussian Process Regression
(GPR) [53], which does not require any prior assumptions,
as the regression model to estimate the number of vehicles
for each class. It is worth pointing out that by combining
different covariance functions, e.g., linear, rational quadratic,
and squared-exponential, GPR has the flexibility to encode
different assumptions about the function we wish to learn. In
this work, the following covariance function [24] is employed:

K(xi,xj) = a0 + a1x
T
i xj + a2 exp

(
−|xi − xj |2

2a3

)
+ δija4.

(10)
Here δij is a sign function with 1 if i = j and 0 otherwise, and
θ = (a0, a1, a2, a3, a4) is the hyper-parameters, which defines
the covariance function. The first two terms capture the linear
trend, the third captures local non-linearities, and the last one
models the observation noise.

E. Refinement with temporal regression

In the proposed counting method, only one single frame
is used to estimate the number of vehicles contained by
that frame in the video stream and the inherent temporal
information in videos is ignored. Consequently, the counting
results may fluctuate since the information represented by
the metadata of compressed videos is not enough to model
the realistic traffic scenes. To further enhance the counting
performance, we propose a temporal refinement method to
improve the results, which exploits the prior of temporal
continuity of vehicle counts in video stream. In fact, each
running vehicle in highway will travel within the visual field of
a specified camera for a while, and thus the number of vehicles
will vary slowly for the sequent frames of video stream.

To model the local temporal consistency of the counting
results in video stream, we particularly adopt the robust locally

weighted regression method named LOESS [54], [55] in this
paper. LOESS is a simple and flexible data processing method,
which can build up a function describing the deterministic
part of variations in the data. Specifically, for a sequence
of consecutive counting results, a low-degree polynomial is
used to fit a subset of data around each estimation point,
and then the smoothed value for the point is used as the
final vehicle count. Such value is generated in practice by
evaluating the local polynomial. Here the polynomial is fitted
using the weighted least squares: giving larger weights to
points near the target point (whose value is being estimated)
and smaller weight to points further away. In LOESS, a
smoothing parameter, which determines how much data to use
for fitting each local polynomial, and the degree of the local
polynomial need to be specified. In our implementation, we
adopt the LOESS provided by the Curve Fitting Toolbox2 and
the quadratic polynomial is adopted for all samples. Formally,
Algorithm 1 describes the the local regression process for
single data sample, and Algorithm 2 provides a robust version
which includes an additional calculation of robust weights for
alleviating the distortion of outliers.

Algorithm 1: The locally weighted regression
Input: The estimation value c and its neighbors ci;
Output: The smoothed value c̃;

1: Compute the distance d(c) from c to the furthest
neighbor.

2: Compute the regression weights for each data point ci.

wi =

(
1−

∣∣∣∣c− cid (c)

∣∣∣∣3
)3

, (11)

3: Perform weighted linear least-squares regression with a
second degree polynomial.

4: Compute the smoothed value c̃ through the weighted
regression model.

5: return c̃;

IV. EXPERIMENT

There are three types of temporally interleaved frames in
H.264 bitstream [6]: I-frame, P-frame, and B-frame. The I-
frame is absolutely intra-coded, the P-frame is motion com-
pensated in the forward direction from I-frame or other P-
frame, and the B-frame is motion compensated in both forward
and backward directions. In our experiments, P-frames and I-
frames are used since the consecutive P-frames can provide
continuous motion information. All videos are encoded using
the H.264/AVC JM v.18.6 encoder3. We use the same frame
features extracted in Section III-C for both classification and
counting. As for the thresholds, we set Tf as the minimum
value of vehicle motion (i.e., 1) to capture all the vehicle
motions in traffic scenes since MVs are the key component of
the proposed features. Ts and Tc, which are used to measure
the MV similarity and classification confidence respectively,

2http://www.mathworks.com/products/curvefitting/
3http://iphome.hhi.de/suehring/tml/

http://www.mathworks.com/products/curvefitting/
http://iphome.hhi.de/suehring/tml/
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(a) (b)

Fig. 6. Correspondence between vehicle count and foreground size: (a) UCSD, (b) US101. The correlation is quite complicated compared to the simple
linearity, while the local correlation is approximately held if the vehicle density varies within a small range.

Algorithm 2: The robust locally weighted regression
Input: The original estimation value c and its neighbors

ci; The smoothed value c̃ and its neighbors c̃i
from Algorithm 1; The number of samples N ;

Output: The smoothed value c̃;
1 n = 5;
2 for k = 1; k ≤ n; k + + do
3 // Compute the residual of each data point

4 for i = 1; i ≤ N ; i+ + do
5 ri = ci − c̃i;
6 // Compute the median absolute deviation of the residuals

7 mad = median(|r|);
8 // Compute the robust weights for each data point

9 for i = 1; i ≤ N ; i+ + do
10 if |ri| < 6mad then
11 wi = (1− (ri/6mad)2)2;

12 else
13 wi = 0;

14 Perform weighted linear least-squares regression with
a second degree polynomial.

15 Update the smoothed value c̃ through the weighted
regression model.

16 return c̃;

are set as 0.9 and 0.7 in the experiments. These values are em-
pirically determined by investigating the counting performance
for different settings from 0.5 to 1, and actually the variation
of settings only has slight influence to the final performance.

A. Dataset

As there is no benchmark database for highway vehicle
counting, we collected some published highway video se-
quences and constructed the counting dataset.

UCSD: The UCSD highway traffic dataset [51] was orig-
inally built for the traffic scene classification purpose. This

dataset consists of 254 video sequences of daytime highway
traffic in Seattle and Washington. Each video contains 42 to
52 frames recorded at 10 frames per second (fps) and the
resolution is 320×240 pixels. Figure 4 provides some example
frames. Such a dataset is challenging due to containing diverse
traffic patterns, e.g., covering the light, medium, and heavy
congestion with various weather conditions (clear, overcast,
and raining).

To construct the counting dataset, we first select a region of
interest (ROI) in the traffic scene (see Figure 3(b)). Then we
extract 8 samples from each video every 5 frames, i.e., the 5th,
10th, 15th, 20th, 25th, 30th, 35th, and 40th frames. Finally,
we manually label these frames by marking the central points
of vehicle bodies. As a result, a total of 42, 859 vehicles in the
2032 frames are labeled, which cover all representative traffic
situations in the UCSD dataset.

As for the classification, we define the dense categories
by counting the labeled vehicles. Specifically, the samples
containing less than 20 vehicles are categorized as light, the
ones between 20 and 40 are as medium, and the rests are
as heavy. Besides, we define the boundary area of light and
medium as the range of [16, 24], and that of medium and heavy
is [36, 44].

US101: We also collected 45 minutes videos obtained from
the US Highway 101 dataset [56]. The dataset covers an area
in Los Angeles, CA, approximately 640m in length with five
mainline lanes and a sixth auxiliary lane providing highway
entrance and exit. The full videos in the dataset are recorded
by eight synchronized digital video cameras at 10 frames per
second (fps) with the resolution of 640×480. In this paper, we
constructed the counting dataset using the 45 minute videos
recorded by the camera 4. The videos contain the transition
periods between uncongested and congested conditions, and
the peak period with full congestion. Figure 5 provides some
example frames.

In building the counting dataset, we first divide the videos
into the sequences containing nearly 50 frames, and randomly
select 300 sequences to balance the traffic patterns in the
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Fig. 7. Classification accuracies for different training sizes: (a) UCSD, (b)
US101.

dataset. Then the region consists of five mainline lanes and
an auxiliary lane is selected as ROI, and 2400 frames from
the 300 video sequences are labeled manually. According to
Figure 6(b), the traffic density of US101 highway dataset is
classified to two categories, where the samples containing
less than 28 vehicles are categorized as uncongested and the
rests belong to congested. For HCR, the boundary range of
uncongested and congested is from 24 to 32.

B. Classification results

To evaluate the performance of the traffic density classi-
fication, we conduct experiments on the labeled UCSD and
US101 highway counting datasets. Here the feature of one
frame for classification is generated by averaging the features
of five consecutive neighboring frames in order to improve
the robustness. For UCSD highway dataset, the samples are
randomly split into the training set containing 800 samples
and the test set holding the remaining 1232 samples, such that
different traffic patterns and weather conditions are balanced
in the training and test sets. We vary the number of training
samples from 200 to 800 with an interval of 100 to investigate
its influence to the performance. For each training setting, we
repeat the experiment for five times, and report the mean clas-
sification accuracy. Figure 7(a) gives the results. It can be seen
that the classification accuracy is around 90% and increases as
more training samples are used. Similarly, the 2400 samples
of US101 highway dataset are randomly divided into half-half
for training and testing respectively, and Figure 7(b) shows the
results. Evidently, the proposed features are also accurate and
robust for representing the large-varying traffic scenes.

The UCSD dataset was built for classification, and each
video sequence is labeled as light, medium, or heavy. We
also compare the proposed method with the pixel-domain
methods [51], [57]. For fair comparison, the same experimen-
tal settings are used, and the average feature on the whole
video clips is adopted as the video representation. Finally, our
proposed method achieves the mean classification accuracy

of 94.22%, which is very close to the best performance of
94.50% achieved by [51] and 95.28% by [57]. These results
clearly show that the features extracted from encoded videos
are discriminative and robust enough for classification, i.e. the
compressed-domain method is rather competitive to the pixel-
domain ones.

C. Counting results

For vehicle counting, we adopt the mean-absolute-error
(MAE) to measure the performance, which represents the
difference between the predicted counts and the ground truth.
Here we conduct multiple experiments with different combi-
nations of features in order to demonstrate the effect of each
feature. We also compare the proposed method against the
pixel-domain regression methods in [24], [50]. Specifically,
in our implementation, the mixture of dynamic textures used
in [24] is adopted as the motion segmentation method for
both [24] and [50]. For [50], the holistic features include size,
shape, edges, and keypoints, and the GPR model is used for
evaluation. As in the classification experiment, 800 and 1200
samples are selected as the training set for the UCSD and
US101 datasets, respectively, and each experiment is repeated
for five times. It is worth noting that, the split strategy is
done by selecting video sequences rather than samples, and
the samples in the selected video sequences form the training
set. Through this way, we can remove the impact that the
training and test samples may from the same video sequence,
although the time gap between samples in the same sequence
is big enough.

Moreover, we compare the proposed method with the state-
of-art vehicle counting model using deep learning in [32]. We
choose it as the baseline as the codes4 are released for fair
comparison. For both two datasets, following the experimental
setting in [32], we randomly extract 800 image patches of
115 × 115 pixels together with the ground truth, then resize
each sample to 72×72 pixels, and finally augment the training
data by flipping. Here the Gaussian parameter for generating
the groundtruth density maps is set as σ = 15. Besides, the
perspective map of UCSD dataet is used. During training, the
batch normalization [58] is applied to all convolutional and
fully connected layers (except for the output layers).

Table I and Table II report the resulting MAEs on the UCSD
and US101 datasets. It can be seen that the counting perfor-
mance is consistently improved as more features are employed.
This demonstrates that each proposed feature is contributive
to vehicle counting. In particular, the more efficient CS-LBP
feature proposed in this paper achieves comparable counting
performance to our previous work [8]. In addition, the perfor-
mance achieved by the proposed method is similar to those
of the conventional pixel-domain methods [24], [50]. For the
deep learning based vehicle counting method [32], we report
the results of the Counting CNN and best performing Hydra
CNN 3s models. The results show that though Hydra CNN
with 3 scales outperforms all other methods not using deep
learning, the proposed method achieves comparative accuracy

4https://github.com/gramuah/ccnn

https://github.com/gramuah/ccnn
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TABLE I
COMPARISON OF COUNTING PERFORMANCE FOR DIFFERENT METHODS AND FEATURE SETS ON THE UCSD DATASET, WHERE THE red AND blue DENOTE

THE FIRST AND SECOND BEST PERFORMANCE.

Number of training samples 200 300 400 500 600 700 800

size 3.981 3.747 3.719 3.665 3.577 3.352 3.332
size + shape 3.865 3.639 3.576 3.474 3.355 3.179 3.173
size + shape + HOMV 3.820 3.618 3.556 3.448 3.310 3.110 3.111

HCR (with all features) [8] 3.639 3.483 3.420 3.332 3.142 2.956 2.938
HCR (with all features) 3.583 3.537 3.398 3.323 3.176 2.961 2.928
HCR-LOESS 2.963 2.923 2.868 2.775 2.687 2.525 2.446
Chan et al. [24] 4.140 3.581 3.439 3.415 3.229 3.020 2.970
Ryan et al. [50] 3.866 3.443 3.432 3.268 3.170 2.923 2.917
Counting CNN [32] 2.986 2.997 2.893 2.866 2.729 2.682 2.634
Hydra 3s [32] 2.468 2.365 2.214 2.261 2.209 2.042 2.029

TABLE II
COMPARISON OF COUNTING PERFORMANCE FOR DIFFERENT METHODS AND FEATURE SETS ON THE US101 DATASET, WHERE THE red AND blue DENOTE

THE FIRST AND SECOND BEST PERFORMANCE.

Number of training samples 600 700 800 900 1000 1100 1200

size 1.876 1.526 1.466 1.414 1.411 1.364 1.353
size + shape 1.751 1.486 1.415 1.354 1.342 1.303 1.295
size + shape + HOMV 1.704 1.444 1.363 1.301 1.286 1.262 1.256

HCR (with all features) [8] 1.643 1.396 1.318 1.259 1.236 1.207 1.188
HCR (with all features) 1.641 1.398 1.319 1.259 1.227 1.205 1.194
HCR-LOESS 1.535 1.289 1.206 1.150 1.131 1.112 1.097
Chan et al. [24] 1.589 1.331 1.212 1.153 1.124 1.115 1.086
Ryan et al. [50] 1.551 1.317 1.209 1.146 1.124 1.113 1.058
Counting CNN [32] 1.199 1.180 1.178 1.169 1.166 1.159 1.121
Hydra 3s [32] 0.995 0.989 0.972 0.977 0.941 0.954 0.924

with the Counting CNN model. Thus we consider the proposed
method is very competitive.

We specially evaluate the proposed refinement method by
applying the temporal regression (LOESS) to samples in the
same video sequence. Here the smoothing parameter is set
to 0.5, i.e. the value at each point is refined by operat-
ing twenty frames around. The quantitative results for the
proposed HCR model are shown in Table I and Table II.
Evidently, the counting performance is improved considerably,
especially on the UCSD highway dataset. Moreover, we com-
pare the effect of the proposed temporal refinement for the
compressed-domain method and conventional pixel-domain
methods, where the UCSD dataset is used. Figure 8 provides
the results. It is shown that LOESS can always boost the
counting performance. Particularly, LOESS is more effective
for the compressed-domain method since the information in
compressed domain is much noisier due to the inaccuracy of
encoding metadata. To provide an intuitive analysis, Figure 9
plots the estimation results before and after applying LOESS
against the ground truth, where a number of sequences on the
UCSD and US101 datasets are used. These figures provide
the qualitative evidence that the proposed temporal refinement
actually removes outliers to boost the counting performance.

We further evaluate the proposed HCR by comparing it with
the single Gaussian model (GP), one-layer multi-regression
model (MGR), and the ideal version of HCR that adopts the

Fig. 8. Effects of the proposed temporal refinement for different counting
methods on the UCSD dataset.

ground-truth classes instead of the predicted ones. Figure 10
gives intuitive performance comparison for different models.
Evidently, multiple regressions generally outperform the single
regression, and introducing second-layer classifiers in HCR
puts the counting performance towards the optimal.
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(a) HCR (b) Chan et al. [24] (c) Ryan et al. [50]

(d) HCR (e) Chan et al. [24] (f) Ryan et al. [50]

Fig. 9. The estimated vehicle counts before and after LOESS against the ground truth on UCSD (top) and US101 (bottom). Best viewed in the color version.

(a) (b)

Fig. 10. Comparison of MAE for different models: (a) UCSD, (b) US101. Here GP denotes the single GPR model, MGP represents the one-layer multi-
regression model, and HCR-ideal is the ideal version of HCR that adopts the ground truth as the classification results.

D. Run-time analysis

As described above, the proposed method consists of four
main components: preprocessing, feature extraction, classifica-
tion with SVM, and GPR. For both [24] and [50], in addition
to the full decoding and reconstruction of video frames,
the counting frameworks are mainly composed of feature
extraction and GPR. Particularly, the run-time complexity of
SVM using an RBF kernel in our method is O(NSV × d),
where NSV is the number of support vectors and d is the
input dimensionality. For a training set containing N cases,
the complexity of making a prediction with gaussian process
is O(N2). Thus the complexity of HCR is similar to the pixel-

domain methods since they need the same Gaussian processes.
However, the proposed method is faster in practice due to more
efficient preprocessing and feature extraction. First, it avoids
fully decoding videos and frame reconstruction. Second, it
processes less data compared to the pixel-domain methods as
the MVs is significantly less than pixels.

Overall, the resolution of the normalized MV field in
compressed domain is one-sixteenth of the reconstructed pixel
image. In addition to the computational saving of video decod-
ing, we experimentally compare the run-time of preprocessing
and feature extraction in the proposed method against the
pixel-domain methods. Here the US101 dataset is selected
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and the images have a resolution of 640 × 480. The same
configurations are used for different methods, i.e., all the codes
are implemented in Matlab and a single CPU core (Intel Xeon
CPU E5-2620 @ 2.00GHz) is employed. As expected, the
average run-time of our proposed method is much less than
that of the pixel-domain methods. Specifically, our method
achieves about 110 fps on US101, while the methods in [24]
and [50] result in about 9 fps and 6 fps respectively.

V. CONCLUSION

In this work, we proposed a novel highway vehicle counting
method in compressed domain with aims of achieving compa-
rable estimation performance with the pixel-domain methods.
Specifically, we first developed new low-level features by
utilizing the encoding metadata of compressed videos. Then
we proposed a hierarchical classification based regression
model (HCR) to estimate the number of vehicles in a frame,
and a temporal regression method to refine the counting
results. Finally, we verified the effectiveness of the proposed
method through the experimental evaluation. This work shows
that the compressed-domain method is promising for the
real-world video surveillance systems and demonstrates the
advantages of low computational cost, convenient deployment,
and competitive performance. Although the proposed method
works well even for congested traffic scenes, the counting
performance may be deteriorated as the number of stationary
vehicles increases, since the MVs in video bitstreams would
be vanished significantly. In addition, the high-varying sizes of
different types of vehicles could affect the counting accuracy.
In the future, we plan to detect the situations of traffic scenes
and explore the influence of vehicle types for achieving more
robust counting results.
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