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Sparse Reconstruction-Based Thermal
Imaging for Defect Detection

Deboshree Roy , Prabhu Babu, and Suneet Tuli

Abstract— This paper proposes an idea of employing sparse
reconstruction-based technique for thermal imaging defect detec-
tion. The implementation of the reconstruction technique is
tested on a carbon fiber reinforced polymer test piece with
artificially drilled defects and the test results are compared with
the established cross correlation method. The two processes are
compared in terms of defect detectability, their SNR variation
with defect depth and their computation complexity. When
compared with cross correlation algorithm, the technique is
expected to solve memory space problems by compressing all
information from large cross-correlated pulse video into a single
reconstructed image as an output. Furthermore, in existing cross
correlation methods, the pulse peak time shifts with defect
depth. Hence, defect quantification algorithms, such as SNR
calculation, require multiple frame analysis. Such algorithms
are comparatively simplified in sparse reconstruction technique.
This paper explores sparse reconstruction algorithm for resolv-
ing close-spaced defects. This paper further describes cross-
validation method for optimization of a user parameter in sparse
reconstruction method.

Index Terms— Cross correlation algorithm, frequency mod-
ulated thermal wave imaging, nondestructive evaluation and
remote sensing, pulse compression, sparse reconstruction, ther-
mal nondestructive testing.

I. INTRODUCTION

THERMAL imaging for defect detection is a technique
where a presence of defect is indicated by a rise in

temperature. Subsurface defect detection usually employs an
external heating mode and is known as active thermography.
Different active thermography techniques are lock-in thermog-
raphy, frequency modulated thermography, and pulse thermog-
raphy. Lock-in thermography utilizes a periodic photothermal
heating scheme at a given frequency. The resultant change in
temperature of the test piece is recorded and processed for
defect detection [1], [2]. Frequency modulated thermal wave
imaging utilizes a frequency modulated heating scheme where
a band of frequency is incident on a sample [3]. An objective
comparison of aforementioned active thermography methods
is presented by Chatterjee et al. [4]. Pulse compression is a
postprocessing technique used in conjunction with frequency
modulated excitation scheme [5]. Pulse compression in the
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area of thermal wave imaging for defect detection is described
in [6]–[8]. Pulse compression method is based on correlating
the thermal response with a reference signal. Reference signal
is an exact representation of excitation signal and used to
generate the correlated pulse. The significance of reference
signal and its acquisition methods are described in [9].

Pulse compression or cross correlation method has an
advantage of an improvement in SNR by a factor of time-
bandwidth product [5]. However, the presence of sidelobes in
the signal degrades the thermal detection system. Furthermore,
Roy and Tuli [10] show that a rise in time-bandwidth prod-
uct does not improve the defect detection. Hence, alternate
techniques are explored. Sparse reconstruction is expected to
overcome the aforementioned shortcomings by minimizing the
elements of reconstructed signal to zero.

Furthermore, each of the aforementioned techniques gener-
ates a video output with a large memory space. A memory
efficient nonuniform data acquisition method was suggested
in [10]. However, the data had to be interpolated to large uni-
form data for processing. Hence, a requirement for a memory
efficient processing tool arises. A sparse reconstruction tool is
expected to generate a single image output, thus compressing
all information from a video into a single image. This, in turn,
is expected to simplify the defect quantification and analysis.
Sparse reconstruction is thus a useful tool and has found
numerous applications are found [11]–[14].

Active thermography technique suffers from thermal diffu-
sion resulting in a blurred defect edge and requires additional
tool for defect size estimation [16]. The use of full-width half-
maxima of a defect to determine its size for a pulse ther-
mography experiment is described by Almond and Lau [15].
However, the technique is invalid for small defects. The role
of sparse reconstruction algorithm in such applications is
explored in this paper. The reconstruction algorithm is reported
to resolve closely spaced objects by Charbonneir et al. [17],
Yang and Li [18], Ye et al. [19], and Soldovieri et al. [20], par-
ticularly for SAR by Hasankhan et al. [21] and Zhu et al. [22].
Furthermore, it is an efficient tool nondestructive testing
techniques [23]–[25].

Quadratic frequency modulation as an excitation signal
is described in this paper. Different quadratic modulation
signal generation techniques are described by O’Shea [26].
Ghali and Mulaveesala [28] describe quadratic frequency
modulation in thermal imaging defect detection and com-
pare the method with established linear frequency modu-
lation as an excitation signal. Yoon et al [27] report that
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Fig. 1. Fast fourier transform of linear and quadratic frequency modulated
signal.

generated compressed pulse has lower sidelobes, improved
defect resolution, and more energy deposition in main lobe
and hence is preferred over linear frequency modulation.
Furthermore, the spectrum of quadratic frequency modu-
lation depicted in Fig. 1 shows that energy is redistrib-
uted from high-frequency to low-frequency component by
Subbarao and Mulaveesala [28] and Pecci et al. [29].
This facilitates deep defect detection. This paper proposes
sparse reconstruction technique as a processing tool in ther-
mal imaging defect detection. The method is developed
as an alternate to an established cross correlation process-
ing method. The two processes are compared in terms
of defect detectability, their SNR variation with defect
depth and their computation complexity. The variation in
sparse reconstruction parameters such as computation time,
l0- and l1-norms with user parameter α is described in this
paper. This paper utilizes cross-validation as an optimization
tool for α parameter. This paper further compares the two
processing tools for apparent broadening in defect diameter.
The cause of broadening of defect and role of sparse recon-
struction in its removal has been described in this section.

II. SPARSE RECONSTRUCTION PROBLEM IN THERMAL

IMAGING NONDESTRUCTIVE TESTING

Sparse approximation to signals deals with the problem
of finding a representation of a signal as a linear combina-
tion of a small number of elements from a set of signals
called dictionary in [30] and [31]. A signal is sparsely rep-
resentable if there exists a sparsity basis {ψi } with RN×M

dimensions, along with a discrete time observed signal of
length N , x(n), n = 1 . . . .N and a sparse column vector θ
of length M . The basis vectors are stacked as columns into
N × M sparsity basis matrix ψ = [ψ1ψ2 . . . . .ψM ]. In matrix
notation

x = ψθ. (1)

For N ≤ M , (1) is an overdetermined system and does not
have a unique solution. A sparse solution is obtained under
certain constraints. The basis pursuit (BP) solution to (1) is

min
θ

‖θ‖1 s.t. x = ψθ (2)

where ‖θ‖1 is the l1-norm of θ . l1-norm is defined as ‖θ‖1 =∑N
i=1 |θ(i)| and l2-norm as ‖θ‖2 = (

∑N
i=1 |θ(i)|2)1/2.

Similarly, ‖θ‖0 is the l0-norm, i.e., ‖θ‖0 counts the number
of nonzero entries in the vector θ . l0-norm is the sim-
plest and intuitive measure of sparsity in a signal. However,
the l0-norm function does not satisfy all the axiomatic prop-
erties of a true mathematical norm. The discrete and dis-
continuous nature of l0-norm poses many challenges in its

applications to recover sparse signals from their subsampled
measurements [32]. Here, ψ is the N element dictionary. For
a noisy x , the problem consists of

x = ψθ + η. (3)

For a frequency modulated thermal imaging with sparse recon-
struction, x in (3) is the measured signal, ψ is the time-shifted
version of the reference signal, and η is the zero-mean additive
white Gaussian noise with variance σ 2. The aim of sparse
algorithm is to recover θ from x .

The solution to (3) of sparse reconstruction reduces to the
following optimization problem:

min
θ

‖x − ψθ‖2
2 + α‖θ‖1 (4)

where α is a scalar quantity. Equation (4) is a convex opti-
mization problem and is named as BP denoising (BPDN) by
Chen et al. [33]. BPDN algorithm is based on least square
minimization with l1 regulariser. The regularizing term α
determines the computational complexity and sparsity of the
system by Gill et al. [34]. A small value of α restricts the
parameters leading to sparser and more interpretable models
that fit the input data. On the contrary, a large value of α frees
the parameter and allows the model to adapt more closely to
the training data. An optimum value of α is selected by cross-
validation method by Bofonous et al. [35]. In the method,
the data set is split into K number of groups. One group is
fixed as a test set, and the remaining (K−1) are the training
set in [36] and [37]. The mean square error (MSE) of the
algorithm is calculated at different α values. The method is
repeated K times, with each K group acting as test set and the
remaining (K−1) group as the training set. These K number
of MSE estimates are averaged for each α value to obtain
the cross-validation error curve. The standard deviation of
all errors is used to judge the model variation. A low value
in standard deviation suggests that the model does not vary
substantially with α. A high K value leads to high variance
with less bias while a low value of K leads to more biased
results. A balance between bias and variance is required. Leave
one out cross-validation has a high variance and low bias. It is
preferred for low computational complexity.

Least absolute shrinkage and selection operator (LASSO) is
similar to BPDN but places a restriction on l1-norm in [38]
and [39] as depicted in (5). l1-norm is concerned with the
value of entries and not the quantity. A vector with a small
l1 value have numerous small-valued nonzero entries in every
position that eventually results in large l0-norm. A restriction
in l1-norm in LASSO generates sparse solution

min
θ

‖x − ψθ‖2
2 s.t. ‖θ‖1 ≤ σ. (5)

where x , ψ , and θ represent the observed signal, dictionary,
and sparse coefficients, respectively, and σ 2 represents the
variance of additive white Gaussian noise in (3).

III. PROBLEM FORMULATION

This paper describes and compares two different processing
methods for defect detection; cross correlation and sparse
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reconstruction techniques. The application of sparse recon-
struction technique in the area of thermal imaging is studied in
this paper and compared with an established cross correlation
method.

A. Sparse Reconstruction

A brief background of sparse reconstruction has been pre-
sented in Section II. In (5), x[n] depicts temperature response
of the sample at a given pixel and is a column matrix of
length N . ψ represents a recorded reference signal and η
is the back-ground noise from the measurement system and
material. The aim of the reconstruction technique is to min-
imize θ . ψ is a time-shifted version of reference signal with
dimensions N × M . Sparse reconstruction LASSO algorithm
works individually on each pixels
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The LASSO problem is defined as

min
θ

‖x̂ − ψ̂θ‖2
2 + α‖θ‖1 (6)

where x̂ = (1 − α)1/2x and ψ̂ = (1 − α)1/2ψ and α varies
from 0 to 1. In the above-mentioned equation, the scalar α
is a user-selected parameter for l1 minimization problem.
The value of α determines the reconstruction accuracy and
is basically a tradeoff between sparsity and reconstruction
accuracy. It is optimized by tenfold cross-validation method,
where the N set of observation is divided into (N /100) test
sets.

A tenfold cross-validation algorithm used in the experiment
is described as follows.

1) A data is divided into 10 equal folds

x = [a1|a2|a3| . . . |a10] (7)

where x is a matrix in (2) of dimensions 1 × N , and
the folds are defined as a1, a2 . . . a10, each of dimension
1 × N/10. ψ in (2), is similarly divided into 10 folds,
each with dimension N/10 × M .

2) For k = 1 to 10, each ak is kept as validation set, and
all remaining k−1 set is kept as training set.

3) Solve equation

min
θtr

‖xtr − ψtrθtr‖2
2 + α‖θtr‖1 (8)

where xtr, ψtr, and θtr represent the training set for
cross-validation algorithm, derived from (4). Herein,
xtr represents the training set of the observed signal,
ψtr is the training set of the dictionary, and θtr repre-
sents the sparse reconstructed signal, obtained from the
training set parameters.

4) Solve equation

min
θval

‖xval − ψvalθval‖2
2 + α‖θval‖1 (9)

TABLE I

THERMAL DIFFUSION LENGTH FOR CFRP. THE PARAMETER
VALUES ([10]) USED ARE k|| = 4 W/m ◦C; ρ =

1600 kg/m3; AND c = 1200 J/kg ◦C

where xval, ψval, and θval represent the validation set
for cross-validation algorithm, derived from (4). Herein,
xval represents the validation set of the observed signal,
ψval is the validation set of the dictionary, and θval
represents the sparse reconstructed signal, obtained from
the validation set parameters.

5) The cross-validation error, e for a tenfold cross-
validation algorithm is defined as

e = 1

10

10∑

k=1

(θval − θtr)
2 (10)

where e is the cross-validation error calculated using θtr
and θval. They are the sparse reconstruction coefficient
obtained from (4) and (10), respectively. The value of α is
optimized by calculating e for all values of α and selecting α
the minimum e. The α is optimized for each pixel individually
by repeating the cross-validation algorithm.

B. Optimized α for Sparse Reconstruction Algorithm

Sparse reconstruction efficiency is based on an initial
selected value of α. An algorithm is formulated for optimizing
user parameter α. A sparsity-based algorithm is summarized
in Algorithm 1 and described as follows.

1) For a given pixel location x , y, the LASSO problem
described in (6) is solved.

2) A tenfold cross-validation method described in Section
III-A is used at values of α varying between 0 and 1 with
a step size of 0.1 for calculation of MSE in (10). α with
minimum MSE is used for solving LASSO problem.

3) The entire algorithm is repeated for all pixel locations.

Algorithm 1 Sparse Reconstruction Algorithm With
Optimized α

for all pixel location in x and y do
for all α in 0.09 to 0.99 at an increment of 0.1 do

(I) solve LASSO problem
(II) define a tenfold cross-validation problem for calcu-
lation of e.

end for
select α with minimum e. repeat for all x and y pixels.

end for

The complete algorithm is repeated individually for each
pixel for a final sparse reconstructed image. The algorithm is
compared with cross correlation algorithm.
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Fig. 2. CFRP sample.

C. Cross Correlation Method

The IR camera recorded video is processed with two
processing techniques. The first one is a cross correlation
technique, and the second one is a sparse reconstruction
technique. The algorithm for cross correlation is as follows
and described in detail in [9].

1) The time-temperature variation in the excited test piece
comprises of an ac or oscillatory part and a dc part
that depicts an average rise in temperature. The dc
component in thermal response and reference signal is
removed by polynomial fitting. The process is known as
offset removal

T (x, y, t) = Taccos(ωt)+ Tdc

Tdc-rem(x, y, t) = T (x, y, t)−
N∑

i=1

ai (x, y)t i (11)

where Tac(x, y, t) is the ac and Tdc is the dc part of
the recorded temperature of test-piece. Tdc-rem(x, y, t)
is the offset removed temperature of the test piece at
pixel (x,y). It represents only the ac component of the
temperature.

2) The offset removed reference signal is cross-correlated
in time domain with the thermal response signal for a
resultant pulse compressed signal [9]

xcross-corr[n] =
N∑

k=1

ψ[k]Tdc-rem[n − k]. (12)

Here, in (12), x represents cross-correlated term, ψ rep-
resents reference signal, and Tdc-rem represents the offset
removed temperature response of the test piece.

The algorithm is applied individually to each pixels to generate
pulse compressed video. The algorithm is based on removing
the phase difference between excitation reference signal and
thermal response of the test piece to generate a peak pulse [9].
The method, however, suffers from pulse broadening.

Fig. 3. Experimental setup diagram [10].

Fig. 4. Normalized timing diagram of compressed pulse for defects with
varying depth and 6 mm diameter. (a) Full timing diagram. (b) Zoomed timing
diagram.

Fig. 5. Thermogram variation from compressed video with frame.

IV. EXPERIMENT

A. Excitation Signal

The excitation signal is a quadratic frequency modulated
signal within a band of frequency from 0.01 to 0.09 Hz for
a duration of 800 s. The excitation signal is depicted in the
following equation:

xexc(t) = sgn(sin(2π(φ(t)))

φ(t) = 2 ∗ π
(

f0 + k

3
t2

)

t

f (t) = dφ

dt
= 2π( f0 + kt2) (13)
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Fig. 6. Sparse reconstructed thermal images obtained at different α and sparse coefficient variation with time at a selected pixel. (a) α = 0.09. (b) α = 0.19.
(c) α = 0.29. (d) α = 0.39. (e) α = 0.49. (f) α = 0.59. (g) α = 0.69. (h) α = 0.79. (i) α = 0.89. (j) α = 0.99.

Fig. 7. Variation of parameters with user defined parameters α at a single pixel in the image. (a) Sparsity variation with α. (b) l1-norm variation with α.
(c) Computation time variation with α.

where φ is the phase, f0 is the initial frequency, k is the rate
of frequency change, and f (t) is the instantaneous frequency.
The thermal diffusion length corresponding to the excitation
frequency range is depicted in Table I. Thermal diffusion
length is defined as the distance over which the amplitude
of thermal waves reduces to (1/eth) of its surface and is
calculated by the following equation:

μ(t) =
√

2 × k

ω(t)ρc
(14)

where μ is the thermal diffusion length, k is the thermal
conductivity, υ = is the excitation frequency, ω(t) (angular
frequency) = 2π f (t), ρ = density, and c = specific heat.
Equation (14) depicts the variation of diffusion length with
excitation frequency as a function of time.

B. Setup

Fig. 3 depicts the experimental setup. The setup comprises
of an infrared camera, a test piece, an excitation LED source
with modulation circuitry, a reference signal acquisition setup,
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and a computer. The complete setup is described in detail
in [10]. A commercially available 40-W LED is used as an
excitation source. The LED works with a driver that converts
the in-line voltage to a 40-V 1-A dc LED driving voltage.
The LED is modulated by turning on–off through a relay
which is controlled by a microcontroller. The modulation in
LED is recorded with a light detecting resistor (LDR) and
forms the reference signal and the dictionary in processing
part. The recorded signal from LDR is processed with an
LM323 comparator to generate a digital level output against
a voltage that is adjusted with a 10-k potentiometer.

The test piece is a carbon fiber reinforced polymer (CFRP)
sample with artificially drilled cylindrical holes. The schematic
of CFRP sample is shown in Fig. 2. The sample is 7 mm thick
with 4- and 6-mm defect diameter, and defect depth varying
from 0.25 to 2.5 mm in 0.25-mm increment. The sample is
subjected to an impact damage at the center.

A FLIR SC5000M 14-bit infrared camera is used in the
experiment with a resolution of 320×240 pixels and a spectral
range of 2.5–5.1 μm. The video is recorded in external trigger
mode to maintain a time synchronization of LED excitation,
reference signal capture, and thermal response video of the
test piece for a duration of 1000 s. The frames are captured at
a rate of 1 fps with a camera integration time of 1048 μs
that corresponds to 5 ◦C–42 ◦C temperature range. The
recorded video is stored in .ptw format and processed offline
with different processing techniques described in subsequent
sections.

V. RESULT AND DISCUSSION

A. Quadratic Frequency Modulation

Fig. 4 depicts normalized timing diagram of compressed
pulse for defects with varying depth. Fig. 4(b) shows that
pulse peak time for each defect varies with defect depth.
Thus, the quantification of defects would require a multiple
frame data analysis. Fig. 5 shows thermograms for selected
frames from pulse compressed video for a quadratic frequency
modulated signal. The figure shows deeper defects appear later
in time. This is in agreement with Fig. 4(b) and earlier reported
pulse thermography work [16].

B. Sparse Algorithm

The sparse algorithm has been described in Section III-A.
In (5), x[n] is a 1 × 1000 column matrix representing tem-
perature variation obtained from the IR camera at a pixel.
The dictionary ψ is a time-shifted version of reference signal
recorded with an LDR and has a dimension of 1000 × 200.
The resultant Fig. 6 depicts the thermal images obtained with
LASSO at different initial values of α. The figure further
shows sparse coefficient variation with time for a pixel with
defect and marked in white. Fig. 7(a) shows the variation
in sparsity of sparse coefficients in Fig. 10. Sparsity, herein,
is defined as the number of zeros in the sparse matrix and
found to rise with α in Fig. 7(a). Furthermore, l1 norm in
Fig. 7(b) is defined as

∑N
i=1 |θi |, where θ is sparse coefficient

in Fig. 10 for index i. The figure shows l1-norm to reduce
monotonically with α. The change in computation time with

Fig. 8. Results from optimized α algorithm. (a) Thermal Image.
(b) Histogram depicting α for number of pixels.

Fig. 9. SNR variation with defect depth for cross-correlated video.

α is depicted in Fig. 7(c). The computation time is minimum
for α at 0.99. Sparsity is maximum and l1-norm is minimum
at this α value.

Fig. 8 depicts a resultant thermal image obtained by opti-
mizing α with algorithm described in Section III-B. The
histogram plot shows number of pixels with different values of
optimized α used in the algorithm. α with 0.99 value is used
for maximum number of pixels. α is optimized for a given
pixel by minimization of cross-validation error as is depicted
in Section III-B. α between 0.01 and 0.6 is not considered by
any of the pixels as an optimized value with the mentioned
algorithm.

C. SNR Calculation

The SNR calculation for a compressed pulse video with a
different set of defects in a thermal image is calculated by a
sequence of steps. For a particular defect, the SNR algorithm
is applied on a specific frame or thermograms as per the
occurrence of pulse peak time from Fig. 4.

1) The surface nonuniformity in thermal images are
removed by third-order surface fitting. The resul-
tant nonuniformity removed image is used for further
processing.

2) Signal Generation: Each defect location is individually
identified and fit with a Gaussian surface. The amplitude
of the Gaussian fit surface is defined as a signal.

3) Noise Generation: A signal location is defined by a
logical argument that states that a pixel value, greater
than the standard deviation between fit surface and
raw image is defined as a signal. The identified signal
location is zeroed, and remaining pixels are used for
calculation of rms noise.

Fig. 9 depicts SNR variation with defect depth for defects
with diameter 6 and 4 mm, respectively. The figure shows
the SNR to reduce with defect depth. This is attributed to
the attenuation of thermal waves with depth. The thermal
wave propagation phenomenon is described in Section IV.
Furthermore, the SNR of defect with diameter 4 mm is much
lower and follows from 3-D diffusion of thermal waves,
described in [40].
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Fig. 10. Variation of thermal image SNR parameters with α. (a) RMS background noise in thermal images variation with α. (b) SNR variation with defect
depth for a defect diameter 4 mm. (c) SNR variation with defect depth for a defect diameter 6 mm.

The image quality of resultant thermal images in Fig. 10 is
determined by its SNR value. Fig. 10(a) depicts the variation
in background rms noise of thermal images in Fig. 10 with α.
The SNR variation with defect depth for different α is depicted
in Fig. 10(b) and (c). The figures show that SNR curve follows
the same trend as in Fig. 9 and reduces monotonically with
defect depth. The SNR for each of the defects is the maximum
at α 0.99. This follows from the fact that the rms noise in
Fig. 10(a) is minimum at 0.99 and found to reduce with α.

D. Defect Diameter Estimation

The defect diameter estimation method follows from the
SNR calculation algorithm in Section V-C. The Gaussian
surface fitting on each individual defect is illustrated in the
following equation:

g(x, y) = A exp

(

−
(

x − x0

2sx

)2

−
(

y − y0

2sy

)2
)

(15)

where A is the amplitude of the Gaussian surface, x0 and y0
represent the center of the Gaussian surface peak, sx and sy

represent the standard deviation and determine the width of the
Gaussian curve along x- and y-axes, respectively. For a cross
correlation algorithm, the gauss fitting method is a multiframe
process. A defect diameter is estimated for a frame with pulse
peak time that varies for each defect. The pulse peak time for
each defect is depicted in Fig. 4.

A Gaussian surface is a 3-D representation for a circular
defect, with x0 and y0 representing the center point of the
defect, and sx and sy representing the diameter of the defect
along the x- and y-directions. Fig. 11 depicts the apparent
defect diameter for 4- and 6-mm defects with cross correlation
and sparse reconstruction algorithm. The defect diameter is
defined as twice the average of sx and sy . The figure shows
that the defect diameter appears larger for cross correlation
algorithm when compared with sparse algorithm. This proves
that the sparse reconstruction is a useful processing tool for
detection and resolution of two closely spaced defects. Fur-
thermore, the image shows an apparent rise in defect diameter
with depth. This is attributed to a reduction in defect amplitude
with depth that leads to a flatter gauss fit. Hence, defect
diameter estimation varies as a function of defect depth, and
a prior knowledge of defect depth is required for its accurate
diameter estimation. However, it is important to mention that
the accuracy of measurement of sx and sy for a fit surface is
highly dependent on the initial gauss surface fit values.

Fig. 11. Defect diameter estimation for defects with diameter (a) 4 mm
and (b) 6 mm with cross correlation and sparse reconstruction algorithm.
(a) Defect diameter - 4 mm. (b) Defect diameter −6 mm.

VI. CONCLUSION

This paper proposes and implements the application of
sparse reconstruction method on thermal imaging for defect
detection. This paper further compares the aforementioned
processing tool with established cross correlation in the area
of thermal imaging defect detection to draw specific conclu-
sions. A sparse reconstruction tool generates an image, thus
compressing a 4.08-GB compressed pulse video to a few kB.
The memory efficient processing tool further simplifies the
data analysis, when compared with complex cross-correlated
video output.

The variation in sparse reconstruction coefficients with
user parameter α is studied and found that the number of
nonzero component, l1-norm, and computation time reduces
considerably at α = 0.9 and 0.99. Furthermore, SNR for
defects with varying depth is much larger for α with value
0.9 and 0.99. This is due to considerably less background
noise at aforementioned α. Furthermore, the SNR for sparse
reconstruction is much higher, when compared with cross
correlation method.

An algorithm is formulated to optimize α and is selected
with a minimum cross-validation error, which is calculated
with tenfold cross-validation problem. The algorithm is indi-
vidually used on each pixel. The resultant sparse reconstructed
and cross-correlated images are tested for quantifying defect
diameters. The apparent defect diameters are found to vary
with defect depth. Compared to cross correlation algorithm,
results show lower defect enlargement with the sparse algo-
rithm. This concludes that sparse reconstruction is useful for
resolving multiple close-spaced defects.
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