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Contactless Biometric Identification using     
3D Finger Knuckle Patterns 

Kevin H. M. Cheng, Ajay Kumar 

Abstract— Study on finger knuckle patterns has attracted increasing attention for the automated biometric identification. 

However, finger knuckle pattern is essentially a 3D biometric identifier and the usage or availability of only 2D finger knuckle 

databases in the literature is the key limitation to avail full potential from this biometric identifier. This paper therefore introduces 

(first) contactless 3D finger knuckle database in public domain, which is acquired from 130 different subjects in two-session 

imaging using photometric stereo approach. This paper investigates on the 3D information from the finger knuckle patterns and 

introduces a new feature descriptor to extract discriminative 3D features for more accurate 3D finger knuckle matching. An 

individuality model for the proposed feature descriptor is also presented. Comparative experimental results using the state-of-the-

art feature extraction methods on this challenging 3D finger knuckle database validate the effectiveness of our approach. Although 

our feature descriptor is designed for 3D finger knuckle patterns, it is also attractive for other hand-based biometric identifiers with 

similar patterns such as the palmprint and fingerprint. This observation is validated from the outperforming results, using the state-

of-the-art pixel-wise 3D palmprint and 3D fingerprint feature descriptors, on other publicly available datasets. 

Index Terms— Biometrics, finger knuckle identification, 3d finger dorsal matching, contactless hand identification 

——————————      —————————— 

1. INTRODUCTION

IOMETRIC technologies offer enormous potential to meet a 

range of security requirements for the automated and effi-

cient recognition of humans. Among various biometric identifi-

ers, fingerprint [2], [32] is probably the most widely deployed 

biometrics for the e-governance, e-business and a range of law-

enforcement applications. Other biometric identifiers such as 

face, iris, palmprint, or vascular patterns have also established 

their usefulness for a range of applications [1]. The usefulness of 

biometric identifiers depends on the nature of application re-

quirements including the accuracy, efficiency, and importantly 

the user convenience.  

Several challenges have emerged with the biometric recogni-

tion deployments using fingerprints. The degradation in finger-

print matching accuracy due to frequent skin deformations, re-

sidual dirt, sweat, moisture and/or scars, is well-known while a 

large number of manual labourers and elderly population also 

suffers from fingerprints with less than acceptable quality for the 

identification. The NIST report in [3] submitted for the US Con-

gress stated that about 2% of the population does not have usable 

fingerprints. Similar conclusions have also been reported in a 

large-scale proof of concept study from UIDAI [4] which stated 

that about 1.9% of subjects cannot be reliably authenticated by 

using their fingerprints. The finger knuckle patterns can be sim-

ultaneously imaged during the fingerprint identification and are 

less susceptible to damages during daily life activities. The finger 

knuckle patterns can be more conveniently imaged from a dis-

tance, unlike fingerprints, as the major creases and curved pat-

terns are easily visible with naked eyes. In summary, there are 

reasonable arguments to indicate that the addition of finger 

knuckle patterns for biometric recognition could address some of 

the limitations with the usage of only fingerprints.   

Finger knuckle patterns are believed to be quite unique in es-

tablishing human identities. Several researchers [5]-[8], [10] 

have investigated discriminative information from finger 

knuckle patterns using 2D images, and some evidence emerges 

from the study in [11] which investigated discriminative infor-

mation from 3D images using conventional shape index meas-

urements [12]-[13]. Similar to the palmprints [9, 10], it can be 

inferred that the most discriminative information from finger 

knuckle patterns is associated with the knuckle curves and 

creases. However, accurate extraction of finger knuckle curves 

and creases using 2D images is quite difficult because the 

changes in illuminations (e.g. caused by uneven reflections from 

3D knuckle surfaces in the vicinity) strongly influences the in-

tensity information. It is generally known that the biometric sys-

tems incorporating 2D imaging are more prone to spoof attacks 

(e.g. print attacks). A person impersonating another person by 

presenting a printed image poses serious challenges to preserve 

the integrity of a biometric system. 

The usage of 3D finger knuckle information (surface normal 

vector, depth, or curvature) can enable more reliable characteri-
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Table 1.  Summary of key differences between 

2D and 3D finger knuckle identification. 

 
2D Finger  

Knuckle Images 

3D Finger  

Knuckle Images 

Information and  

Invariability 

Intensity, affected by 

illumination 

Surface Normal / Depth / 

Curvature, invariant to il-

lumination 

Recognition  

Performance 
Medium High 

Identification of Spoof 

and Alterations 
Low High 

Convenience High High 

Earlier Work 
Several promising  

studies 
Almost Nil 
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zation of finger knuckle patterns as the 3D information is ex-

pected to be invariant to the change of illuminations. In addition, 

the 3D imaging setups generally acquire 2D images and therefore 

simultaneous usage of 3D and 2D finger knuckle images can be 

used to achieve a performance that may not be possible when 

either of such information is employed alone. Printed photograph 

cannot reveal 3D information and therefore 3D finger knuckle 

imaging systems can easily detect such spoof attacks. It is ex-

tremely difficult to present replicas of 3D finger knuckle patterns 

as they require subjects to intentionally present their fingers un-

der sophisticated imaging setups, unlike those required for 2D 

finger knuckle images that can also be acquired covertly. Table 1 

summarizes key differences between the potential from 2D and 

3D finger knuckle images for automated biometric identification. 

Despite many advantages with the usage of 3D finger knuckle 

features, there are many challenges in the development of an au-

tomated 3D finger knuckle biometric system. Firstly, it is diffi-

cult to design a feature descriptor, to robustly recover unique in-

formation from 3D curve and creases, which can offer more ac-

curate and efficient recognition. Secondly, a key limitation with 

the emerging 3D scanning technologies to replace conventional 

2D systems is associated with their high cost and bulk which can 

be mainly attributed to the nature of technologies employed for 

the 3D imaging. For example, five cameras were used in [1] 

while [14] uses a high-speed camera and a specialized projector 

to achieve 3D finger scanning. Therefore, there is a strong moti-

vation to develop low-cost imaging solutions for the 3D finger 

knuckle imaging.  Finally, most important bottleneck in the ad-

vancement of much needed research efforts on 3D finger knuckle 

identification is the lack of any database in the public domain.  

This paper investigates the development of first automated bi-

ometric system using 3D finger knuckle patterns. There are sev-

eral potential areas of applications for such technologies in e-

business, forensics, providing secured access in buildings and in-

stallations. This paper also presents a new feature descriptor for 

matching 3D finger knuckle patterns and attempts to estimate the 

uniqueness of the 3D finger knuckle patterns. A 3D finger 

knuckle database is also developed to advance further research 

efforts in this area. 

1.1 Related Work 

Study on finger knuckle patterns has attracted attention from 

many researchers, with many exciting results in the literature for 

the accurate biometric identification. However earlier attempts 

have only demonstrated the effectiveness of 2D knuckle pat-

terns/images for the online personal identification and such at-

tempt using 3D knuckle patterns is yet to emerge in the best of 

our knowledge. Many research efforts to study 3D shape patterns 

using 3D ear [15], 3D fingerprints [16], and 3D face [17] have 

resulted in the development of more accurate or reliable bio-

metric systems. Therefore a comprehensive study on the recov-

ery of 3D knuckle patterns and comparisons of 3D finger knuckle 

features is highly desirable and has been the focus of our work.  

       The gray-level 2D knuckle images typically acquire anat-

omy of skin crease patterns between the middle and proximal 

phalanges of fingers. A range of approaches using such knuckle 

images have been detailed in the literature for biometrics based 

personal identification. Based on the nature of feature de-

scriptors, these approaches can be largely categorized into three 

categories; those based on subspace learning (e.g. [6], [11]), 

spectral features (e.g. [18]-[19], [41]) and those based on the dis-

cretization of local features (e.g. [8], [20]). Among these, those 

approaches based on the discretization of local features have at-

tracted more attention in the literature as such methods generate 

compact size templates, which leads to faster retrieval or match-

ing. Reference [24] provides comparative experimental results, 

on a range of minor and major knuckle patterns, using publicly 

accessible database from 700+ different subjects. These results 

using local feature descriptors achieve outperforming results and 

is reasonable to incorporate such approach as a baseline to ascer-

tain performance from 2D knuckle images. 

1.2 Our Work and Key Contributions 

This paper addresses the key limitations of currently available 

finger knuckle identification technologies by developing a 3D 

finger knuckle feature extraction and matching model that can 

simultaneously recover extended finger knuckle features from 

3D finger knuckle images reconstructed from a single 2D imag-

ing sensor. Simultaneous availability of 3D information from the 

finger knuckle images not only offers significantly improved 

matching accuracy but can also ensure automated detection of 

sensor-level spoof attacks using printed knuckle images. Any di-

rect application of known or popular 3D feature descriptors, e.g. 

those designed for other biometric identifiers such as palm or fin-

gerprint, is expected to offer limited performance. Instead, spe-

cialized feature extractors should be designed to recover the most 

discriminative information from the 3D finger knuckle patterns 

which is largely embedded in 3D curves and creases with varying 

thickness. Some of the successful attempts in recovering 3D fin-

gerprints using photometric stereo [16] requires reconstruction 

or the integration of source 3D information, i.e. surface normals. 

The reconstruction process is generally complex, e.g. popular 

method used in [21] requires FFT and IFFT which are known for 

their complexity, and is known to introduce errors in the recon-

structed depth images. These errors are introduced as it is diffi-

cult to find closed form solutions for the integration, i.e., integra-

bility problem [21]-[22], and mainly results from the discontinu-

ities around irregular ridge valley boundaries during the 3D re-

construction. Therefore, any direct usage of source 3D infor-

mation from the surface normal vectors can not only enhance 

matching accuracy for 3D knuckle images but can also help to 

reduce the complexity and is therefore highly desirable. The in-

troduction of new 3D finger knuckle modality also raises a fun-

damental question on the (theoretical) upper limit on the perfor-

mance from this biometric modality. Therefore, uniqueness of 

3D knuckle patterns needs to be established to answer some of 

such fundamental questions relating to 3D finger knuckle pat-

terns. The key contributions from this paper can be summarized 

as follows: 

 

1. This paper investigates and develops a new biometric sys-

tem using contactless 3D finger knuckle images. Simultane-

ous acquisition of 3D and 2D finger knuckle images can be 

used to significantly improve the matching accuracy that may  
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not be possible by using either 2D or 3D finger knuckle pat-

terns alone, and such an approach is presented in this paper. 

Experimental results presented in this paper indicate that, un-

like 2D finger knuckle identification, new 3D finger knuckle 

identification system can also help to preserve integrity of the 

biometric system by detecting sensor level print attacks. The 

individuality of finger knuckle patterns is yet to be studied 

and therefore we also attempt to answer the fundamental 

question on the uniqueness of 3D finger knuckle biometric 

modality. An individuality model presented in section 4 esti-

mates the theoretical upper limit on the expected perfor-

mance from finger knuckle patterns and would facilitate fur-

ther research in this area. 

 

2.  We develop a new feature descriptor to efficiently and more 

accurately match 3D finger knuckle biometric patterns. This 

feature descriptor can efficiently recover and encode the cur-

vature and orientation details and considers their partial-sim-

ilarity during the matching. Our detailed and comparative ex-

perimental results presented in section 5 of this paper indicate 

outperforming results and validate our approach developed 

in this paper. Although our feature descriptor is designed for 

recovering discriminative information from 3D finger 

knuckle images, it is also useful for other biometric identifi-

ers such as palm and fingerprint. Our comparative experi-

mental results detailed in section 5 in this paper indicate out-

performing results, over the state-of-the-art baselines on pub-

lic databases, and validate the effectiveness of our feature de-

scriptor. 

 

3.  Lack of any publicly available 3D finger knuckle database is 

one of the key limitations for much needed further research 

in this area. Therefore, this paper develops the first two-ses-

sion 3D finger knuckle database. This 3D finger knuckle im-

ages database has been acquired from 130 different subjects, 

with 2820 images, and is made publicly available [40] for re-

searchers to advance much needed further research in this 

area. 

 

The rest of this paper is organized as follows. Section 2 pre-

sents a overview of the 3D finger knuckle identification system 

using a simplified block diagram. The details for our methodol-

ogies, including the proposed feature descriptor, appear in sec-

tion 3. The uniqueness of finger knuckle patterns is discussed in 

section 4 with details on the proposed individuality model. The 

comparative experimental results are systematically presented in 

section 5 of this paper while the key conclusions from this work 

are summarized in section 6.  

2. SYSTEM OVERVIEW AND BLOCK DIAGRAM 

A simplified block diagram for 3D finger knuckle identification 

system developed in this work is shown in Figure 1.  Multiple 

2D finger knuckle images are firstly acquired under different il-

luminations and the acquisition is automatically synchronized 

using with respective illumination using a computer. The ac-

quired images are then preprocessed and automatically seg-

mented to extract region of interest images. These segmented im-

ages, acquired under different illuminations, are then used for es-

timating surface normal vectors. Unlike other photometric stereo 

based biometric imaging system (e.g. fingerprint [16], [27]), the 

complex process of integrating surface normal vectors for recov-

ering the depth images is not required in our system. The 3D fin-

ger knuckle features are then directly extracted from the surface 

normal vectors of 3D finger knuckle images. The 2D finger 

knuckle image, although noisy as each of them is acquired under 

partial illumination, used to recover 3D finger knuckle images 

can also be utilized to improve match accuracy for the system 

and is also investigated in our work. The match scores between 

the probe and gallery pairs are then respectively computed for 

3D and 2D finger knuckle images. The final decision to assign 

an unknown user to either genuine or imposter class is made us-

ing the combinate match score and its comparison with the deci-

sion threshold. 

3. 3D FINGER KNUCKLE IDENTIFICATION 

In the following subsections, key components of the 3D finger 

knuckle identification system including the image acquisition, 

image preprocessing and segmentation, 3D reconstruction, fea-

ture extraction steps and the matching process is detailed. 

3.1 Image Acquisition 

We use photometric stereo approach and imaging setup in [16] to 

acquire 3D finger knuckle images. This approach requires a low-

cost fixed camera, with seven evenly distributed illuminations 

surrounding the camera lens, a control or driver circuit to power 

up the illuminations and any general-purpose computer. The con-

trol circuit is programmed  to  adjust the illuminations while the 

 
4 

Fig. 1.  Block diagram of 3D finger knuckle recognition system. 
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computer coordinates to synchronize the control circuit during 

the camera imaging. The positions of the illuminations are ap-

proximated by measuring the height and observing the orienta-

tion of shadow when a pin is placed at the center of the field of 

view. Relative positions of the illuminations at every pixel is 

computed during the calibration of the imaging setup. The finger 

dorsal region is presented to the camera during the 3D imaging. 

A number of 3D finger knuckle images are acquired in quick suc-

cession while respective light sources are activated. Figure 2 pre-

sents sample images acquired from different subjects during the 

imaging.  

3.2 Image Preprocessing and Segmentation 

Each of the acquired images are firstly subjected to the segmen-

tation to automatically extract the region of interest images. This 

is achieved by firstly computing an average image for each set of 

stereo images, followed by the edge detection. In order to local-

ize the image region containing knuckle patterns, a fixed size of 

rectangular window is used to probe the edge-detected image in 

horizontal and the vertical directions. Similar to as in [6], the 

number of edge pixels within this window is computed. A fixed 

region of interest is segmented from the image with the maxi-

mum number of edge pixels within this sliding window. These 

segmented images are further subjected to contrast stretching op-

eration and then used for the 3D reconstruction input as detailed 

in the next section. Figure 3 shows samples from the segmented 

images of different subjects. 

3.3 3D Reconstruction 

The 3D surface normal vectors from of the photometric stereo 

images are recovered using the conventional photometric stereo 

method [23]. A simplified specular reflection removal approach 

is adopted to accurately recover the surface normal vectors. For 

a set of stereo images, 90% of the maximum or highest intensity 

values are defined as the threshold for the detection of outliers. 

Intensity values larger than this threshold are considered as the 

specular values and are automatically discarded. However, when 

there are too many specular reflection values at a pixel position, 

at least four lowest intensity values are retained to estimate the 

surface normal vectors. The finger surface is assumed be Lam-

bertian and we use such assumptions for the traditional photo-

metric stereo approach, as justified in many references e.g. [16], 

     
Fig. 2.  Sample raw images acquired from different subjects. 

 

     
Fig. 3.  Sample segmented images acquired from different subjects. 

 

           
                                 (a)                                                         (b)                                                                         (c)       
Fig. 4.  Sample images of surface gradient: (a) with respect to horizontal direction; (b) with respect to vertical direction; (c) Surface normal vectors. 

 

     
                                                                 (a)                                                                                                     (b) 

Fig. 5.  3D reconstructed images using: (a) Frankot Chellappa; (b) Poisson Solver. 
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[27], to recover 3D surface normal. Let us define 𝒊 =
[𝑖1, 𝑖2 , … , 𝑖𝐷 ]

𝑇 be the intensity values of a pixel corresponding to 

the D different light sources; 𝒍 = [𝑙𝑥 , 𝑙𝑦 , 𝑙𝑧 ]
𝑇 be the vector of a 

light source; 𝑳 = [𝒍1 , 𝒍2 , … , 𝒍𝐷 ]
𝑇 be the matrix of the light 

sources; 𝒏 = [𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 ]
𝑇 be the surface normal vector and ρ 

be the albedo.  

𝒊 = 𝑳 ∙ 𝒏 ∙ ρ                                     (1) 

 Surface normal vectors are computed using the least square ap-

proximation: 
𝒎 = 𝒏 ∙ ρ = (𝑳𝑇𝑳)−1𝑳𝑇𝒊                            (2) 

ρ = |𝒎|                                           (3) 

       𝒏 =
𝒎

|𝒎|
                                             (4) 

Figure 4 illustrates sample images corresponding to the surface 

gradients and surface normal vectors. Traditional 3D feature de-

scriptors [30]. [31] extract features from the depth images, which 

can be computed by integrating the surface normal vectors in ob-

tained from equation (4). The Poisson Solver [22] and Frankot 

Chellappa [21] approach are two popular approach to recover the 

depth map while addressing integrability problem. The Poisson 

Solver approach generated better visual result (Figure 5) that 

closely resembled with the natural knuckle patterns. However, 

the usage of Frankot Chellappa approach constantly offered con-

sistently better performance. Figure 6 presents such comparative 

performance evaluation from 105 subjects six forefinger knuckle 

images, using a two-session protocolthat generated 630 genuine 

match scores and 65520 imposter match scores, with Surface 

Code [30] as the feature descriptor. Please refer to Section 5.1 for 

more details on the database and experimental protocol. Many 

state-of-the-art photometric stereo methods, e.g. [25]-[26], [28] 

for the real objects may not be suitable for accurately recovering 

3D finger knuckle patterns for the biometric recognition. Our 

comparative experimental results for the verification perfor-

mance using SBL [26] and the traditional least square (LS) ap-

proach appear in Figure 6. These results can justify the choice of 

traditional least square approach with Frankot Chellappa algo-

rithm for our problem.  

3.4 3D Feature Descriptor using Surface Gradient 
Derivatives 

The 3D images generally provide more stable or invariant details 

and can enable more accurate extraction of finger knuckle curves 

and creases (as discussed in section 1). Therefore a more special-

ized feature descriptor to recover and match such 3D information 

is developed. Among many 3D surface details (e.g. surface nor-

mal vector, depth, and curvature), 3D feature descriptors for 

other hand based biometric identifiers, e.g. 3D palm,  have shown 

outperforming results using the curvature [30] and depth [31]. 

These are however not expected to be accurate enough to extract 

most discriminative features from the finger knuckle patterns as 

these are presented in 3D curves and creases with varying pro-

file/thickness. Another more important aspect of the feature de-

scriptor introduced in this work is that the photometric stereo 

based 3D biometric imaging systems (e.g. fingerprint [16], [27]) 

computes the depth images by integrating surface normal vec-

tors. In fact, every ‘reconstruction algorithm’ the surface normal 

needs to be integrated and suffers from integrability problem [9] 

which can be more severe for 3D knuckle patterns due to the ir-

regular ridge and valley structure. This process is not only known 

to introduce errors but is also computationally complex. The pro-

cess of computing curvature information from depth images even 

requires significant amount of time (shown in section 5.1.1). We 

therefore attempt to address such limitations by developing a 

new feature descriptor, which can directly extract discriminative 

features from the 3D surface normal vectors, alleviating the need 

for computing depth or curvature images. The surface normal 

vectors essentially present source 3D information which is dis-

criminative and also robust to the common photometric varia-

tions. Therefore appropriate surface normal vector based meas-

urements can provide significant capabilities for discriminating 

identities. The feature descriptor introduced in this section is 

highly discriminative as it can efficiently capture both the line  

 
Fig. 6. Comparisons between different reconstruction methods. 

 

 
Fig. 7. Illustration of the derivatives of gradient p. 
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and orientation information using two bits per pixel, which can-

not be achieved neither from descriptor in [30] (four-bits per 

pixel) or in [31] (no orientation information is encoded). We now 

detail the formulation of this feature descriptor using the source 

3D information. 

Let 𝑟 represent the imaged 3D finger knuckle surface. This 

3D surface can be explicitly described in terms of a function 

along 2D coordinates 𝑥 and 𝑦 as follows: 

   𝑟 = 𝑔(𝑥, 𝑦)                                            (5) 

The surface normal vector 𝒏 on this surface 𝑟 can be expressed 

as follows: 

𝒏 = [𝑝, 𝑞, 1]𝑇  where   𝑝 =
𝜕𝑔(𝑥,𝑦)

𝜕𝑥
, 𝑞 =

𝜕𝑔(𝑥,𝑦)

𝜕𝑦
        (6) 

where 𝑝 and 𝑞 represents the gradient of 𝑔(𝑥, 𝑦) along respective 

axes. The gradient space is a two-dimensional space containing 

all points (𝑝, 𝑞) [23].  

If the surface normal vectors are recovered using photometric 

stereo approach detailed in section 3.3, unit surface normal vec-

tors in the form of 𝒏̂ = [𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 ]
𝑇 are obtained from equation 

(4). The surface gradients 𝑝, 𝑞 can then be directly computed 

(without the need of object surface 𝑧) as: 

𝑝 =  
𝑛𝑥

𝑛𝑧
,   𝑞 =  

𝑛𝑦

𝑛𝑧
                                 (7) 

Figure 7 illustrates a schematic representation of surface nor-

mal vectors (arrows) in a cross-sectional view. In this figure, x-

axis is pointing towards the right and we define sample gradients 

𝑝 for the illustration. The derivatives of gradient 𝑝 with respect 

to the direction x can be computed as the difference between the 

neighboring values using a simple gradient function. It can be 

observed that the valley region is associated with negative val-

ues, of the first derivative of gradient p with respect to the direc-

tion x, while ridge region is associated with positive values of the 

first derivatives of gradient p with respect to the direction x. Val-

ley and ridge regions can therefore be easily distinguished by set-

ting zero as the decision boundary. The most discriminative pat-

terns on finger knuckle surface can be identified from the high 

frequency valley and ridge patterns. Therefore, it is expected that 

the first derivative of surface gradients can describe discrimina-

tive features in finger knuckle patterns. 

We can further consolidate the knuckle feature formulation 

and recover the derivatives of surface gradient variables 𝑝, 𝑞 rep-

resented as in the following:  

𝜕𝑝

𝜕𝑥
=

𝜕2𝑔(𝑥,𝑦)

𝜕𝑥2      and     
𝜕𝑞

𝜕𝑦
=

𝜕2𝑔(𝑥,𝑦)

𝜕𝑦2                     (8) 

We now define the features based on the surface gradient deriv-

atives as two-bit binary representations using zero as the decision 

boundaries: 

𝑆𝐺𝐷𝑥 = 𝜏(
𝜕𝑝

𝜕𝑥
)     and     𝑆𝐺𝐷𝑦 = 𝜏(

𝜕𝑞

𝜕𝑦
)                (9) 

where                        𝜏(𝛼) = {
1   , 𝛼 < 0
0   , 𝛼 ≥ 0

                              (10) 

Figure 8 illustrates some sample images representing 𝑆𝐺𝐷𝑥 

and 𝑆𝐺𝐷𝑦. Although the derivatives of p with respect to the di-

rection y and the derivatives of q with respect to the direction x 

can also be defined in a similar manner, they may not be as useful 

as 𝜕𝑝/𝜕𝑥 and 𝜕𝑞/𝜕𝑦 which correspond to the physical meanings 

Surface Code [30]  
(the most significant bit is on left) 

Binary Shape [31] Surface Gradient Derivatives 
 (𝑆𝐺𝐷𝑥 and 𝑆𝐺𝐷𝑦) 

                 

       

Fig. 8.  Sample binary feature images of Surface Code [30], Binary Shape [31] and proposed Surface Gradient Derivatives. Images in a 
row are from the same subject. 

  
                                                                     (a)                                                                                (b)     

Fig. 9.  Comparisons of using various matching schemes (a) 30 subjects; (b) 105 subjects. 
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as illustrated in Figure 7. Another related technique, the second 

partial derivative evaluation utilizes all the four information (i.e. 

𝜕𝑝/𝜕𝑥, 𝜕𝑝/𝜕𝑦, 𝜕𝑞/𝜕𝑥, 𝜕𝑞/𝜕𝑦)  for describing the local curva-

ture of 3D knuckle surface. However, such technique only de-

scribes a pixel in one of the four categories: local minimum, local 

maximum, saddle point, or inconclusive (i.e. can be any of the 

above three). Besides, our 𝑆𝐺𝐷𝑥 and 𝑆𝐺𝐷𝑦 feature representation 

is expected to be more useful than the other two derivatives be-

cause of the aforementioned physical interpretation. The surface 

gradient derivatives features not only describe the concavity of 

irregular knuckle curves and creases but also their orientations 

(more explanation in section 3.5).  

3.5 Feature Matching with Partial Similarity 

In order to ensure full potential from the surface gradient de-

rivatives features for more accurate matching, a sophisticated 

matching strategy needs to be formulated for matching binary 

feature templates. One intuitive approach is to consider the two 

binary feature templates independently and use the Hamming 

Distance to ascertain their similarity score (represented here as 

𝑆𝐺𝐷𝑥 only, 𝑆𝐺𝐷𝑦 only). The final match score between two 3D 

finger knuckle images can be computed from the weighted score 

level combination of such similarity scores. Another efficient ap-

proach is to consolidate two binary feature templates into one 

using AND or OR operator, and use Hamming Distance as the 

match score between two 3D finger knuckle images (represented 

here as 1-bit AND, 1-bit OR). Besides, the two feature templates 

can be correspondingly matched with respective probe templates 

using the XOR operator and the resulting two pixel-wise similar-

ity templates can be used to generate the similarity score using 

the ADD, OR or AND operator (represented here as 2-bit ADD, 

2-bit OR, 2-bit AND). We performed experiments using the sub-

set of database with the first 30 subjects (each with six forefinger 

knuckle images in two sessions, results in 180 (30 × 6) genuine 

match scores and 5220 (30 × 6 × 29) imposter match scores) to 

ascertain comparative performance from several such matching 

schemes (Figure 9). Please refer to Section 5.1 for more details 

on the database and experimental protocol. These experiments 

indicate that our matching scheme (denoted as Ours final) and 

(1-bit OR) can achieve two best performing results. The experi-

ments are further extended using 105 subjects (each with 6 im-

ages in two sessions, results in 630 (105 × 6) genuine match 

scores and 65520 (105 × 6 × 104) imposter match scores), which 

validates the effectiveness of our matching scheme over those 

from the variations of Hamming Distance. It is prudent to analyse 

the proposed matching strategy in detail and examine the reasons 

for superior performance. 

In order to design an effective feature matching scheme, the 

nature of features represented in two binary feature templates 

should be carefully considered. Figure 10 details the nature of 

features expected to be represented/recovered from the 2-bit fea-

ture descriptors at every pixel location. In this figure, value 1 in-

dicates the detection of a line feature (piece-wise linear approxi-

mation of knuckle curves or creases) in either vertical or hori-

zontal direction. If no such line features are detected in any of the 

two direction, it corresponds to a non-line pixel represented by 

‘00’. If a line feature is detected only in 𝑆𝐺𝐷𝑦 component, the 

line feature is expected to have horizontal orientation denoted by 

‘01’. Similarly, a line feature in the vertical orientation is repre-

sented by ‘10’. If such line features are detected in both 𝑆𝐺𝐷𝑥 

and 𝑆𝐺𝐷𝑦, there can be many possibilities. It could be two inter-

secting lines in the vertical and horizontal direction. It could also 

represent a line feature in an arbitrary orientation which is neither 

nearly vertical or horizontal. This situation is described here as 

an uncertain line feature and represented ‘11’. 

Conventional approaches for generating similarity scores us-

ing binary feature templates use Hamming Distance to measure 

the similarity (represented as outcome 0) or the dissimilarity 

(represented as outcome 1) when comparing a pair of binary fea-

ture values. However, the cases of partial similarity is not ac-

counted in such measurements. Therefore, we introduce an alter-

native matching scheme to describe the partially matched scenar-

ios. We firstly define perfectly similar outcome (represented as 

the outcome ‘0’) for three situations when the detected feature 

represents: (i) a nearly horizontal line ‘01’; (ii) a nearly vertical 

line ‘10’; and (iii) as an uncertain line ‘11’ in both the probe and 

gallery templates. We then define perfectly dissimilar outcomes 

(represented as the outcome ‘1’) for the two situations when the 

detected feature (i) does not represent any line ‘00’ in either 

probe or gallery template, but represents as the line in the other 

template; and (ii) the detected feature represents a nearly hori-

zontal line ‘01’ in either probe or gallery template but it repre-

sents a nearly vertical line ‘10’ in the other template. For the re-

maining situations, we define partially similar outcome (repre-

sented as the outcome 0.5). Let ℎ be be this new function which 

maps two pixelwise surface gradient derivatives features into an 

outcome score, which is represented in Table 2. Let 𝐴 and 𝐵 be 

two surface gradient feature templates of size 𝑀 × 𝑁. Let 𝑎𝑖𝑗 and 

𝑏𝑖𝑗 (𝑖 ∈ [1, 𝑀], 𝑗 ∈ [1, 𝑁]) be the bitwise surface gradient fea-

tures in template 𝐴 and 𝐵 respectively.  The matching score s for 

computing the distance between the templates 𝐴 and 𝐵 is defined 

as the average of outcome from all feature comparisons: 

𝑠 =
1

𝑀 × 𝑁
∑ ∑ ℎ(𝑎𝑖𝑗, 𝑏𝑖𝑗)𝑁

𝑗=1
𝑀
𝑖=1                     (11) 

In order to accommodate pose variations in the acquired images, 

best or the minimum of the match scores resulting from the rota-

tional or translational shifting of the probe template can be em-

ployed and was also investigated in our experiments. 

 
Fig. 10.  Schematic representation of the gradient derivative features. 

 

Table 2.  Pixelwise surface gradient derivative features mapping 

function. 

 𝑏𝑖𝑗 
00 01 10 11 

𝑎𝑖𝑗  

00 0.5 1 1 1 

01 1 0 1 0.5 

10 1 1 0 0.5 

11 1 0.5 0.5 0 
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4. UNIQUENESS OF FINGER KNUCKLE PATTERNS 

It is highly desirable to characterize the uniqueness of 3D finger 

knuckle patterns or estimate the probability that two persons can 

have substantially similar 3D finger knuckle patterns in a given 

population. Any such measure to establish uniqueness of 3D fin-

ger knuckle patterns can also provide us theoretical upper limit 

on the expected performance from 3D finger knuckle based bio-

metrics. There are several studies to ascertain theoretical upper 

limit on the expected performance from other biometric system, 

e.g. using 3D fingerprints [16], iris [33]-[37] or handwriting [38]. 

Therefore, we attempt to ascertain upper bound on the expected 

performance from the 3D finger knuckle biometric system pre-

sented in this paper.  

The uniqueness of 3D finger knuckle patterns can be evalu-

ated from the probability of false matches in a given population, 

i.e., from the probability of false random correspondence be-

tween the finger knuckle representations from the two arbitrary 

3D finger knuckle patterns belonging to different fingers. One of 

the more judicious approach to address this problem is to esti-

mate the number of degrees of freedom [33]-[35] . It is equivalent 

to computing the maximum number of identities which can be 

distinguished. Then, the likelihood of two finger knuckle repre-

sentations from different 3D finger knuckle patterns agreeing 

completely by chance can be computed.  

The 2-bit feature descriptor introduced in section 3 consists 

of four possible representations {‘00’, ‘01’, ‘10’, ‘11’} from each 

of the 3D finger knuckle locations. When two such representa-

tions from any pixel locations are compared, there can be three 

possible outcomes with scores 0, 0.5, or 1. We here make as-

sumption that when two 3D finger knuckle representations from 

different subjects are matched, the outcome of match scores from 

the corresponding locations are mutually independent. This in-

dependence assumption, similar to as in [16], [27], is justified 

here as we are interested in theoretical upper bound and as the 

practical performance is expected to be lower than this estima-

tion after considering such factors involving mutual independ-

ence or the noise [29]. Reference [33]-[34] has incorporated bi-

nary features for iris biometrics and computed the probability of 

false random correspondence by modeling the distribution of im-

poster match scores using a binomial function. Since there are 

three possible outcomes in our feature representation, a trinomial 

distribution model consisting of 𝑛 trails is introduced to model 

the distribution of imposter match scores. Let 𝑝1, 𝑝2 and 𝑝3 rep-

resent the probabilities of having outcome scores 0, 0.5 and 1 

respectively. Let 𝑋1 be the random variable representing the 

number of times outcome 0 is observed over 𝑛 trails and 𝑥1 be 

the value for 𝑋1 from each of such trials. Similarly, we can define 

𝑋2, 𝑥2 𝑋3 and 𝑥3 corresponding to 𝑝2 and 𝑝3. The probability 

distribution function corresponding to the trinomial random var-

iables can be expressed as follows: 

     𝑓𝑋1,𝑋2𝑋3
(𝑥1, 𝑥2, 𝑥3) 

= {

𝑛!

𝑥1!𝑥2!𝑥3!
𝑝1

𝑥1𝑝2
𝑥2 𝑝3

𝑥3     ,  when 𝑥1+ 𝑥2+ 𝑥3 = 𝑛

0                            , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (12) 

and the expectation, variance, and covariance of 𝑋𝑖 , 𝑖 ∈ {1,2,3} 

are: 

𝐸(𝑋𝑖) = 𝑛𝑝𝑖                                     (13) 

𝑉𝑎𝑟(𝑋𝑖) = 𝑛𝑝𝑖(1 − 𝑝𝑖)                       (14) 

𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗) = −𝑛𝑝𝑖𝑝𝑗                              (15) 

Let Y be a random variable representing the match score between 

two feature representations. 

Y = 0.5𝑋2 + 𝑋3                               (16) 

Since the sum of 𝑥1, 𝑥2, 𝑥3 is 𝑛, the dependence of 𝑥1, 𝑥2, 𝑥3 can 

be computed as follows: 

𝑥2 = 2(𝑦 − 𝑥3)   , 𝑥3 ∈ [0, 𝑛]                    (17) 

𝑥1 = 𝑛 − 2𝑦 + 𝑥3   , 𝑥3 ∈ [0, 𝑛]                (18) 

Incorporating equations (17)-(18), we can write the probability 

distribution function for the distribution of scores: 

𝑓𝑌(𝑦) =  {
∑ 𝑓𝑋1,𝑋2𝑋3

(𝑥1, 𝑥2, 𝑥3)𝑛
𝑥3=0      ,  when 𝑥1, 𝑥2 > 0

0                                     ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (19) 

with respective expectation and the variance as follows: 

𝐸(𝑌) = 0.5𝐸(𝑋2) + 𝐸(𝑋3) = 𝑛(0.5𝑝2 + 𝑝3)             (20) 

𝑉𝑎𝑟(𝑌) = 0.52𝑉𝑎𝑟(𝑋2) + 𝑉𝑎𝑟(𝑋3) + 𝐶𝑜𝑣(𝑋2, 𝑋3)     (21) 

                  = 𝑛[0.52𝑝2(1 − 𝑝2) + 𝑝3(1 − 𝑝3) − 𝑝2𝑝3]    (22) 

The cumulative distribution function corresponding to (19) rep-

resents the false acceptance rate. 

Reference [36] details interesting efforts to model transfor-

mations from ‘true’ iris representation to the sensed iris represen-

tation using a single bit flip probability. However, such an ap-

proach ignores the influence from frequently observed noise in-

troduced from pose and illumination changes during the image 

acquisition, sensor noise, segmentation errors and some other un-

known factors. This is also the plausible reason that the theoreti-

cal ROCs presented in [36] do not closely fit with the respective 

empirical results. Therefore, we did not pursue/incorporate such 

an approach to formulate our individuality model. 

More attractive/realistic approach to model the match score 

distributions from the binary feature templates appears in [33]-

[35]. This approach uses probability distribution function, of the 

minimum of independent random variables, to model the final 

match score and is computed from the minimum of scores gen-

erated from the rotationally shifted versions of Iris Code tem-

plates. However, it should be noted that such match scores from 

the shifted versions are not expected to be completely independ-

ent. For instance, the match score between templates A and B is 

expected to be similar to the match score between template A and 

the shifted versions of template B when the shift parameter is 

small (e.g. translated to the left for one pixel). Therefore, such 

approach will be less accurate when the number of employed 

shifted versions of the template is large. It should be noted that 

there are only seven shifted versions of the templates employed 

in [33]-[35] while there are 39627 shifted versions (from trans-

lation and rotations) of the templates in our work. We incorporate 



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2019.2904232, IEEE Transactions on Pattern Analysis and Machine Intelligence

KEVIN H. M. CHENG AND AJAY KUMAR.:  BIOMETRIC RECOGNITION USING 3D FINGER KNUCKLE PATTERNS 9 

 

a simplified approach to address this problem. The major influ-

ence from such operations is to compute minimum match score 

which results in the shifting of the score distribution. Therefore, 

we introduce a numerical compensation parameter to accommo-

date such shifts or to adjust the mean and is estimated during the 

training stage using the portions of the empirical data. During the 

training stage, the difference between the mean of the empirical 

distribution and the theoretical distribution, which is obtained 

from equation (19), is computed and is defined as the compensa-

tion parameter. During the test stage/phase, the final theoretical 

distribution is obtained from equation (19) using this compensa-

tion parameter to accommodate the influence from shifting oper-

ations.  

In order to theoretically model the distribution of match 

scores, the number of trails for the trinomial distribution can be 

computed using the variance obtained from the empirical results. 

Let 𝜎2 be such estimated empirical variance. The number of 

trails n can be computed as follows:  

 𝜎2 =
𝑉𝑎𝑟(𝑌)

𝑛2                                     (23) 

𝑛 = ⌈
0.52𝑝2(1−𝑝2)+𝑝3(1−𝑝3)−𝑝2𝑝3

𝜎2 ⌉                   (24) 

Similar to the empirical experiments in Section 5, we generate 

65520 (105 × 104 × 6) imposter match scores from matching the 

second session images to the first session images, using the fea-

ture extraction and matching method described in Section 3.4-

3.5, from 105 different subjects, each with 6 images per session. 

Please refer to Section 5.1 for more details on the database and 

experimental protocol. The occurrence of four possible represen-

tations (‘00’, ‘01’, ‘10’, ‘11’), on per pixel basis, can be obtained 

from this experimental data and used to compute 𝑝1 as 0.1173, 

𝑝2 as 0.3116 and 𝑝3 as 0.5711. Therefore, using equation (24), n 

can be estimated as 886. Similarly, 630 (105 × 6) genuine match 

scores can also be used to model the parameters of the same tri-

nomial function for the distribution of genuine match scores. The 

major difference between the theoretically modeled genuine and 

imposter score distributions results from the estimated parame-

ters, i.e., 𝑝1, 𝑝2, 𝑝3 and n. In this manner, we can also compute 

theoretical ROC for the comparison. Figure 11 (a)-(c) presents 

the comparative illustration of our theoretical and empirical re-

sults.   

In order to ascertain the reliability of the obtained results, we 

performed additional experiments by separating the modelling 

processes into training and test stages. We used first Tn subjects 

as the training set for computing the probabilities 𝑝1, 𝑝2 , 𝑝3 and 

the number n. The rest of the subjects (105 - Tn) are then used as 

the test set for evaluating the fitting performance. These results 

are provided in the Appendix A. The close fitting of these empir-

ical results suggest that our trinomial model can quite accurately 

predict the empirical imposter distribution (the probability of 

false random correspondence), genuine distribution and ROCs. 

It can be noted that when Tn becomes larger, less number of sam-

ples will be used for the test sets. In this situation, the empirical 

results are expected to much better, which can result in larger 

differences between the corresponding theoretical results. It can 

also be observed from the results in Figure 11 (d) that the number 

of trails, also referred to as the degrees of freedom, n is quite 

stable (about 1000) when it is computed using the different size 

of training sets/data.  

In summary, the probability of false random correspondence, 

the imposter distribution and the false accept rate can be mod-

elled by the trinomial distribution function. The genuine distri-

bution and the false reject rate can also be modelled using similar 

approach. Our experiments using all the first session images for 

training have computed n as 886. This suggests that the empirical 

imposter distribution can be modeled using a trinomial distribu-

tion function with 886 trails. Similar to as in [33]-[35],  it is rea-

sonable to conclude that each of the finger knuckle feature rep-

resentation can be modeled with such 886 independent pixels 

(each with 2 bits). The probability of false random correspond-

ence between finger knuckle representations from any two arbi-

trary finger knuckle patterns belonging to different fingers is 

therefore about 4−886 or 10−533. Therefore the probability of 

false random correspondence is very small, which indicates high 

uniqueness in the finger knuckle patterns. This probability is 

much smaller than estimated for the fingerprints [16], [39].  Such 

difference can be explained from the usage of limited infor-

mation from (only) the singularity locations or in the extracted 

minutia feature space, while our feature representation utilizes 

the information from the entire image.  

5 EXPERIMENTS AND RESULTS 

5.1 Contactless 3D Finger Knuckle Database 

Lack of any 3D finger knuckle images database in the literature 

has required us to acquire a new dataset using the setup described 

in section 3.1. Our 3D finger knuckle database has been acquired 

from more than 130 different subjects and among these 105 sub-

jects have volunteered to provide second session’s data. Each of 

  
     (a)                                                 (b) 

  
     (c)                                                 (d) 

Fig. 11. Empirical and theoretical (a) imposter score distribution, (b) 
genuine score distribution, (c) the ROC. The influence from the size of 
training set on the estimated number of degrees of freedom is shown 
in (d). 
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these subjects provided six forefinger 3D knuckle images and six 

middle finger 3D knuckle images. In our preliminary experi-

ments, it was observed that the forefinger images achieve better 

performance than using middle finger images. Therefore, fore-

finger images were employed for the extensive experimental re-

sults detailed in this paper. Entire 3D finger knuckle database ac-

quired in this work is made publicly available [40] for further 

work in this area.  

We performed extensive experiments using our proposed 

method to ascertain effectiveness for the verification and identi-

fication problems. These experimental results are presented us-

ing the receiver operating characteristics (ROC) curve with equal 

error rates (EER), and cumulative match characteristics (CMC) 

curve. We use standard protocol [2], [6], [15], [20] for the two 

sessions’ database. The first session data is used as for the regis-

tration or the training while the second session data is used as test 

set for the performance evaluation. Therefore 630 (105 × 6) gen-

uine match scores and 65520 (105 × 6 × 104) imposter match 

scores were generated. None of the earlier work on the finger 

knuckle recognition, in the best of our knowledge, has attempted 

to evaluate the performance for the open set identification prob-

lem. However, the deployed biometric systems often have to 

cope up with unregistered (imposter) user attempts who may be 

identified as the enrolled users. Such open set identification is 

widely considered as the more challenging problem and therefore 

we also performed such evaluation in this work. The first 105 

subjects who provided registration data during the first session 

were considered as enrolled users while the rest of the 25 subjects 

which only provided one session data were considered as the un-

enrolled users. We evaluated the performance with False Nega-

tive Identification Rate (FNIR) and False Positive Identification 

Rate (FPIR). We correct the equations from [42] as in the follow-

ings and were used for open set performance evaluation: 

𝐹𝑃𝐼𝑅(𝑇) =  
1

𝐾
∑ 𝐻(𝑇 − 𝑠𝑖1)𝐾

𝑖=1                     (25) 

𝐹𝑁𝐼𝑅(𝑇) = 1 −
1

𝑀
∑ 𝐻(𝑇 − 𝑠𝑖𝑐)𝑀

𝑖=1                (26) 

where 𝑇 is the threshold; K is the number of searches for non-

enrolled images; M is the number of searches for enrolled im-

ages; 𝑠𝑖1 is the score from first rank in ith search; 𝑠𝑖𝑐 is the score 

of the true class from ith search; H is the unit step function; and 

N is the number of enrolled subjects. The equal error rate (EER) 

corresponding to these two identification rates are also presented. 

5.1.1 Comparative Performance Evaluation  

Since any effective method for 3D finger knuckle feature de-

scription is yet to be developed, we selected the state-of-the-art 

3D feature description method, which was originally designed 

for extracting 3D palm features, as the baselines for comparisons. 

Two selected methods (Surface Code [30] and Binary Shape 

[31]) have shown to be quite effective/accurate for extracting val-

ley and ridge patterns from related hand biometrics. Since both 

baseline methods require depth images for feature extraction, 

depth images are computed using Frankot Chellappa approach 

[21] for achieving the best possible performance. Figure 12 

shows the comparative experimental results using our surface 

gradient derivatives method (EER=9.6%), Surface Code 

(EER=10.2%) and Binary Shape (EER=10.5%). It can be ob-

served from these results that our approach can significantly out-

perform both of these baselines. These observations validate the 

arguments and the effectiveness of the surface gradient deriva-

tives method detailed in section 3.4 and 3.5 of this paper. 

We also comparatively evaluated the computational complex-

ity for our proposed approach with the Surface Code [30] and 

Binary Shape [31] approach. In order to fairly ascertain the com-

putational complexity with these competing methods, we ensure 

that the computational time required for the depth integration and 

feature extraction is separately illustrated for systematic inspec-

tion. In order to ensure consistency and fairness in these compar-

isons, same pixel resolution of (70 × 100) was used for both the 

surface normal vector images and the depth images. The experi-

ments were performed on a machine with Intel Core i7-6700HQ 

(2.60GHz) using MATLAB 2017b, Windows 10. Table 3 pre-

sents the computational time per sample for each of the consid-

ered methods. Frankot Chellappa approach [21] was employed 

for the reconstruction using the depth integration. Respective 

depth images form the input for the feature extraction step as de-

tailed in [30, 31], while surface normal vector images form the 

inputs for our method. It can be observed that extracting features 

using Surface Code requires the longest computational time since 

this method requires demanding computation of curvature and 

shape index values. Extracting features using our method is the 

fastest because only simple gradient computations are required. 

Since our approach bypasses the complex process for the depth 

integration, the total time required for our approach has further 

outperformed the baseline methods. It is therefore reasonable to 

expect that the matching time using the Binary Shape features 

will be smaller than those from our method since there is only 

one (bit) binary template. Significantly higher matching perfor-

mance in Figure 12, both for the open and close-set performance 

evaluation, can justify the effectiveness of our approach over the 

Binary Shape feature method. 

 

 Multiple 2D finger knuckle images acquired under single il-

lumination are employed for recovering the 3D finger knuckle 

images. These 2D images, although noisy with partial illumina-

tion, can also be themselves be employed to simultaneously im-

prove the performance. The method detailed in reference [20] has 

shown to offer superior performance over several state-of-the-art 

feature descriptors introduced in the literature for matching 2D 

hand images. Therefore, it is a promising baseline method for 

evaluating the best possible performance from such simultane-

ously made available 2D finger knuckle images. In this work we 

employed the publicly available implementation of method in 

[20] and optimized the parameters for achieving best perfor-

mance from our segmented finger knuckle images.  

Table 3. Comparative computational time (in milliseconds). 
 Surface Normal 

Estimation 
Depth  

Integration 
Feature  

Extraction 
Total 

Surface Code [30] 0.72 0.57 2.77 4.1 
Binary Shape [31] 0.72 0.57 0.86 2.2 

Ours 0.72 - 0.58 1.3 
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Simultaneous use of such noisy 2D finger knuckle images re-

sulted in 630 (105 × 6) genuine scores and 65520 (105 × 6 × 104) 

imposter scores. The comparative performances using these 

competing methods can be observed from the ROCs presented in 

Figure 13. The DoN [20] (EER=10.2%) feature descriptor out-

performs Fast-RLOC [31] (EER=10.5%) and Fast-CompCode 

[31] (EER=11.6%) for matching 2D finger knuckle images.  

 Combination of simultaneously acquired 3D finger knuckle 

images and 2D knuckle images can be used to further improve 

the matching accuracy, which may not be possible by either of 

these two modalities alone. Therefore, we also performed such 

experiments to combine match scores, from 3D and 2D finger 

knuckle images, using the score level combination. Figure 14 il-

lustrates the results from such combination (EER=8.7%), using 

our proposed method of 3D finger knuckle matching 

(EER=9.6%) and the best 2D performing finger knuckle match-

ing method using DoN (EER=10.2%). Figure 15 illustrates the 

distribution of 3D and 2D finger knuckle matching scores. It can 

be observed that in either dimension, it is difficult to separate the 

genuine scores from the imposter scores. In addition, separating 

the scores in two classes of 2D matching scores is more difficult 

than separating those from the 3D matching scores. However, 

while combining the scores from both dimensions, the task of 

separating the genuine scores from the imposter scores becomes 

relatively easier.  

5.1.2 Detecting Spoof Attacks 

The usage of 3D finger knuckle based identification introduced 

   
                                     (a)                                                                        (b)                                                                       (c)       

Fig. 12. Comparative experimental results using 3D features on 3D Finger Knuckle Database: (a) ROC; (b) CMC; (c) FNIR versus FPIR. 

 

   
                                     (a)                                                                        (b)                                                                      (c)       

Fig. 13. Comparative experimental results using 2D features on 3D Finger Knuckle Database: (a) ROC; (b) CMC; (c) FNIR versus FPIR. 

 

   
                                    (a)                                                                           (b)                                                                    (c)       
Fig. 14. Comparative experimental results using both 2D and 3D features on 3D Finger Knuckle Database: (a) ROC; (b) CMC; (c) FNIR versus FPIR. 
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in this paper can offer additional advantage of safeguarding in-

tegrity of finger knuckle biometric systems from fraudulent or 

printed spoof knuckle samples. We performed experiments to as-

certain the vulnerability of 2D finger knuckle based biometric 

systems by simulating print attacks from real subjects as detailed 

in the following. Firstly, a set of gallery images are acquired. 

Then, intermediate images are acquired in another session (at 

least two months) from the respective subjects. These intermedi-

ate images are printed as photographs. These printed photo-

graphs of finger knuckle images are used for the presentation at-

tacks. During these attacks, it is ensured that the photographs are 

presented with best possible distance, from the image sensor, to 

generate images with similar or same scale. Figure 16 illustrates 

sample 2D and 3D images generated from such presentation at-

tacks using a printed photograph to the system. The probe images 

were compared with their respective gallery images. The 2D 

matching scores are computed using the best performing or the 

DoN [20] approach. The 3D matching scores are computed using 

the proposed surface gradient derivatives approach. The deci-

sion thresholds corresponding to the respective EERs were auto-

matically chosen for the experiments. These experimental results 

are summarized in Table 4. When only 2D information are used, 

9 out of 10 samples can bypass the system, which implies that 

the fake identities corresponding to the presentation attacks can-

not be detected. It can also be observed from this table that when 

only 3D information is used, none of the presented samples can 

bypass the system, enabling the detection of fake identifies to 

protect integrity of the system. When both the 2D and 3D infor-

mation is incorporated, the results are the same as those from 

only using the 3D information. Unlike fraudulent/covert acquisi-

tion of 2D finger knuckle photographs, acquisition of 3D finger 

knuckle patterns is extremely difficult as it requires the user to 

intentionally present his/her finger under a complex 3D imaging 

system. In summary, our experiments indicate that 3D finger 

knuckle based biometric system offers significantly enhanced se-

curity to protect the integrity of system from the fake or fraudu-

lent finger knuckle samples.  

5.2 Other Experimental Results 

This section details the additional experiments using publicly 

available 3D palmprint and 3D fingerprint databases to further 

ascertain effectiveness of our 3D feature matching approach de-

tailed in section 3.4-3.5. The 3D palmprint database provided 

from [30] contains 1770 palmprint images from 177 different 

subjects in two sessions. There are five 3D images for each sub-

ject per session. We have evaluated our proposed method using 

all images. First session images are used as training sets while 

second session images are used as testing sets, which results in 

885 (177 × 5) genuine and 155760 (177 × 176 ×5) imposter 

matching scores. To account for the translation variations in this 

database, the templates are shifted with vertical and horizontal 

translations. The minimum score is considered as the final score. 

For the open set evaluation on the performance of identification 

rates, 142 subjects (80%) are considered as enrolled users while 

 
Fig. 15. Distribution of normalized 2D and 3D matching scores. 

Table 4.  Dissimilarity scores from the spoof experiments. 

Subject ID 2D Matching 

Score [0,3] 
(Threshold = 

1.1845) 

3D Matching 

Score [0,1] 
(Threshold = 

0.5381) 

2D+3D Fusion 

Score [0,1] 
(Threshold = 

0.5884) 

Score Result Score Result Score Result 

1 0.9146 accept 0.6729 reject 0.6603 reject 

2 0.9771 accept 0.7082 reject 0.6969 reject 

3 0.7199 accept 0.7285 reject 0.6788 reject 

4 0.9966 accept 0.7047 reject 0.6967 reject 

5 1.2088 reject 0.7194 reject 0.7367 reject 

6 1.1189 accept 0.6750 reject 0.6892 reject 

7 1.0451 accept 0.6968 reject 0.6968 reject 

8 0.9618 accept 0.7129 reject 0.6986 reject 

9 1.0160 accept 0.7050 reject 0.6995 reject 

10 0.7707 accept 0.6771 reject 0.6444 reject 
 

         
                                  (a)                                                                (b)                                                                           (c) 
Fig. 16. Sample images from presented photograph to the system: (a) acquired image; (b) resulting 2D image and (c) resulting 3D depth im-

age for the matching. 
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the remaining 35 subjects (20%) are considered as unenrolled 

users. Since neither surface normal images or photometric stereo 

2D images are available, we compute the surface normal images 

from the 3D images by using a simple gradient method. Our 

method is compared with the state-of-the-art method (Binary 

Shape) [31] on this database, which is also reported superior 

performance than Surface Code [30]. It can be observed that the 

Binary Shape method incorporates a masking procedure which is 

not provided in their implementation.  However, the details are 

not clearly presented. In order to ensure fairness in comparison, 

the evaluation on both Binary Shape and our method are without 

masks. Comparative results in Figure 17 indicates that our 

surface gradient derivatives features (EER of 1.1%) can also 

offer outperforming results over the Binary Shape (EER of 2.0%) 

approach for the 3D palmprint matching. Furthermore, a 

template size of (128×128) with 1-bit is required for Binary 

Shape method, while only a template size of (64×64) with 2-bits 

is required for our method for obtaining the optimal performance. 

Therefore, our method also outperformed Binary Shape with 

much higher efficiency via the reduction of template sizes.  

The surface gradient derivatives approach introduced in this 

work is quite effective for frequent concave and convex-like 3D 

patterns which generally exists in finger knuckle. However, the 

density of such concave and convex patterns is sparse and less 

pronounced in 3D palmprint images. Besides, the central region 

of 3D palm surface is largely concave. This can degrade the 

accuracy from our feature descriptor in encoding the palm line 

features. Therefore, our feature descriptor is expected to be less 

effective for encoding features from 3D palm surface then those 

from 3D finger knuckle patterns. In the 3D palm database, the 

surface normal information was computed from the noisy depth 

images which is another plausible reason for some degradation 

in performance using the surface gradient derivatives features. 

Despite the above challenges, our proposed aproach has still 

shown outperforming results for the contactless 3D palm 

database.   

Another public database from contactless 3D fingerprint is 

available from [16], [27] and was also attempted to ascertain 

comparative performance for matching 3D fingerprint surfaces. 

This database provides 1560 3D fingerprints, reconstructed using 

10920 2D fingerprint images, obtained from 260 clients. In order 

to fairly compare with the performance reported in [16], [27] for 

matching finger surface, the same evaluation protocol was 

adopted. Such matching of 3D finger surfaces from 240 clients, 

each with six images, resulted in 3600 (240×𝐶2
6) genuine and 

1032480 (𝐶2
240×6×6) imposter matching scores. In order to ac-

count for the translation variations in this database, the templates 

were shifted with vertical and horizontal translations. The mini-

mum score obtained from such shifting was considered as the 

final match score. For the open set evaluation on the performance 

of identification rates, 192 clients (80%) were considered as the 

enrolled users while remaining 48 subjects (20%) were consid-

ered as unenrolled users. Figure 18 illustrates the comparative 

experimental results, using the state-of-the-arts pixelwise feature 

descriptor (Finger Surface Code [27] with Frankot Chellappa 

approach [21]), which was also reported to be superior or outper-

forming in [27] than the Surface Code [30]. It can be observed 

from these results that the proposed surface gradient derivatives 

   
                                         (a)                                                                                 (b)                                                                              (c)       

Fig. 17. Comparative experimental results using 3D features using contactless 3D palmprint database: (a) ROC; (b) CMC; (c) FNIR versus FPIR. 

 

   
                                         (a)                                                                                 (b)                                                                              (c)       

Fig. 18. Comparative experimental results for matching 3D finger surfaces using 3D Fingerprint Database: (a) ROC; (b) CMC; (c) FNIR versus FPIR. 
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feature approach significantly outperforms the baseline results.  

It is well known that state-of-the-art feature descriptors for 

fingerprint images incorporate minutiae features. In this paper, 

our experiments demonstrated that the usage of proposed surface 

gradient derivatives features can achieve outperforming results 

over the state-of-the-art pixelwise feature descriptors. The uage 

of surface singularities or non-pixelwise feature descriptors for 

matching 3D finger knuckle patterns is highly desirable in further 

extension of this work. 

6 SUMMARY AND FURTHER WORK 

Currently available online finger knuckle identification sys-

tems only incorporate discriminative 2D information for the user 

identification. This paper has investigated the development of a 

3D finger knuckle identification system and also introduced 3D 

finger knuckle images database, for the first time in the literature, 

for the further research.  Any direct application of existing 3D 

feature descriptors, like those developed for the 3D palmprint or 

3D fingerprint identification, is not expected to recover most dis-

criminative features from the 3D finger knuckle patterns. There-

fore, the development of specialized feature descriptors is critical 

to realize full potential from 3D finger knuckle biometrics. The 

feature descriptor introduced in section 3.4 of this paper ad-

dresses such objective and has shown to offer outperforming re-

sults. One of the fundamental questions relating to any new bio-

metric modality relates to its uniqueness, or individuality of the 

finger knuckle biometrics, which has not yet been studied in the 

literature. This paper has attempted to address this problem by 

developing the individuality model for 3D finger knuckle pat-

terns using the best performing feature descriptor.  

Despite the advantages from the 3D finger knuckle identifi-

cation, the deployment of a 3D finger knuckle identification sys-

tem is more complex than that of a 2D finger knuckle identifica-

tion system. Such increase in complexity, over 2D systems, is 

largely due to the reconstruction or acquisition of 3D finger 

knuckle images. Among the existing 3D imaging technologies 

such as laser scanning, multi-view stereo, and structured lighting, 

our proposed new system adopted the photometric stereo ap-

proach due to its low cost, high quality imaging and simple de-

ployment. This approach only requires a single fixed camera with 

at least three light sources, while more light sources may enhance 

the reconstruction accuracy. The key limitation of such approach 

lies in its sensitivity towards the ambient illumination. Therefore, 

efforts are required to appropriately position the camera, select 

and fix the illuminators, which reduce the adverse influence from 

ambient illumination during the imaging. Such shortcomings are 

however worthy for the tradeoff of more accurate recognition and 

anti-spoofing performance, as also indicated from our results in 

the paper.  

Our work/attempt to systematically evaluate the potential 

from 3D finger knuckle patterns for the biometric identification 

has achieved promising results. A lot more work however needs 

to be done to realize full potential from this biometric identifier. 

Recovery of non-pixel-wise features or those based on the singu-

larity of patterns, such as the minutiae features employed for 

matching fingerprints, is expected to be more effective (for 

higher accuracy and efficiency) than pixel-wise features and 

should be pursued in further extension of this work. Our attempts 

to achieve further performance improvement by incorporating 

popular deep learning based methods were not effective and their 

performance is limited by the size of training data which is the 

key challenge for 3D finger knuckle data employed in this work. 

The individuality model presented in this paper has made as-

sumptions on the mutual independence of match scores and has 

been justified as such model can provide theoretical upper limit 

on the performance expected from the 3D finger knuckle pat-

terns. Incorporating interdependence of features, or the scores 

during feature extraction process, can provide more realistic es-

timates on the individuality and is suggested in the further exten-

sion of this work. 
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