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Abstract— Vehicle and license plate detection plays an impor-
tant role in intelligent transportation systems and is still a
challenging task in real applications, such as on-road scenarios.
Recently, Convolutional Neural Network (CNN)-based detectors
achieve the state-of-the-art performance. However, it is difficult
to efficiently detect the vehicle and license plate simultaneously
in most cases. With a single network, the vehicle can affect
the detection of the license plate due to the inclusion relation.
In this paper, we propose an end-to-end deep neural network
for detecting the vehicle and the license plate simultaneously
in a given image, where two separate branches with different
convolutional layers are designed for vehicle detection and license
plate detection, respectively. In consideration of the license plate’s
small size and fairly obvious features as well as the vehicle’s
various size and rather complex features, the license plates are
detected with low-level features and the vehicles are localized
with multi-level features in corresponding convolutional layers.
Moreover, a task-specific anchor design strategy is employed to
obtain better predictions. Besides, the attention mechanisms and
feature-fusion strategies are utilized to improve the detection
performance of small-scale objects. A variety of experiments on
real datasets and public datasets verify that our proposed method
has fairly high accuracy and efficiency.

Index Terms— Vehicle detection, license plate detection,
end-to-end, multi-branch, attention.

I. INTRODUCTION

AUTOMATIC vehicle and license plate detection are
important in intelligent transportation systems. A variety

of methods have been proposed in the literature. However,
license plate detection is still considered as a challenging
task in real applications because of the small size of captured
license plates, illumination variations in the scene and view-
point changes of cameras. Similarly, the problem of vehicle
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detection in real scenes is also unsolved because of vehicle
size changes, vehicle poses variations and complex scene
backgrounds.

Before the deep learning era, most object detection methods
need to specifically design hand-engineered features for dif-
ferent objects. For the vehicle, most detection approaches [1]
usually utilized information about symmetry, color, shadow,
geometrical features (e.g., corners, horizontal/vertical edges),
texture features and vehicle lights. As for the license plate,
the available detection methods [2] can be roughly classified
into five categories: edge-based, connectivity-based, texture-
based, color-based and character-based methods. Recently,
the deep Convolutional Neural Networks (CNNs) can learn
features automatically from a large amount of training data.
In [3], [4], CNN-based methods are utilized to detect the
vehicle only, and [5]–[7] are proposed to detect the license
plate directly. Moreover, some methods use a cascaded strategy
to detect the vehicle and the license plate, where vehicles
are firstly detected, and the license plate is correspondingly
localized in each vehicle region [8]–[10]. However, the above-
mentioned methods either regard vehicle detection and license
plate detection as two independent tasks, or detect the license
plate in cascaded ways, which are less efficient. Moreover, in a
cascaded way, the detection of the license plate depends on the
quality of the vehicle proposals, and it is certain to be failed
if the corresponding vehicle is not detected. One better way is
to detect the vehicle and the license plate simultaneously as a
multi-task learning system.

There have been several powerful object detection methods,
e.g., SSD [11], YOLO [12] and Faster R-CNN [13]. However,
we find it difficult to detect the vehicle and license plate
simultaneously using these prestigious frameworks. As seen
in Figure 1, some distinct license plates are unexpectedly
failed to be detected, and the confidence of detected ones is
also at a low level. In deep neural networks, the vehicle and
the license plate generally share the same head networks and
anchor boxes. Thus, license plate detection is easily affected
by the vehicle because of their inclusion relation. In this
paper, we propose an end-to-end multi-branch attention neural
network for simultaneously detecting the vehicle and the
license plate in a given image, where two separate branches
with different convolutional layers are stemmed from the
backbone network to detect the vehicle and the license plate
respectively. In general, the low-level features of CNNs have
high resolution with weak semantics and are important to
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Fig. 1. Examples from SSD and our method, first row for SSD and second row for ours. With SSD, some small-scale vehicles and license plates are not
detected, and the confidence of detected license plates is at a low level. All recognizable license plates are manually blurred to protect the privacy.

small object detection. Meanwhile, high-level features are
semantically strong but with low-resolution, and these features
have better feature representation of large objects [14], [15].
Intuitively, the license plates usually have a relatively small
size and fairly simple features, while the vehicles have various
scales and rather complex features. Accordingly, we assign
low-level features for license plate detection and multi-level
features for vehicle localization.

Moreover, a task-specific anchor design strategy is also
applied for vehicle and license plate detection. For both two
kinds of objects, we select better anchor priors instead of hand-
picked ones based on the clustering method [16], [17], which
can make it easier to learn better predictions, as detailed in
Section III-C. Besides, as shown in Figure 1, small objects
are always failed to be detected, especially for the license
plates and vehicles in the distance. Inspired by [18], we add
the spatial attention mechanisms into each branch to facili-
tate focusing on the regions of interest (ROIs). Additionally,
we apply the feature-fusion strategy of combining both high-
resolution, semantically weak features and low-resolution,
semantically strong features to leverage the pyramidal feature
hierarchy of CNNs, as detailed in Section III-D.

In summary, our paper has three main contributions.
• We propose an end-to-end multi-branch attention neural

network for detecting the vehicle and the license plate
simultaneously, which has two separate branches with
different convolutional layers for vehicle detection and
license plate detection respectively. In this way, the vehi-
cle’s effects on the license plate are eliminated.

• We collect three large-scale datasets with annotating both
vehicles and license plates, where one is a private dataset
and the other two are re-annotated from the public
datasets. Supplementary materials and two re-annotated
datasets are now available at https://github.com/
chensonglu/Vehicle_License_Plate_Datasets.

• we employ the attention mechanisms and feature-fusion
strategies to enhance the detection of the small-scale
objects. Moreover, we apply a task-specific anchor design
strategy to generate better predictions for vehicle and
license plate detection. Finally, extensive experiments
validate the effectiveness and efficiency of our method.

The rest of this paper is organized as follows. Related
work is described in Section II. In Section III, we describe
our method in details. Section IV presents the comparative
experiments. Final remarks are presented in Section V.

II. RELATED WORK

Vehicle and license plate detection has drawn considerable
research attention. Previously, most methods often extracted
hand-engineered features, such as texture features and edge
features, for object detection. Recently, people usually utilize
Deep Neural Networks (DNNs) for feature representation.

CNNs for Object Detection Over the past few decades,
methods with economic features and inference schemes have
been popular for efficiency, such as DPM [19]. In recent
years, the DNNs have been driving the advance of object
detection due to the powerful ability of feature representation,
and the CNN-based approaches have achieved state-of-the-
art performances. R-CNN [20] is a milestone for object
detection, which utilizes Selective Search [21] to generate
excessive region proposals and then apply CNNs to classify
each region. The follow-up Faster R-CNN [13] proposes the
region proposal network (RPN), and combines it with the
detection block [22] into an end-to-end detection framework
with two stages. Moreover, YOLO [12] and SSD [11] can
directly predict/regress object bounding boxes using an end-
to-end network in a single shot, where SSD [11] can detect
the object of various scales by combining multi-scale features.
YOLOv2 [16] proposes a dimension clustering strategy to
automatically find better priors for better detections. FPN [23]
attempts to create feature pyramids that have strong semantics
at all scales by combining low-level features and high-level
features. FAN [18] utilizes an attention mechanism to improve
the detection of the occluded faces [24].

Vehicle Detection [25] utilizes hand-engineered texture
features for vehicle detection. [3] optimizes a CNN architec-
ture for vehicle detection under different weather conditions.
[4] applies a SSD-based network to detect vehicles on the
expressway, and mainly focuses on the detection of small-
scale and motion-blurred vehicles.

Direct License Plate Detection [26] proposes a novel
method to detect the license plate by principal visual word,
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discovery and local feature matching, which can adaptively
cope with different changes of the license plate, such as
rotation, scaling, illumination. Reference [27] presents a robust
and efficient approach for license plate detection, which firstly
accelerates the license plate localization using an effective
image down-scaling method, and then utilizes dense filters
to extract candidate regions, and finally identifies the true
license plates using a cascaded classifier. Reference [5] utilizes
customized YOLO [12] and YOLOv2 [16] to handle license
plate detection in the wild, which deals with the license plates
captured under conditions like bad weathers, lighting, traffics.
Reference [6] presents a method for license plate detection
aiming at images captured with low-resolution cameras from
a long distance. Reference [7] proposes a CNN-based MD-
YOLO framework for multi-directional license plate detection.

Cascaded License Plate Detection [8] proposes a method
for license plate detection using vehicle region extraction,
which utilizes R-CNN [20] to generate vehicle proposals
and then localize the license plate in each vehicle region.
Reference [9] proposes a cascaded convolutional neural
network for license plate detection, which firstly applies
the RPN module to generate candidate vehicle proposals
and then detects the license plate based on each proposal.
Reference [10] introduces a novel CNN framework capable
of detecting and rectifying multi-directional license plates in
a cascaded way.

III. METHODOLOGY

We propose an end-to-end multi-branch attention neural
network to detect vehicle and license plate simultaneously,
where two separate branches with different convolutional
layers are designed for vehicle detection and license plate
detection respectively. The license plates are detected with
low-level features and the vehicles are localized with multi-
level features. Moreover, a task-specific anchor design strategy
is applied for better object predictions. Besides, we employ the
attention mechanisms and feature-fusion strategies to improve
the recall of small-scale cases. The overall network archi-
tecture is demonstrated in Figure 2. Note: The depth of the
attention masks, classification, and regression head layers is 1,
and Figure 2 is only for demonstration.

A. Base Network

The backbone network is inherited from the popular
VGG-16 [28], keeping convolutional layers from conv1_1 to
conv5_3. The last two fully-connected layers (fc6, fc7) are
converted into convolutional layers and extra layers from
conv6_2 to conv9_2 are also added for semantically stronger
feature extraction, which is the same with SSD [11] for a fair
comparison. The details of the backbone network are described
in the supplementary materials.

B. Detection Branch

It is difficult to detect the vehicle and license plate simulta-
neously using the same head networks (classifier and regres-
sor) and anchor boxes because of the inclusion relation.
The vehicle can easily affect the detection of the license

Fig. 2. Network architecture. The backbone network is inherited from
VGG-16 with four extra layers. The license plates are detected with low-
level features, and the vehicles are localized with multi-level features, where
conv4_3 and fc7 are shared. Each detection branch holds its head layers
for classification and bounding box regression, where the attention module
is adopted at low-level features to highlight the foreground information.
Moreover, the feature fusion module is applied to enhance the semantics of
the lower layers in each detection branch.

plate when these two objects act on the same anchor boxes
through a shared classifier and regressor. Thus, it is necessary
to decouple the relationships between the two objects, and
vehicle and license plate detection can be separated into
different branches. Each branch holds its head network for
object classification and bounding box regression respectively.
Moreover, low-level features can be useful for license plate
detection due to the small size and fairly obvious features, and
multi-level features can be used for vehicle localization due to
the various scales and rather complex features. As illustrated
in Figure 2, we assign several relatively shallow layers to the
license plate detection branch and allocate dispersed layers to
the vehicle detection branch. Moreover, the scale of features
in different layers may be quite different, making it difficult to
combine them for detection directly. The shallow features need
to be normalized before combining with the deep features to
avoid parameter imbalance. More details of normalization are
described in the supplementary materials.

C. Anchor Design Strategy

The performance of the sliding-window based methods
largely depends on the selection strategy of the anchor boxes.
Even the network can learn to adjust the boxes appropriately,
better anchor priors make it easier to predict better detec-
tion and make the network converge faster. However, with
SSD [11], the scale and aspect ratio of the anchor boxes are
all set manually according to empirical experience. Under
this mode, it is difficult to cover objects with uncommon
scales and aspect ratios, such as license plates and vehicles
in the distance. Inspired by [16], [17], one can automatically
obtain more suitable scales and aspect ratios of the anchor
boxes by using anchor clustering. Firstly, we run K-means
clustering to get the anchor priors based on YOLOv2 [16],
where the distance metric is shown in (1) (GT means
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Fig. 3. Attention supervision. The vehicles and license plates are filled with 1
respectively for each detection branch, and the background is filled with 0.
The first column shows the original images. The second and third columns
demonstrate the filled ground truths of vehicle and license plate respectively.
All recognizable license plates are manually blurred to protect the privacy.

ground truth). Then, all priors are sorted by area from small to
large. Finally, the sorted priors are allocated to different layers
like YOLOv3 [17], where small-scale anchors are placed on
the low-level feature maps and large-scale anchors are placed
on the high-level feature maps. The center of each anchor
box is set to

(
i+0.5
|sk | , j+0.5

|sk |
)

, where |sk | is the size of the k-th

feature map, i, j ∈ [0, |sk |).
d(GTbox, centroid) = 1 − IoU(GTbox, centroid) (1)

Moreover, the average IoU [16] can be calculated with the
closest centroid without considering the spatial position of
the anchor boxes. The average IoU is computed under the
ideal conditions. However, anchor boxes of SSD-based [11]
methods are scattered in a sparse way, where the average IoU
should be calculated with the spatial anchor boxes and we
call it spatial IoU. More details about the anchor clustering
are provided in the supplementary materials.

D. Attention and Feature Fusion

According to Figure 1, in real scenes, it is challenging to
detect small-scale objects, especially for the license plates and
vehicles in the distance. As mentioned in [18], the spatial
attention mechanism can highlight the foreground information
and keep the context information. We add a segmentation-
like mask before the classification and regression module.
Only the two shallowest layers in each detection branch
adopt the attention module because deeper layers have large
receptive fields and easily bring in noises. For both branches,
the attention module helps to highlight features of the fore-
ground regions and diminish the background regions. The
attention supervision information is simply obtained by filling
the ground truth as shown in Figure 3 and the attention loss
is simply pixel-wise sigmoid cross-entropy between the filled
ground truth and the predicted mask. Finally, the attention
maps are fed into exponential operation and then have dot
product with the feature maps.

Figure 4 demonstrates two examples of the predicted atten-
tion mask. As can be seen, it tends to focus on the center
of objects. Moreover, the attention mask of high-level fea-
ture maps can cover more RoIs because of larger respective
fields. In each detection branch, the attention module helps
to enhance the foreground information, which is favorable to
small-scale objects, as shown in Section IV-E.

Fig. 4. Attention mask. Each row shows one original image resized to
300*300, covered with the attention mask. The first two columns demonstrate
the attention masks of the vehicle, and the last two columns demonstrate the
attention masks of the license plate.

Fig. 5. Feature fusion building block illustrating the lateral connection and
the top-down pathway.

Furthermore, fusing high-level features with low-level
features [23], [29], [30] can enhance the semantic
representation. ION [29] achieves feature fusion by simple
concatenation, while FPN [23] proposes using element-wise
addition. FSSD [30] proposes concatenating features together
to generate a series of pyramid features for object detection.
To further reduce computational complexity, we simply utilize
the feature fusion strategy in the two shallowest layers of
each detection branch, as illustrated in Figure 2. To achieve
the speed-accuracy tradeoff, we adopt FPN [23] as the
feature fusion module. The upper layer is firstly up-sampled
by a factor 2 using nearest-neighbor interpolation, and
then undergo a 1*1 convolutional layer to reduce channel
dimensions. Considering the different scales between different
layers shown in Section III-B, the upper layer needs to be
rectified by ReLU and then merged with the normalized low-
level features by element-wise addition. Figure 5 illustrates
the building block of merging operation between lateral
connection and top-down pathway. ION [29] and FSSD [30]
are illustrated in the supplementary materials.

E. Training Objective

The optimization function is composed of three parts. For
the classification regression module, we adopt the same loss
function as SSD [11]. Let c be the confidence, l be the
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L(x, c, l, g, m) = 1

N
(Lcon f (x, c) + αLloc(x, l, g)) + β

K∑
k∈K

La(x, mk
a, mk

g) (2)

Ltotal(x, c, l, g, m) = LV ehicle(x, c, l, g, m) + γ L L P(x, c, l, g, m) (3)

predicted box, g be the ground truth box, N be the number of
matched anchor boxes. For the attention module, we calculate
the pixel-wise sigmoid cross-entropy between the generated
attention mask and the ground truth. Let K be the index of all
used pyramidal features, mk

a be the attention mask generated
per level, mk

g be the ground truth described in Figure 3. α
and β are the weighting parameters to balance these terms.
We utilize two separate optimization functions for the vehi-
cle detection branch and the license plate detection branch
respectively. These two branches undergo the separate back-
propagation process, and γ is the weighting factor to adjust
two branches. The loss function is defined as (2) and (3),
shown at the top of this page, and we simply set α = γ = 1
and β = 3.

We adopt the smooth L1 loss [13] and the softmax loss
for regression and classification respectively and employ
the pixel-wise sigmoid cross-entropy for attention loss. Let
Kt = 2 be the class number when training vehicle
and license plate together with shared head layers, Ct =
{V ehicle, L P, Background} be the classes. With SSD [11],
the confidence of the n-th object is calculated by (4).

con f n
t = eCn

t

∑Kt+1
m=1 eCm

t
(4)

Let KV = 1 be the class number of the vehicle detection
branch, CV = {V ehicle, Background} be the classes. Let
KL P = 1 be the class number of the license plate detection
branch, CL P = {L P, Background} be the classes. With
our method, the confidence of the n-th object is calculated
separately for each detection branch by (5) and (6).

con f n
V = eCn

V

∑KV +1
m=1 eCm

V
(5)

con f n
L P = eCn

L P

∑KL P +1
m=1 eCm

L P
(6)

As for the regression module, it predicts the offsets of posi-
tion and scale to the anchor boxes. Suppose a anchor box d =
(xd , yd , wd , hd ) and the predicted values (�x,�y,�w,�h),
the box b = (x, y, w, h) can be obtained as follows.

x = xd + wd�x (7)

y = yd + wd�y (8)

w = wdex p(�w) (9)

h = hdex p(�h) (10)

IV. EXPERIMENTS

We adopt VGG-16 [28] as the base model, which is pre-
trained on the ILSVRC CLS-LOC dataset [31]. The baseline

network follows SSD300 [11]. All the training images are
augmented with random crop and distortion, etc, follow-
ing the same scheme as [11]. Our model is trained with
300 × 300 images using Adam [32] for 40k iterations. The
momentum parameters are set to β1 = 0.9 and β2 = 0.999.
Learning rate, weight decay and batch size are set to 10−4,
5 × 10−4, 32 respectively. All the experiments are carried on
a PC with 4 NVIDIA TITAN Xp GPU.

A. Datasets

1) Datasets With Vehicles and License Plates: Datasets are
required to be labeled with the position coordinates of the
vehicles and the license plates. Details about data collection
and annotation are described in the supplementary materials.

VALID We employ two auto-mobile data recorders to col-
lect videos on the road of a Chinese city1 with the resolution
of 720 × 1280. For simplicity, we name our dataset VALID
(Vehicle And LIcense plate Dataset). A total of 887 images are
collected and carefully annotated. 78 images from one recorder
are used as the test set. The rest 809 images from another
recorder are randomly divided into the training set and the
validation set by 7:3.

DETROIT We re-annotate a subset from Open Image
Dataset (OID) V4 [33], which contains “Car” and “Vehi-
cle registration plate”. For simplicity, we call it DETROIT
(DatasET fRom Open Image daTaset). The images of
DETROIT are obtained from the Internet, and the size and
aspect ratio varies greatly. 386 images from the OID validation
set are used as the test set. 1113 images from OID test set are
randomly divided into the training set and the validation set
by 7:3

DOC We combine vehicle position form Cars [34] and
license plate position from [10] to obtain DOC (Dataset frOm
Cars). A total of 105 images are obtained. 70% are randomly
selected as the training-validation set, and the rest 30% is used
as the test set. The images of DOC are also obtained from the
Internet, and the size and aspect ratio varies greatly.

2) Datasets With Vehicles or License Plates: Moreover,
to verify the effectiveness of each detection branch, datasets
with annotations of only vehicles or license plates are needed.

Udacity Dataset 1 Udacity self-driving dataset 12 contains
over 65000 labels across 9420 frames collected from the
cityscape. All labels of “Car” and “Truck” in Udacity Dataset 1
are transformed into “Vehicle”, and all images are randomly
divided into the training-validation set and test set by 7:3.

AOLP-LE AOLP-LE [35] was collected in the on-road
scenario for license plate detection and recognition. All

1Zhuhai, China
2https://github.com/udacity/self-driving-car/tree/master/annotations
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TABLE I

DETECTION RESULTS (%) OF TRAINING VEHICLE AND LICENSE PLATE
SEPARATELY OR SIMULTANEOUSLY ON THE TEST SET OF VALID

TABLE II

DETECTION RESULTS (%) ON THE PROCESSED TEST SET (FIGURE 6)
OF VALID WITH SSD300 AND TWO BRANCHES (TB MEANS TWO

BRANCHES AND DIS LP MEANS DISTRIBUTED LICENSE PLATES.)

757 images are randomly divided into training-validation and
test set by 7:3.

B. Observed Problem

We find it difficult to detect the vehicle and the license plate
simultaneously using SSD [11], where license plate detection
is largely affected by the vehicle. To evaluate the performance
of the detection results, we adopt the general AP (Average
Precision) as the evaluation protocol. To be specific, we follow
the 11-point computation of the VOC2007 [36], where the
detected bounding box is considered as correct if the IoU with
the ground truth is more than 0.5.

Table I demonstrates the detection results on the test set of
VALID with SSD300 [11] when training vehicle and license
plate separately in two independent networks or simultane-
ously in one network. From the table, we can see that the
AP of the license plate drops more than 14% when training
vehicle and license plate together. Meanwhile, the AP of the
vehicle is not affected. More experiments about the observed
problem are described in the supplementary materials.

To illustrate the vehicle’s effects on the license plate, all
license plates are randomly distributed to other places to
decouple the relationship between the vehicle and the license
plate, making sure the distributed license plates are not over-
lapped with vehicles and each other. The license plates in
the vehicles are replaced with the mean of ImageNet [31],
as shown in Figure 6. From the first two rows of Table II,
we can see that removing the license plate does not affect
the vehicle. However, the performance of the license plate
improves a lot after separating it from the vehicle, almost
having the same performance as training license plate alone
in Table I.

C. Experiments With Detection Branch

As shown in Figure 1, with SSD [11], the confidence of
the license plate is at a low level due to the inclusion relation
of the vehicle and the license plate. When training vehicle
and license plate with shared head layers, the confidence

Fig. 6. Two Examples from VALID. The first column shows only removing
the license plate by filling it with the mean of ImageNet. The second column
shows further distributing the license plate randomly to other places. All
recognizable license plates are manually blurred to protect the privacy.

TABLE III

DETECTION RESULTS (%) OF TRAINING VEHICLE AND LICENSE PLATE ON
THE VALIDATION SET OF VALID WHEN SHARING CLASSIFIER AND

REGRESSOR, ONLY SHARING REGRESSOR AS WELL AS

SEPARATING BOTH CLASSIFIER AND REGRESSOR

of each object is calculated as (4). Due to the inclusion
relation, the classifier tends to classify candidate anchor boxes
as vehicles. Furthermore, with SSD [11], the regressor is
also class-agnostic, which can make the regression para-
meters unstable because they are influenced by the vehicle
and the license plate simultaneously. Based on this, we first
separate the classifier for the vehicle and the license plate
as (5) and (6), and then also separate the regressor for two
objects into two independent detection branches. Table III
demonstrates the detection results of sharing classifier and
regressor, only sharing regressor as well as separating both
classifier and regressor, where C_shared/C_separated means
sharing/separating classifier, and R_shared/R_separated means
sharing/separating regressor. It can be seen that the perfor-
mance of the license plate improves a lot after separating the
classifier, which proves that the vehicle can affect license plate
detection. Besides, the performance of the vehicle drops a bit
after separating the classifier because we intuitively think the
license plate can influence more on the regressor. Moreover,
the performance of the vehicle and the license plate obtains
further improvement after separating the regressor because of
independent detection branches.

In consideration of the license plate’s small size and fairly
obvious features as well as the vehicle’s various size and rather
complex features, the license plates are detected with low-
level features and the vehicles are localized with multi-level
features, as shown in Figure 2. More details are described in
the supplementary materials.

From the last row of Table II, our method achieves com-
parative performance with SSD [11] on the processed test

win8.1
Typewritten text
IEEE Transactions on Intelligent Transportation Systems  Early Access  August 2019



TABLE IV

ABLATION STUDY (%) ON THE TEST SET OF VALID

Fig. 7. Anchor clustering. We select 12 cluster centroids for the vehicle
and 10 cluster centroids for the license plate. There are several representative
cluster centroids of the vehicle and the license plate in the bottom-right corner.

set of VALID. Furthermore, from Table IV, we can see that
detecting vehicle and license plate with two branches largely
improves the detection performance of the license plate, almost
achieving the performance of training license plate alone.

D. Experiments With Anchor Design Strategy

We apply K-means clustering on the training set of VALID
to generate anchor priors of the vehicle and the license plate
respectively. With SSD [11], altogether 30 kind of anchor
boxes are adopted, denoted as Assd = {4, 6, 6, 6, 4, 4} for
6 head layers respectively. As demonstrated in Figure 7,
we select 12 cluster centroids for the vehicle and 10 clus-
ter centroids for the license plate, denoted as AV ehicle =
{4, 6, 1, 1, 1, 1} and AL P = {4, 6} respectively. For each
branch, we assign a close number of anchor boxes with
SSD [11]. For the vehicle detection branch, the last 4 head
layers share 2 cluster centroids. From Table V, the average
IoU and spatial IoU of the license plate are all at a low level
using the anchor design strategy of SSD. Our anchor clustering
method achieves higher average IoU [16] and spatial IoU with
fewer cluster centroids and anchor numbers, especially for the
license plate. Furthermore, due to better matching with the
ground truths, our strategy makes the network converge faster.

More details of our anchor design strategy are described in
the supplementary materials.

E. Experiments With Attention and Feature Fusion

The spatial attention mechanism can highlight foreground
information for better detection. As shown in Figure 3,
the attention supervision is simply obtained by filling the
ground truths. The predicted attention mask (Figure 4) is
added before the classification and regression module, where
the attention maps are fed into exponential operation and
then have dot product with the feature maps. In this way,
the regions of the vehicle and license plate are enhanced while
the background is kept. Considering that deeper layers have
larger receptive fields, attention on these layers may bring in
extra noises. Only the bottom two layers of each branch are
employed with attention. Furthermore, we also simply apply
the feature fusion strategy (Figure 5) between the bottom two
layers of each branch, as shown in Figure 2. More details are
described in the supplementary materials.

Both the attention mechanism and feature-fusion strategy
improve the detection performance for both two objects,
as demonstrated in Table IV. However, the detection of the
vehicle and license plate in real scenes is still unsolved
due to size changes, pose variations and viewpoint changes,
where scale-aware [37], graph matching [38]–[40] and multi-
directional detection [7] methods can be consulted in the
future.

F. Comparative Experiments

For VALID, DETROIT and DOC, we compare Faster
R-CNN3 [13], YOLO [12], YOLOv2 [16], YOLOv34 [17]
and SSD5 [11] with our proposed method. The backbone
of Faster R-CNN and SSD is set to VGG-16 [28], while
the backbone of YOLO(v1-v3) remains unchanged. For our
method, the experiment settings follow the settings of VALID,
including the anchor clustering centroids.

As shown in Table VI, whether training vehicle and license
plate separately or together, our method obtains the best per-
formance for both three datasets. Moreover, with our method,

3https://github.com/jwyang/faster-rcnn.pytorch
4https://github.com/pjreddie/darknet
5https://github.com/amdegroot/ssd.pytorch
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TABLE V

AVERAGE IOU (%) AND SPATIAL IOU (%) (NA MEANS ANCHOR NUMBERS.)

TABLE VI

DETECTION RESULTS ( AP0.5 , %) ON THE TEST SET OF VALID, DETROIT AND DOC

the performance of the license plate improves greatly for both
three datasets.

For other methods, except YOLOv3, they all have similar
phenomena with SSD300 when training vehicle and license
plate together. License plate detection is largely affected by
the vehicle, while the vehicle is less affected. YOLOv3 divides
the input images into many grids and each grid is responsible
for detecting the object, so license plate detection is almost
unaffected. For Faster R-CNN, the performance of the license
plate drops dramatically for both three datasets, because Faster
R-CNN is a two-stage network and license plate detection can
be affected by the vehicle in both two stages.

Note: we do not experiment with large input images and
more powerful backbone networks, because we hope to reduce
the inference time and develop a real-time system for real
applications.

G. Additional Experiments

To evaluate the effectiveness of each detection branch, two
independent networks for vehicle detection and license plate
detection are trained separately, where one network only has
the vehicle detection branch and another one only has the
license plate detection branch. Two networks are trained with

TABLE VII

DETECTION RESULTS ( AP0.5, %) ON THE TEST SET
OF UDACITY DATASET 1 AND AOLP-LE

Udacity Dataset 1 and AOLP-LE respectively. The experiment
settings are the same as VALID, including the anchor cluster-
ing centroids. Table VII proves our method of high accuracy
and good generalization capability.

H. Analysis

We further evaluate whether the performance gains come
from the better anchor design strategy. All 22 kind of anchors
are applied to SSD300 [11] in a dense way, denoted as
Assd(dense) = {8, 12, 1, 1, 1, 1}, which combines AV ehicle

and AL P together. For a fair comparison, our method only
conducts the two branches and anchor clustering strategies,
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TABLE VIII

DETECTION RESULTS ( AP0.5, %) ON THE TEST SET OF VALID, DETROIT AND DOC (DENSE MEANS DENSE ANCHOR BOXES. OUR METHOD
ONLY CONDUCTS TWO BRANCHES (TB) AND ANCHOR CLUSTERING (AC), WITHOUT ATTENTION AND FEATURE FUSION.)

TABLE IX

INFERENCE TIME, PARAMETERS AND FLOPS

without the attention and feature fusion modules. Table VIII
demonstrates that the detection performance improves a lot
with dense anchors, especially for the license plate. However,
the performance of the vehicle in DETROIT declines signifi-
cantly, because the anchor centroids obtained from VALID are
over-fitting for DETROIT. With our method, it achieves better
performance for all three datasets, which proves our method
of good generalization capability.

I. Inference Time

From Table IX, we can see that only about 0.56M para-
meters and 0.49G FLOPS are increased with our method,
mainly from the feature-fusion module and the head network
of two branches. However, our method takes less inference
time, because two detection branches are running in paral-
lel. Our head networks take less MAC(Multiplication and
Addition), with 0.303G FLOPS for the vehicle branch and
0.299G FLOPS for the license plate branch, while SSD takes
0.361G FLOPS for both the vehicle and the license plate.
Moreover, two detection branches have only one foreground
class and it takes less NMS time, compared with the original
SSD which has two foreground classes.

V. CONCLUSION

In this paper, we are targeting to solve the problem that
the vehicle affects license plate detection when detecting
the vehicle and license plate simultaneously. We propose to
separate the detection head networks into two independent
branches, which improves the performance of the license plate
dramatically. By adding a task-specific anchor design strategy,
the network can obtain better predictions. Moreover, the atten-
tion mechanism and feature fusion strategy further enhance the
detection performance. Finally, we validate our method of high
accuracy, generalization capability and efficiency using images
collected from real scenes and public datasets. For future
work, we hope to evaluate whether our proposed multi-branch
strategy can be applied to other prestigious frameworks, like
YOLO and Faster R-CNN.
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