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Abstract— The recent boost in undersea operations has led
to the development of high-resolution sonar systems mounted on
autonomous vehicles. These vehicles are used to scan the seafloor
in search of different objects such as sunken ships, archaeological
sites, and submerged mines. An important part of the detection
operation is the segmentation of sonar images, where the object’s
highlight and shadow are distinguished from the seabed back-
ground. In this paper, we focus on the automatic segmentation
of sonar images. We present our enhanced fuzzy-based with
Kernel metric (EnFK) algorithm for the segmentation of sonar
images which, in an attempt to improve segmentation accuracy,
introduces two new fuzzy terms of local spatial and statistical
information. Our algorithm includes a preliminary de-noising
algorithm which, together with the original image, feeds into the
segmentation procedure to avoid trapping to local minima and
to improve convergence. The result is a segmentation procedure
that specifically suits the intensity inhomogeneity and the complex
seabed texture of sonar images. We tested our approach using
simulated images, real sonar images, and sonar images that
were created in two different sea experiments, using multibeam
sonar and synthetic aperture sonar. The results show accurate
segmentation performance that is far beyond the state-of-the-art
results.

Index Terms— Fuzzy clustering, sonar image segmentation,
speckle noise, kernel-induced distance, image de-noising, intensity
inhomogeneity.

I. INTRODUCTION

H IGH-RESOLUTION imagery of the seabed is mostly
provided by sonar systems for the purpose of

object detection. The relatively clean images produced by
these technologies have increased the feasibility of auto-
matic detection and classification (ADAC) of underwater
objects [1]. ADAC is required for marine applications such
as seabed archeology [2], pipeline monitoring [3] and off-
shore oil prospecting [4]. The process is applied onboard an
autonomous underwater vehicle that independently surveys a
designated area. In all of these applications, the key to success-
ful object detection and classification is to separate the seabed
background from the object’s highlight and shadow regions.
This separation process is referred to as image segmentation.
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The focus of this work is to develop a segmentation algorithm
that combats the main challenge of intensity inhomogeneity,
which poses difficulties in regard to sonar images.

Image segmentation methods include the use of mixture [6],
graph cut [7], and active contour [8]. In this work, we consider
the application of sonar segmentation using the fuzzy theory.
Fuzzy algorithms have been widely applied to the segmenta-
tion of optical images, and their simplicity and low complexity
offer advantages to sonar segmentation onboard autonomous
vehicles, where real-time analysis and low processing needs
are of interest. Methods like fuzzy c-means (FCM) [9], fast
generalized FCM algorithm (FGFCM) [10] and enhanced
FCM (EnFCM) [11] achieve good results on natural images.
However, due to the strong intensity inhomogeneity in
sonar images, the results of these methods are seriously
degraded [12]. Moreover, these methods are very sensitive to
initialization inaccuracies and tend towards convergence to
local minima. Another challenge of current fuzzy methods
is the need to set the fuzzy parameters via a trial-and-error
process, e.g., according to the trade-off between the original
image and the filtered one, thereby limiting the robustness of
the schemes to different sea conditions.

To combat the aforementioned challenges, we propose a
new sonar image segmentation algorithm to be used within
the ADAC scheme. Considering the need to adapt to complex
seabed structures, our solution is based on fuzzy segmen-
tation with a non-Euclidean kernel. Our goal is to achieve
stable performance in different environmental conditions and
for different objects’ shapes. To reduce false segmentation
and to improve complexity, our method combines segmen-
tation with a new de-noising algorithm that identifies the
highlight, shadow and background pixels using split-window
architecture, and employs an automatic mechanism to evaluate
the de-noising performance. To better deal with intensity inho-
mogeneity in sonar images, our de-noising solution includes
a new Bayesian-based filter. To attain accurate sonar image
segmentation and fast convergence, as part of the objective
function of our fuzzy optimization problem, we add two
new fuzzy terms, which we refer to as the local second
moment and the between-cluster. Finally, we note that both
our de-noising and segmentation solutions are parameter-free,
thereby improving the overall robustness of the segmentation
results.

This paper focuses on the segmentation part of the
computer-aided detection and classification (ADAC) scheme.
Being implemented after the detection algorithm and before
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feature extraction, segmentation is a key enabling technology
towards reducing false positives in the detection scheme while
accurately identifying the location of the object within the
sonar image. The design of segmentation algorithms has,
therefore, drawn attention in the sonar processing commu-
nity. However, intensity inhomogeneity and complex seabed
textures like sand ripples in sonar imagery, cause severe
degradation in the performance of existing approaches. This
paper is motivated by facing these knowledge gaps to produce
a robust and efficient segmentation algorithm.

Two main contributions are identified in this work. The
first is image de-noising, as a pre-processing step to image
segmentation, and the latter is fuzzy-based image segmenta-
tion. We use different statistical models for the shadow and
background regions to better smooth the spiky noise in the
image, and improve segmentation accuracy by adding two
terms into the objective function that utilize spatial information
to reduce the effect of inhomogeneity. These improvements
lead to a segmentation scheme that is robust to intensity
inhomogeneity and different seabed structure and obtains the
best segmentation results with less misclassified regions.

The key idea behind our method, referred to as the enhanced
fuzzy-based with kernel metric (EnFK) is that, due to the
intensity inhomogeneity, the noise in different areas within
the sonar image should be treated separately. The flowchart
of EnFK is illustrated in Fig. 2. We start with a sonar
image de-noising as a pretreatment step. Both the original
image and the de-noised one serve as the input to the
segmentation procedure. This structure allows for increasing
clusters’ uniformity with clear boundaries between regions.
To increase segmentation accuracy, the proposed de-noising
scheme operates in parallel with the segmentation initialization
scheme and performs its rough clustering. This operation is
controlled through a mechanism to self-evaluate the success
of the de-noising scheme. Finally, to reduce the effect of
noise and increase the separation of the clustering results,
we feedback the segmentation results to refine both the process
of image de-noising and the fuzzy formalization. The main
benefit of the proposed algorithm is its improved robustness
to the non-homogeneous regions in the sonar images, as well
as to the different seabed structures. This robustness comes
out of the pre-setting of only a few system parameters.
While this robustness comes at the cost of a more complex
implementation structure, the complexity of EnFK is rather
comparable with the benchmarks.

The main contributions of this paper are summarized as
follows.

1) A new parameter-free fuzzy formalization for image
segmentation. The problem is formalized in (14) and
its solution is in (24).

2) A novel parameter-free de-noising approach that specif-
ically combats intensity inhomogeneity. The algorithm’s
structure is illustrated in Fig. 2.

Experimental results on synthetic and real sonar images,
obtained from different sonar systems such as side-scan,
multi-beam and synthetic aperture sonar (SAS), show that the
new algorithm is effective and efficient, as well as relatively
independent of the sonar system and background type.

This paper is organized as follows. A detailed literature
survey for fuzzy segmentation and image de-noising is pre-
sented in Section II. The system model and assumptions are
outlined in Section III. The EnFK method for image de-noising
and segmentation are detailed in Section IV, and Section V,
respectively. Results and analysis of a database of simulated
sonar images, real sonar images, and of sonar images collected
during our sea experiments, are discussed in Section VI.
Finally, conclusions are drawn in Section VII.

II. LITERATURE SURVEY

In this section, we survey the state-of-the-art methods for
the main components of our contribution, namely, fuzzy-based
image segmentation, and image de-noising.

A. Fuzzy-Based Segmentation

Fuzzy algorithms have been widely used for image seg-
mentation. The Fuzzy C-means (FCM) algorithm [9] is a
popular method due to its simplicity and fast convergence.
Unlike hard-clustering methods, where each pixel is assigned
a single label, the FCM allows pixels to belong to multiple
labels with different membership degrees, and measures the
similarities between each pixel in the image and the center
of the clusters. In the geometrically-guided FCM (GG-FCM),
proposed by Noordam et al. [13], geometrical information
is used during the segmentation process. Szilagyi et al. [11]
proposed the enhanced FCM (EnFCM), which generated a
linear weighted image from the original image and the mean
filter image. Then, to reduce the computational time, the seg-
mentation is performed on the histogram instead of the pixels.
Cai et al. [10] proposed the fast generalized FCM (FGFCM).
This algorithm generates a nonlinear-weighted image from
the original image, local spatial texture, and the gray level
neighborhood. To exploit spatial information between the
image’s pixels, Ahmed et al. [14] proposed the FCM_S,
which adds spatial information, at the cost of high complexity,
thereby allowing the labeling of a pixel to be influenced by the
labels of its surrounding pixels. Instead, Chen and Zhang [15]
used mean and median filters in the segmentation process
to incorporate spatial dependency between the pixels. The
trade-off between the effectiveness of preserving an object’s
borders and robustness to noise is controlled by a parameter
a, determined by trial-and-error.

For greater robustness, Krinidis and Chatzis [16] proposed
the fuzzy local information c-means (FLICM) method, which
is free of any parameter selection. In this method, a novel
fuzzy factor is introduced to replace the above parameter a.
This factor incorporates local spatial and local intensity to
improve robustness to noise and outliers. This Euclidean
metric may not fit images with high-intensity homogeneity
like sonar images. A variant of the FLICM was proposed
in [17], which replaced the spatial distance with a local
coefficient of variation as a local similarity measure. More
recently, Shang et al. [12] proposed the clone kernel spatial
FCM (CKS-FCM), where the initialization of the cluster
centers is set by mimicking the biological process of the
acquired immune clone. This method has been found reliable



ABU AND DIAMANT: ENHANCED FUZZY-BASED LOCAL INFORMATION ALGORITHM 447

for non-convex optimization and showed robustness to noisy
images [18]. However, the complexity of the CKS-FCM may
be too high for the online processing of sonar images, since
the initial cluster centers using the immune clone process are
performed in addition to the fuzzy clustering. In addition,
the objective function of [12] also contains free parameters
that are fine-tuned in advance, thereby effecting robustness.

B. Image De-Noising

For accurate segmentation, removing noise components
without distorting the object’s borders is essential. Wiener
filtering and wavelet transform [19] are typical approaches for
image de-noising. Yet, these approaches are mostly applicable
to cases of transient noises. In the NL-means filter introduced
by Buades et al. [20], each pixel value is restored by the
weighted average of all pixels’ intensity in the image. The
weight of a pixel is determined according to the similarity
between the pixel’s local neighborhood and that of the other
images’ pixels. A similar approach is performed in 3-D filter-
ing (BM3D) [21], where the non-local filtering is combined
with Wiener filtering. However, our results showed that these
filters are appropriate for use in the case of additive white
Gaussian noise, which is less compatible with the embedded
noise in sonar images. Coupe et al. [22] proposed the NLMSF
method, which can preserve the objects’ borders in ultrasound
images.

Our literature survey shows that image segmentation and
image de-noising are well-investigated subjects. Yet, for sonar
image segmentation, we identify some remaining gaps. These
include the sensitivity of the existing segmentation methods
to parameter selection, as well as their sensitivity to intensity
inhomogeneity and different seabed textures. For image de-
noising, we argue that a proper systems model - which can
accurately reflect the statistical behavior of the noise in the
shadow, background, and highlight regions in sonar images -
is still necessary.

III. SYSTEMS MODEL AND MAIN ASSUMPTIONS

Let Y be a two-dimensional sonar image with dataset
{y1, ..., yN } ⊆ Y , where yi denotes the intensity of pixel i .
Each pixel i has one of three possible labels li ∈ {S, H, B},
where S and H are the shadow and the highlight of objects
found in the image, respectively, and B is the background.
Our aim is to accurately identify the image’s shadow and
highlight regions. The noise in the sonar image is modeled
as an additive component, and the statistical distribution of
the noise is region-dependent. We justify this because the
noise in the shadow region is the electronic noise from the
receiver. Further, as performed in [23], [24], since de-noising
is extracted on local blocks, we follow the additive noise model
for local statistics. The noisy image is

yi = xi + ξi , (1)

where ξi is a conditionally independent additive noise with a
probability density function (PDF) pξ (ξ) and xi is the true
image pixel. In the EnFK method, we model pξ (ξ) according
to the pixel’s label. Recall that a shadow region is created when

the object is blocking the acoustic reverberation. The signal
related to the shadow region consists of the electronic noise
from the receiver. Thus, in this region, the noise is modeled
by a zero-mean Gaussian distribution [24]. Following [25],
the noise in the background and the highlight regions is
modeled by the exponential distribution. Observing different
sonar images, we found that this choice of statistics offers a
better distinction between pixels related to the background vs.
pixels related to the object, as opposed to, e.g., Gaussian dis-
tribution of different parameters per class [26], or the Weibull
distribution [5]. Moreover, the results also demonstrate that
this distribution model is sufficiently valid to provide accurate
de-noising results. We model the PDF of ξi by

pξ (ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pb(ξ) = λ · exp(−λξ),

for B or H regions

ps(ξ) = 1√
2π (σ)2

· exp

(
− ξ2

(σ )2

)
,

for S region,

(2)

where λ, is the exponential distribution parameter, and σ is
the standard deviation for the shadow regions. Since the noise
ξ is induced by the process of constructing the sonar image,
we assume that λ and σ from (2) are constant per image.

IV. IMAGE DE-NOISING

The image de-noising process is performed to reduce the
intensity inhomogeneity of the sonar image. This objective is
of importance for the task of object identification, where not
only the detection of the object is of concern, but also main-
taining its observed shape to ease the classification procedure.
The key idea in the proposed de-noising scheme is to use the
Bayesian approach in [22] to tie different statistical models to
the sonar images’ different regions, namely, shadow, highlight,
and background. As will be shown in the Results section, this
approach leads to improved results in terms of assessment
index (Q) [22], which reflects the region homogeneity level.
Moreover, a novel method to self-evaluate the de-noising
accuracy is introduced, thus avoiding the need to initialize
the de-noising process.

A. The De-Noising Filter

Our de-noising is based on the NLMSF in [22]. For the
sake of completeness, we briefly describe the main idea of the
NLMSF. The NLMSF is a despeckling method that utilizes a
dedicated speckle model to handle the spatial speckle patterns
in the image. The blockwise Bayesian estimator x̂(Bi ) is
defined as [27]

x̂(Bi ) =
∑|�i |

k=1 y(Bk)p(y(Bi)|y(Bk))∑|�i |
k=1 p(y(Bi )|y(Bk))

. (3)

where Bi is a square block of size T equals (2α+1)2 (α ∈ N)
centered at pixel i , �i is a square search block centered at pixel
i of size |�i | = (2M + 1)2 (M ∈ N), y(Bi) is a T × 1 vector
that contains all observed intensities of the pixels inside block
Bi , and x(Bi ) is a T × 1 vector of the unobserved (unknown
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true image) intensities of the pixels inside block Bi . By the
speckle model in [22], the statistical distribution of yi |xi is

p(yi |xi) ∝ N (xi , (xi )
2γ σ 2). (4)

where, γ is the speckle parameter, and σ is the standard
deviation of the gaussian noise in the speckle model. Assuming
independence among the pixels, the likelihood of y(Bi )|y(Bk)
can be factorized as:

p(y(Bi )|y(Bk)) ∝ exp

(
−

T∑
t=1

(y(t)
i − y(t)

k )2

2(y(t)
k )2γ σ 2

)
, (5)

where y(t)
i and y(t)

k are the tth component in y(Bi ) and y(Bk),
respectively. The restored intensity of pixel i is given by the
mean of all restored values in the blocks Bi in which yi is
included. To improve the results and speed up the algorithm,
a pixel selection scheme is used [28], which is controlled by
the thresholding parameter μ1.

The free parameters γ,μ1 affect the robustness of the
NLMSF to seabed intensity inhomogeneity. This is because
of the need to tune these parameters for different background
types. Considering this challenge, we add to the NLMSF
scheme the capability to include the additional distribution
types in (2) and to self-evaluate the distribution parameters.
This is described in the following subsection.

B. Estimation of Distribution Parameters

We make the realistic assumption that the sonar image is
intensity inhomogeneous. Under such conditions, we expect
xi from (1), i.e., the noise-free image components, to be
different at various locations of the image. To compensate
for the location-dependent xi , the image is divided into
non-overlapped blocks Yr of size κs and perform parameter
estimation per block. Then, modeling the distribution of the
noise components to be the same for the whole image, the esti-
mation from all blocks is fused into a single one. We note the
choice of κs tradeoffs. Small values of κs may enlarge the
estimation error of the parameters of the distributions, while
large values of κs degrade the performance of the despeckling
filter in the shadow zone because large blocks contain not only
shadow pixels, but also background information. We leave the
choice of κs to the user based on the size of the object of
interest.

As a model (2) reveals, the parameter estimation process
must include labeling information. That is, each block must
be pre-clustered into one of the possible labels {S, B, H }. Let
cr be the label of the r th block. The parameter cr is determined
based on the majority of the pixels’ labels in the r th block.
These pixels’ labels are evaluated based on the initialization
algorithm from [29]. While the initialization performed well
for real sonar images, because it is a model-free algorithm,
it may induce some clustering errors. Still, the impact of
initialization errors is low because it is used only for estimating
λ and σ as an average overall initialized windows. Thus,
initialization segmentation errors in some windows would have
a small effect.

Once cr are determined, we statistically evaluate the para-
meters in (1). For blocks with cr = {

B, H
}
, we evaluate

parameter λ in the r th block by

λ̂r =
( 1

κs

∑
i∈Yr

(yi − y)2
)−0.5

, (6)

where

y = 1

κs

∑
i∈Yr

yi . (7)

Similarly, for block r with cr = {
S
}
, we set

σ̂r =
√√√√ 1

κs

∑
i∈Yr

y2
i . (8)

Then, following our assumption that the noise term parameters
in (1) are constant throughout the sonar image, we follow
the metric in [30], which we find to be the most suitable for
dealing with outliers in sonar images, and fuse all per-block
estimations as a weighted sum:

λ̂ =
∑

r

	r λ̂r , (9)

with

	r = exp(−|̂λr − λ|)∑
r

exp(−|̂λr − λ|) , (10)

and

λ = 1

ρb

∑
r

λ̂r , (11)

where ρb is the number of blocks labeled as highlight or
background. The fusion of parameter σ is performed in the
same fashion.

C. Setting the De-Noising Filter

1) Formalization: The flowchart of our de-noising scheme
is shown in Fig. 1. The de-noising is carried out separately
for each block Yr . Since the blocks’ NLMSF size, T and |�i |
are much smaller than the original image size, for block de-
noising, we assume that the labels of the pixels in Yr are
identical. Based on the model in (1), the enumerator of (3)
can be rewritten as

p(y(Bi )|y(B j )) =
T∏

t=1

pξ

(
y(t)

i − y(t)
j

)
. (12)

Based on the distribution model in (2) pξ

(
ξ
)

equals ps or pb

according to the label of the block Yr . That is, to calculate (12),
we require information about the label of each block. Unlike
the parameter estimation process, which tolerates errors in
the block’s initial clustering, in this case, de-noising is based
on the erroneous identification of the block’s label; therefore,
usage of a wrong distribution model in (2) will likely lead to
image distortion. Thus, unlike parameter estimation, regarding
block de-noising, we avoid using segmentation initialization.
Instead, for each block, we find the distribution that leads to
the best de-noising result.
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Fig. 1. Flowchart of the proposed de-noising scheme.

2) Self-Evaluation of De-Noising Performance: We measure
successful de-noising using the concept of minimum entropy.
This is because the block’s entropy characterizes the distribu-
tion of the restored intensities. In particular, a very localized
region will lead to small entropy, while a uniform region will
lead to high entropy. Thus, setting the minimum entropy as a
quality measure will lead to the choice of the best-localized
values, which is the choice with the most homogeneous
intensity of the de-noised block. The entropy is calculated by

Hx = −
∑

i

p(i)log2 p(i), (13)

where p(i) is the number of pixels (after normalization) in the
r th de-noised resulting block at the i th intensity bin.

With the uncertainty of the block label, each block is
de-noised using (12) for both pb(ξ) and with ps(ξ), to create
the de-noised images x̂b and x̂s , respectively. Then, the entropy
is calculated for each of the resulting images, and the chosen
de-noising result is the one of minimum entropy.

V. ENHANCED FUZZY-BASED IMAGE SEGMENTATION

The uniqueness of the proposed sonar image segmentation
method lies in the introduction of two new terms: the local sec-
ond moment term, and the between-cluster term. As shown
in the Results section, using these two terms lead to better
segmentation accuracy and faster convergence. Inspired by the
echo detection process in [24], we use the second moment
of the image data in the kernel space to better separate the
object’s highlight from its background. The between-cluster
term represents the error between the prototypes and the
empirical cluster centers and is incorporated, in the kernel
space, into the objective function to reduce false segmen-
tation. Furthermore, as quality metrics, we use the kernel
distance [31] rather than the commonly used Euclidean dis-
tance between pixels. This is because, in the kernel space,
the formed clusters are more spherical and can, therefore,
be more easily clustered [32].

The kernel maps a data set U into a higher dimen-
sional space W (kernel space) via the transform function
� : U −→ W . The fuzzy algorithm generates the degrees of

membership uki , i.e., the probability that the label of pixel
i belongs to the k-th cluster, by minimizing the objective
function

(U, V ) = arg min
uki ,Vk

Jm(U, V )

s.t
c∑

k=1

uki = 1, ∀i, (14)

where, c is the number of clusters. For the three possible
classes {B, H, S}, our objective function is defined as

Jm(U, V )

=
N∑

i=1

c∑
k=1

um
ki ‖ �(̂xi ) − �(Vk) ‖2

+
N∑

i=1

c∑
k=1

um
ki ‖ �(xi ) − �(Vk) ‖2

+
N∑

i=1

c∑
k=1

um
ki ‖ �(̃xk) − �(Vk) ‖2 + Gki , (15)

Gki is referred to as the fuzzy factor [16] defined by

Gki =
N∑

i=1

c∑
k=1

um
ki

∑
j∈Ni ,i 
= j

1

1 + di j
(1 − ukj )

m(1 − K (y j , Vk)),

(16)

where di j is the Euclidean distance between pixel i and pixel
j , m is the weighting exponent on each fuzzy membership,
which determines the fuzziness of the results, x̂i is the
de-noised image, �(xi ) − �(Vk) is the local second moment
term in the kernel space and xi is given by:

xi = 1

|Ni |
∑
j∈Ni

y2
j , (17)

where Ni is the local window of size (2β + 1)2 centered at
pixel i ,

{
Vk

}c
k=1 are the center of the clusters, �(̃xk)−�(Vk)

is the between-cluster term in the kernel space, and x̃k is the
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average of all pixels assigned to the kth cluster, such that

x̃k = 1

nk

∑
{ j |l j =k}

y j , (18)

where nk is the number of pixels with an assigned label equals
the kth cluster. A kernel in the data space can be represented
as

K (x, y) = 〈�(x),�(y)〉, (19)

where 〈·〉 is the inner product operation. Due to the fact that
� in (15) is unknown, the segmentation problem should be
solved using only the kernel function. Since k(x, x) = 1,
the inner product in the kernel space, can be written as

‖ �(x) − �(y) ‖2

= 〈�(x),�(x)〉 + 〈�(y),�(y)〉 − 2〈�(x),�(y)〉
− K (x, x) + K (y, y) − 2K (x, y)

= 2(1 − K (x, y)). (20)

Using (20), (15) is rewritten as

Jm(U, V ) =
N∑

i=1

c∑
k=1

um
ki (1 − K (̂xi , Vk))

+
N∑

i=1

c∑
k=1

um
ki (1 − K (xi , Vk))

+
N∑

i=1

c∑
k=1

um
ki (1 − K (̃xk, Vk)) + Gki . (21)

The solution to (14) is obtained by choosing the values uki ,
which minimize (21). Using a Lagrange multiplier, the solution
comes readily as (22) and (23), shown at the bottom of the
next page.

Finally, pixel i is assigned to the cluster with the highest
membership

l̂i = arg max
k

{uki }. (24)

We adopt the Gaussian radial basis kernel function (GRBF)
[33] with the kernel function K (x, y) = exp(− ‖ x − y ‖2

/r2), where r is the kernel’s bandwidth, and r is set on the
basis of the distance variance of all pixels [30]. We choose the
Gaussian radial basis kernel because of its robust estimation
controlled by the single bandwidth parameter r, and since it
is able to catch non-linear connections between the observed
data and the classed labels. The bandwidth r is given by

r =
(

1

N − 1

N∑
i=1

(di − d)2
)0.5

. (25)

The data center u is given by:

u = 1

N

N∑
i=1

yi . (26)

The distance from pixel i to the data center is di =‖ yi − u ‖.
The mean distance d is calculated by

d = 1

N

N∑
i=1

di . (27)

We solve (14) iteratively. In each iteration, x̃k is set by (18)
according to the segmentation solution from the previous
iteration. Then, the prototype Vk is calculated by (23) and
plugged into (22) to yield a new estimation (24). The process
stops upon convergence, i.e., when

max
k,i

|u(q)
ki − u(q−1)

ki | < ε or q > Nq , (28)

where u(q)
ki is the membership at qth iteration, ε is a conver-

gence parameter, and Nq is the maximum number of allowed
iterations. A numerical proof of the convergence of the above
procedure appears below. The labels of the pixels in Y are
initialized using our LSM algorithm [29] and denoted by{

l(0)
i

}N

i=1
. The prototypes {Vk}|ck=1 are initialized with

V (0)
1 = 1

ρs

∑
{ j |l(0)

j =S}
y j , (29)

with ρs equals the number of pixels with initialized label
equals

{
S
}

and analogously for V (0)
2 and V (0)

3 , which are
related to the highlight and the background, respectively.

The proposed segmentation process is illustrated in Fig. 2.
The EnFK method comprises six main steps: 1) Clusters
initialization using the robust LSM initialization method;
2) Image de-noising using the improved NLMSF-based algo-
rithm; 3) Calculating the local second moment {xi }N

i=1;
4) Updating the membership matrix; 5) Updating the cluster
prototypes; and 6) Stopping criteria.

VI. EXPERIMENTAL RESULTS AND COMPARISON

In this section, the performance of the proposed image
de-noising algorithm is presented, as well as the overall
performance of the segmentation process. For de-noising,
we use κs = 255, and compare the results of our algorithm
with those of the robust NLMSF filter in [22] with γ = 0.5,
α = 1, and M = 3, which we found to be the most suitable
for sonar image de-noising. In this work, we focus on
fuzzy sonar image segmentation. Therefore, the proposed
method is compared with the state-of-the-art in fuzzy
segmentation. In particular, we choose as benchmarks
methods FCM_S1 [15], FCM_S2 [15], KFCM_S1 [34],
KFCM_S2 [34], FLICM [16], and fast and robust fuzzy
C-Means (FRFCM) [35]. For completeness, we also add to
the benchmark a non-fuzzy segmentation method based on the
Dempster-Shafer evidence theory (EDSM) [36]. We choose
these methods as benchmarks since they are both a key
in image segmentation and are heavily cited, and because
of their suitability for sonar image processing. Further,
these methods represent different approaches in fuzzy image
segmentation. Specifically,

• FCM_S1: Utilizing the mean filter in the objective func-
tion to increase robustness to noise.
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• FCM_S2: Utilizing the median filter in the objective
function to compensate the intensity inhomogeneity.

• KFCM_S1: Extension of FCM_S1 that maps the original
input into the kernel space to increase separability of the
data.

• KFCM_S2: Extension of FCM_S2 to the kernel space.
• FLICM: Control the influence of the local neighborhood

pixels on the labeling without any parameter selection.
• FRFCM: The local spatial information is incorporated

into the fuzzy objective function by morphological recon-
struction.

For all fuzzy-based segmentation methods, the fuzziness
index is set to m = 2, and β = 2. The maximum num-
ber of iterations Nq is set to 250 and the threshold ε =
0.01. According to [34], the parameter a is set to 5 for
FCM_S1, FCM_S2, KFCM_S1 and KFCM_S2. According
to [35], the morphological reconstruction parameter is set to 3,
and the size of the filtering window is set to 7. For EDSM,
we set γ1 = 0.1 and γ2 = 1.4 according to [36].

A. Sonar Data

Our sonar data comprises two data sets. The first image
set consists of three synthetic sonar images, presented in
Fig. 4(a)-(c) (top images). The images contain a cylindrical
object with different backgrounds: sand, sea-grass, and sand
ripples. The size of the synthetic images is 120×120. Sand
and sea-grass seabed textures are generated according to the
models in [25], while the sand ripples texture is generated
according to [37]. The object’s region and background are
synthesized separately. The object’s intensity level is modeled
by a gamma distribution with mean values and standard
deviations of 120, 10, for the shadow region, and 1, 0.1 for
the highlight region, respectively. Similar to the model in [38],
the object and background are superimposed, as follows:

Ai =

⎧⎪⎨
⎪⎩

0.8χi,h + 0.2χi,b, if i ∈ highlight region

0.8χi,s + 0.03χi,b, if i ∈ shadow region

χi,b. if i ∈ background region

(30)

where χi,h , χi,b and χi,s stand for the intensity level of the
i th pixel in the highlight, background and shadow regions,
respectively.

The second set consists of five real sonar images: the first
image was imaged with CM2 towfish sonar and is of Crab
Traps [39]; the second is Airplane and was made with the

Sea Scan 600 sonar [40]; the third is Drowning Victim and
was made with the EdgeTech 4125 sonar [41]. The sizes of
these three images are 151×301, 182×232, and 182×232,
respectively, and are given in Fig. 7(a)-(c) (top images). The
last two images consist of two sonar images we sampled
during our sea experiment. These images include two steel
targets (Fig. 11(b)), and a submerged gas well (Fig. 11(e)),
and are of size 200×120, and 120×300 pixels, respectively.

B. Evaluation Indexes

To calculate the quantitative assessment of the de-noising
and segmentation results, ground-truth maps are usually
needed. These maps are generated by manual segmentation [4]
based on the original sonar images. We use the variation
information VI [42], partition coefficient v pc, partition entropy
v pe [43], and MCR [44] for the segmentation results’ eval-
uation, and despeckling assessment index Q [22] for the
de-noising results’ evaluation. The VI measures the dissimilar-
ity between two maps in terms of information entropy. In our
case, the first map is the segmentation results map Sr and
the second is the ground-truth map Gt ,

V I (Sr , Gt ) = H (Sr) + H (Gt) − 2I (Sr , Gt ) (31)

where,

H (S) = −
3∑

k=1

Nk

N
ln

(
Nk

N

)
, (32a)

I (S, S′) =
3∑

k=1

3∑
k′=1

Nk,k′

N
ln

( Nk,k′
N

Nk
N

Nk′
N

)
, (32b)

with Nk is the number of assigned pixels with k label and
Nk,k′ is the number of points in the intersection maps Sr and
Gt considering the labels k and k ′, respectively. If both maps
are identical, the entropies H (Sr) and H (Gt) are equal and
V I (Sr , Gt ) = 0.

Partition coefficient v pc and partition entropy v pe are
defined as [43]

v pc = 1

N

N∑
i=1

3∑
k=1

u2
ki , (33a)

v pe = − 1

N

N∑
i=1

3∑
k=1

uki ln(uki ). (33b)

uki =

(
(1 − K (̂xi , Vk)) + (1 − K (xi , Vk)) + (1 − K (̃xk, Vk)) + Gki

)− 1
m−1

c∑
j=1

(
(1 − K (̂xi , Vj )) + (1 − K (xi , Vj )) + (1 − K (̃x j , Vj )) + G ji

)− 1
m−1

. (22)

Vk =

N∑
i=1

um
ki

(
x̂i K (̂xi , Vk) + xi K (xi , Vk) + x̃k K (̃xk, Vk)

)
N∑

i=1
um

ki

(
K (̂xi , Vk) + K (xi , Vk) + K (̃xk, Vk)

) , (23)
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Fig. 2. EnFK segmentation method scheme.

Fig. 3. Comparison of the de-noised images for the synthetic sonar image (sea-grass background) using the proposed filter and the NLMSF filter: (a) Input
sonar image. (b) De-noising results of the NLMSF filter. (c) De-noising results of the proposed filter. (d) Decision map of the distributions: blue - Gaussian (for
shadow regions), yellow - Exponential (for highlight/background regions). We observe that our approach yields a much better de-noising than the benchmark
with an accurate identification of the blocks containing the object’s shadow.

Best clustering is achieved when v pc is close to one and v pe

approaches zero.
Despeckling assessment index Q is defined as [22]

Q =

∑
j 
=k

(μ j − μk)
2

∑
j

σ 2
j

, (34)

where, μ j and σ j are the mean and the variance of the
pixels’ intensities with assigned j th label after de-noising.
To calculate the despeckling assessment index, we use the
ground-true map for pixels’ label information. The higher the
value of Q, the better de-noising results are achieved.

MCR is defined as the number of misclassified pixels
normalized by the total number of pixels and is given by [44]

MCR =
∑N

i=1 I(Si
r 
= Gi

t )

N
. (35)

where I is an indicator function equals one if its argument is
true, and zero, otherwise. Segmentation improves, the lower
the MCR is.

C. Results on Synthetic Images

1) De-Noising Results: In Fig. 3, the de-noising results
obtained for a synthetic image of a cylindrical object in a
sea-grass background is presented. It can be seen that the
proposed de-noising method achieves higher homogeneous

regions compared to the NLMSF. Clear identification of
the shadow and highlight/background regions can be seen
in Fig. 3(d). Table I shows the values of Q for the syn-
thetic sonar images. The experimental results reveal that both
methods preserve the object’s boundaries. A relatively small
advantage in terms of the despeckling index Q is observed
for the proposed method. However, as shown later on, for real
sonar images, the performance gap significantly increases.

2) Segmentation Results: To statistically test the segmen-
tation performance, we performed 1,000 Monte-Carlo sim-
ulation runs. In each run, the image was corrupted by a
speckle noise with a variance of 0.09. Fig. 4 shows the
segmentation results for the benchmark schemes compared
with the EnFK algorithm. The segmentation results are
illustrated by three colors: white for highlight, black for
shadow and gray for the background. For a sandy background
(Fig. 4(a)) FLICM, FCM_S1, EDSM and the EnFK obtain
accurate results. For a sea-grass background (Fig. 4(b)), poor
segmentation performances are observed for the benchmark
schemes, whereas EDSM and EnFK performance is almost
not affected. Still, EnFK has better region uniformity and
less misclassified region compared to the results of EDSM.
The same result is observed in Fig. 4(c), where we show
segmentation results for a sand-ripples background. Here, most
benchmarks completely fail to segment the object, whereas
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Fig. 4. Segmentation results for synthetic sonar images. The colors in the segmentation maps represent: black for the shadow region, white for the highlight
region and gray for the background region. Segmentation results of the benchmarks FCM_S2, FCM_S1, KFCM_S2, KFCM_S1, FLICM EDSM, FRFCM and
EnFK (from top to bottom, respectively). (a)–(c) for sand, sea-grass, and sand-ripples background, respectively. The EnFK obtains the best region uniformity.

the FLICM fails to identify the object’s shadow region and
wrongly assigns the background region with the shadow label.

The statistical evaluation for the four quality metrics for
the Monte-Carlo simulations is presented in Fig. 5. The EnFK
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Fig. 5. Variation information (VI) (31), partition coefficient (vpc ) (33a), partition entropy (v pe ) (33b), and MCR (35) values for the synthetic sonar images
with speckle noise (STD = 0.3). The 95% confidence interval is introduced on each bar in the figure. (a) Results for the VI. (b) Results for the vpc . (c) Results
for the v pe . (d) Results for the MCR (35). The EnFK exceeds the others by 52%, 18%, 64%, and 75% on average over all images for the VI, vpc , v pe , and
MCR measures, respectively.

TABLE I

COMPARISON OF THE DESPECKLING ASSESSMENT INDEX Q FOR

THE SAND, SAND-RIPPLES AND SEA-GRASS SONAR IMAGES

WITH α = 1, M = 3, γ = 0.5 AND κs = 255

achieves the lowest VI for the sand background as it is
considered the easiest case for segmentation among the three
background types. For all types, EnFK produced the best
performance by obtaining the lowest VI. From the results
of Fig. 5(b) and Fig. 5(c), we observe that, for the EnFK,
the value of v pe is closer to 1 than that of the benchmarks,
and that v pe is closer to 0, which implies that the EnFK
achieves better segmentation accuracy. For a sand background,
EDSM achieves the best MCR results. However, for more
complex background like the sea-grass and the sand-ripples,
EnFK obtains more appropriate and satisfying segmentation
results.

In addition, the MCR results in Fig. 5(d) also confirm that
our method is more accurate compared to the benchmark with
an MCR level of less than 3% for all images.

D. Results on Real Sonar Images

1) De-Noising Results: The de-noised version of the Crab
Trap image is shown in Fig. 6. High-intensity inhomo-
geneity can be clearly seen in the original sonar image
in Fig. 6(a). Accurate identification of the shadow and high-
light/background regions can be seen in Fig. 6(d). To allow
for a quantitative comparison between the de-noising methods,
in Table II, we show the despeckling assessment index Q
for Fig. 6. Our method produces the highest values of the
assessment index compared to the NLMSF, which reflects the
homogeneousness of the image after de-noising.

2) Segmentation Results: Fig. 7(a) shows the segmenta-
tion results for the Airplane image. Obvious false segmen-
tation exists in the results produced with FCM_S1, FCM_S2,
KFCM_S1, KFCM_S2. When using these methods, the homo-
geneity of the background is corrupted by false segmentation,
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Fig. 6. Comparison of the de-noised images for the real sonar image Crab Trap using the proposed filter and the NLMSF filter: (a) Input sonar image.
(b) De-noising results of the NLMSF filter. (c) De-noising results of the proposed filter. (d) Decision map of the distributions: blue - Gaussian (for shadow
regions), yellow - Exponential (for highlight/background regions). Our proposed de-noising method efficiently reduces the speckle noise and the background
becomes more homogeneous.

TABLE II

COMPARISON OF THE DESPECKLING ASSESSMENT INDEX Q FOR THE

AIRPLANE, CRAB TRAP AND DROWNING VICTIM SONAR
IMAGES WITH α = 1, M = 3, γ = 0.5 AND κs = 255

and the boundaries of the object are not well-defined. The
FLICM, EDSM, and FRFCM produce better results, but signif-
icant false segmentation still exists. In comparison, the EnFK
produces the best results, where the highlight, shadow, and
background are well distinguished, and the object structure is
maintained. The segmentation results of the Crab Trap image
are shown in Fig. 7(b). We observe that both the FLICM
and EnFK correctly identify the object’s shadow as well as
its highlight. However, the benchmarks FCM_S2, FCM_S1,
KFCM_S2 and KFCM_S1 contain many cases of false seg-
mentation in the image’s background. Moreover, the EnFK has
the best segmentation results with better region uniformity and
misclassified regions. EDSM and FRFCM fail to identify all
objects’ highlight. Similar results are obtained for the Drown-
ing Victim image in Fig. 7(c). The segmentation produced by
the FLICM and FRFCM algorithms includes many cases of
false segmentation, and the smoothness of the object’s bound-
aries is corrupted. The boundaries in the segmentation results
obtained by EDSM and EnFK are well defined. But, EnFK
captures a few misclassified regions. In comparison, the EnFK
produces accurate segmentation with better region uniformity.

A quantitative comparison is presented in Fig. 8. For the
variation information VI (Fig. 8(a)), results show that the
EnFK has the lowest VI value compared to the benchmark.
These results indicate that our method generates more uniform
segmented regions and more accurate cluster boundaries than
the compared algorithms. Figs. 8(b) and 8(c) show the
measures of the partition coefficient v pc and the partition
entropy νpe from (33). We observe that the partition coefficient
value of our method is much closer to one than that of the
other algorithms. Similarly, the partition entropy value of our
method is significantly closer to zero than that of the bench-
mark algorithms. Both results indicate that the EnFK generates
more separable clusters than the benchmark methods.

3) Effect of the Between-Cluster and Local Second Moment
Terms: These terms are used to improve the convergence rate

TABLE III

EFFECT OF DE-NOISING ON SEGMENTATION ACCURACY. COMPARISON

OF THE MCR (%) FROM (35) FOR THE AIRPLANE, CRAB TRAP AND
DROWNING VICTIM SONAR IMAGES

of our algorithm, as well as the segmentation performances.
Fig. 9(a) shows the number of iterations until convergence
of two versions of the EnFK: one with the two new terms
and another without them. We observe that the use of these
terms dramatically reduces the number of iterations for all
tested images. Moreover, the variation information VI shown
in Fig. 9(b) demonstrates that the VI values obtained when
using these terms are significantly better compared to not using
these terms.

4) Effect of De-Noising: The effect of sonar
image de-noising on the final segmentation results is
analyzed in Table III. We measure the efficiency of the
de-noising process in terms of the MCR from (35). We test
three versions of our fuzzy segmentation algorithm: In
version A, the input for the first term of (15), x̂i , is replaced
with yi (no de-noising); in version B , the de-noised data,
x̂i , is produced by the NLMSF; version C is provided by the
EnFK. The large deviation of MCR among the sonar images
is mainly due to the different level of intensity inhomogeneity
in the images. While the use of the NLMSF de-noising has a
very minimal effect, we observe that the EnFK achieves the
lowest values of MCR. This means that false segmentation,
caused by the intensity inhomogeneity in the background,
is effectively reduced by our method.

5) Effect of De-Noising Block Size: To compensate for
the location-dependent in the sonar image, we divide the
image into non-overlapped blocks of size κs in the de-noising
process. The effect of κs on the final segmentation results
and the de-noising performance in terms of MCR and Q
respectively is analyzed in Fig. 10. To that end, we use the
Crab Traps from Fig. 6(a). The tradeoff in the choice of κs is
observed in Fig. 10(a). While small values of κs may enlarge
the estimation error of the parameters of the distribution, large
values of κs degrade the performance of the despeckling filter
because large blocks contain pixels from different regions. For
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Fig. 7. Final segmentation results for real sonar images (Segmentation results of the second data set). The color in the segmentation maps represent: black
for the shadow region, white for the highlight region, and gray for the background region. Real sonar images and final segmentation results of the benchmarks
FCM_S2, FCM_S1, KFCM_S2, KFCM_S1, FLICM, EDSM, FRFCM, and EnFK. (a)–(c) for Airplane, Crab Trap, and Drowning Victim, respectively. The
best segmentation results are obtained by the EnFK.

de-noising, we observe a deviation of 30% in the despeckling
assessment index Q. For the overall segmentation results,
we notice a deviation in MCR results of about 1% for different
values of κs .

E. Sea Trial Results

To further validate the performance of the EnFK, we now
introduce results from two sea experiments that we performed
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Fig. 8. Variation information (VI) (31), partition coefficient (vpc) (33a), partition entropy (v pe) (33b), and MCR (35) values for the three cited real sonar
images. (a) Results for the VI. (b) Results in terms of vpc . (c) Results of v pe . (d) Results in terms of MCR (35). The EnFK exceeds the compared algorithms
by 48%, 17%, 76%, and 82% on average over all images for the VI, vpc , v pe , and MCR measures, respectively.

Fig. 9. (a) Convergence rates with the two new terms and without them. Maximum number of iterations Nq is set to 250. For all images, the novel
between-cluster and local second moment terms dramatically reduce the number of iterations. The large deviation in the results among the sonar images are
mainly due to the different sizes of the objects. (b) Variation information VI of the EnFK for the second data set, with the two new terms and without them.
Clearly, VI is closer to zero with the new terms.

with our own sonar system. In contrast to the previously
explored sonar images, this data allows us to compare per-
formance with real sea conditions.

1) Experiment Description: In the first experiment,
a 400 kHz multi-beam sonar, EM 2040, mounted on the RV
Bat-Galim, was used to scan two targets of truncated cones,
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Fig. 10. (a) Despeckling assessment index Q results in different denoising block size. (b) MCR results.

Fig. 11. Comparison of the de-noising results on the two sonar images: (a) Photographs of the targets considered in the sea trial study. Two targets were
used: one was cone-shaped (right side of the figure), and one was tube-shaped (left side of the figure). (b) First original sonar image (Q = 4.3), (c) De-noising
results of the NLMSF (Q = 7.11), (d) De-noising results of our proposed method (Q = 11.1). (e) Second original SAS image (Q = 5.8), (f) De-noising
results of the NLMSF (Q = 7.3), (g) De-noising of our proposed method (Q = 10.2). The EnFK efficiently removes the intensity inhomogeneity in the three
sonar images, while preserving the targets’ structures.

shown in Fig. 11(a). This experiment was performed roughly
2 miles west of Haifa Port in Israel. The targets were placed
on a rocky seafloor at a depth of 25 m. The second experiment
was conducted about 10 Km west of northern Israel at a water
depth of 1,000 m. In this experiment, we deployed our A18
5.5m Eca Robotics Inc. AUV [45], and scened the ground
using the vehicle’s Kraken-made two-sided synthetic aperture
sonar (SAS) to scan the seabed for opportunities objects.
A SAS image of a found gas well is presented in Fig. 11(e).

2) Experiment Results: Fig. 11 shows the de-noising results
for the NLMSF and EnFK for the two sonar images. Both
methods preserve the edges of the targets. However, the EnFK
better smooths the background and, as observed from the
resulting despeckling index Q, the final de-noised image is
more homogeneous.

In Fig. 12, the segmentation results are introduced for
the multi-beam image. This image contains one cone-shaped
target. We observe that the segmentation results obtained
by FCM_S1 (Fig. 12(b)), FCM_S2 (Fig. 12(c)), KFCM_S1
(Fig. 12(d)) and KFCM_S2 (Fig. 12(e)) yield poor perfor-
mance in terms of region uniformity, and that the FLICM
([Fig. 12(f)]) fails to identify the target’s shadow regions.
In FRFCM and EnFK, the region uniformity is good, and
the boundaries between regions are clear. But, the EnFK

(Fig. 12(g)) manages to separate the target’s shadow from its
background entirely. For the SAS image, Fig. 13 shows that
the shadow region is successfully segmented by all methods.
However, the considerable intensity inhomogeneity in this
image leads to many false segmentation regions using all
methods. Still, the EnFK produces, by far, the lowest false
segmentation rate. The simulation and experimental results
reveal that the EnFK dramatically reduces the misclassified
regions in sonar images, and can generate clean and accurate
clusters of shadow and highlight. This result has a tremendous
effect on object classification performance, which is the next
step in the ADAC detection chain.

VII. CONCLUSION

In this paper, we proposed a fuzzy-based image seg-
mentation method for sonar imagery, referred to as EnFK.
To improve background homogeneity, the EnFK includes a
novel image de-noising step which, together with the orig-
inal image, feeds into the segmentation process. To reduce
false segmentation, as part of the fuzzy objective function,
we introduced two novel terms. Simulation results show that
the use of these two terms dramatically reduces the number of
iterations until convergences and that the false segmentation
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Fig. 12. Comparison of the segmentation results on a multi-beam sonar image with a single target. (a) Original sonar image. (b) FCM_S1 result.
(c) FCM_S2 result. (d) KFCM_S1 result. (e) KFCM_S2 result. (f) FLICM result. (g) EDSM result. (h) FRFCM result. (i) EnFK result. EnFK successfully
identifies the target’s shadow region.

Fig. 13. Comparison of the segmentation results on a SAS sonar image. (a) Original sonar image. (b) FCM_S1 result. (c) FCM_S2 result. (d) KFCM_S1
result. (e) KFCM_S2 result. (f) FLICM result. (g) EDSM result. (h) FRFCM result. (i) EnFK result. Results show that the EnFK yields the cleanest segmented
shadow region.

rate decreases. Experiments over a broad set of Monte Carlo
simulated sonar images, three cited real sonar images, and
two self-measured sonar images from a multi-beam and a
SAS show that EnFK produces high segmentation accuracy.
The experimental results show that the highlight region in the
segmented image of objects in multi-beam sonar images is
barely detected. Future work will deal with this problem to
enable more accurate segmentation.
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