
Your Eyes Reveal Your Secrets: An Eye Movement Based
Password Inference on Smartphone

Yao Wang, Wandong Cai, Tao Gu, Senior Member, IEEE, and Wei Shao

Abstract—The widespread use of smartphones has brought great convenience to our daily lives, while at the same time we have been
increasingly exposed to security threats. Keystroke security is essential to user privacy protection. In this paper, we present
GazeRevealer, a novel side-channel based keystroke inference framework to infer sensitive inputs on smartphone from video
recordings of victim’s eye patterns captured from smartphone front camera. We observe that eye movements typically follow the
keystrokes typing on the number-only soft keyboard during password input. By exploiting eye movement patterns, we are able to infer
the passwords being entered. We propose a novel algorithm to extract sensitive eye images from video streams, and classify these
images with Support Vector Classification. We also propose a novel classification enhancement algorithm to further improve
classification accuracy. Compared with prior keystroke detection approaches, GazeRevealer does not require any external auxiliary
devices, and it only relies on smartphone front camera. We evaluate the performance of GazeRevealer on several smartphones under
different real-life usage scenarios. The results show that GazeRevealer achieves an inference rate of 77.89% for single key number and
an inference rate of 84.38% for 6-digit password in the ideal case.

Index Terms—Keystroke Inference, Gaze Estimation, Mobile Security.

F

1 INTRODUCTION

MOBILE payment has become a prevalent mode for on-
line transaction and personal financial management.

Various security risks arise in our daily life from the rapid
development of mobile and ubiquitous computing applica-
tions. Among them, keyboard privacy presents the funda-
mental risk in mobile payment. The mobile payment system
typically requires users to complete privacy-sensitive input
with keyboard on their mobile devices such as bank card
number, security code, and password. As a result, attack-
ers can typically launch keystroke eavesdropping to reveal
personal information from mobile users.

Leveraging side-channel attacks, keystrokes on tradi-
tional physical keyboards can be inferred through Tro-
jan applications (e.g., keyloggers). Typical approaches in-
clude electromagnetic emanation based [1], acoustics signal
based [2, 3], and video based [4]. However, in mobile scenar-
ios, user interaction with smartphones has been changed.
The popularity of virtual soft keyboard on smartphones
eliminates the side-channel emanations (i.e., electromag-
netic and acoustic signals) from physical keyboard. As a
result, attackers cannot leverage these signals to deduce
keystrokes anymore. Besides, app permission restriction
policies in smartphone operating systems restrain apps
from intercepting keystrokes. Trojan applications cannot
run directly on smartphones to log keystrokes. Traditional
approaches thereby face increasing challenges with smart-
phones. Recently, several smartphone keystroke inference
attack approaches have been proposed. They essentially re-
semble the traditional approach, such as adopting WiFi sig-

• Y. Wang and W. Cai are with Northwestern Polytechnical Uni-
versity, Xian 710129, China. E-mail: wangyao@mail.nwpu.edu.cn,
caiwd@nwpu.edu.cn.

• T. Gu and W. Shao are with RMIT University, Melbourne, VIC 3000,
Australia. E-mail: {tao.gu, wei.shao}@rmit.edu.au.

Manuscript received month date, year; revised month date, year.

nals [5], and requiring peripheral camera equipment [6, 7, 8].
They all need an external data receiver which should be
placed close enough to the victim. To simplify the inference,
attackers start to pay their attentions to smartphone embed-
ded sensors. For example, several works [9, 10, 11] show
that keystrokes can be inferred in a stealthy manner with
only a few benign app permissions by using accelerometers,
gyroscopes, and audio sensors.

In this paper, we present GazeRevealer, a new avenue for
attackers to infer user passwords entered on smartphone’s
touchscreen. GazeRevealer essentially analyzes user eye
movements recorded from the smartphone front camera
during password input. Our motivation derives from the
key observation that user behavior of entering passwords on
smartphone always involves coordinated motion between
eyes and fingers, i.e., the finger usually taps the key number
at which her/is eyes are staring. In other words, eye move-
ment patterns reflect and can be co-located with different
keystrokes on soft keyboard. Using this unique nature, Gaz-
eRevealer records the eye movements video when a victim
enters her/is password and then extracts sensitive images
from the video. By processing and analyzing these sensitive
images, GazeRevealer is able to infer the corresponding
password on touchscreen. In comparison with prior sensor-
based attacks [9, 10, 11], GazeRevealer neither requires the
victim to distinctly vibrate the phone nor relies on keypad
tones during the input process, leading to a more stealthy
and imperceptible solution.

The design of GazeRevealer faces four major challenges.
1) Our approach relies essentially on the analysis of eye

contour images to clip eye image patches from video frames.
The existing image clippers can only crop image from a
fixed position. In our mobile scenarios, this may lead to the
problem that parts of the iris and the sclera may be excluded
from the clipped patches. To preserve eye images intact, a
precise clipping method is required. In GazeRevealer, we

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

use the Maximum IsoCenter (MIC) based technique [12] to
grasp the pupil center from an image precisely and rapidly.
We then use the pupil center as the datum to clip a certain
pixels in its horizontal and vertical direction separately. In
this way, the completeness of eye images is ensured.

2) It is not a trivial task to extract sensitive images that
are generated by password input from the video. Because a
user may not immediately enter password after the front
camera is activated, this could result in noise images at
the beginning of the video. Additionally, the time inter-
val between two keys is not fixed. Therefore, we cannot
adopt the methods that are commonly used in eye tracking
tasks [13] to extract the sensitive images in our scenario.
Through investigation we find that different eye states cause
intuitive transitions in image histogram. To address this
challenge, we leverage similarity that is measured by image
histograms as the metric to distinguish sensitive images
from the video.

3) In our attack scenario, the victims may not keep their
heads still during password input. Head movements could
negatively affect the accuracy of gaze estimation, thereby
degrade the inference rate. To solve this issue, we create a
3D geometry model for head pose. Based on this model,
the angles of head movements (i.e., yaw, pitch, and roll)
can be calculated from the 2D front facing images captured
by the camera. Then we combine the angle features of
head pose with the image features extracted from the eyes
and use machine learning algorithms to estimate different
keystrokes.

4) In our experiments, we find that the eye tracking
algorithm only estimates an approximate position of the key
tapping. The recognition accuracy is not ideal enough to get
a better inference rate. This can be expected because the
layout of digits on smartphone’s soft keyboard is typically
compact. Study in [14] shows that human gaze direction
enters the cornea and passes through the pupil, impling that
the pupil naturally follows the movements of gaze direction.
By exploiting this unique biological nature, we design an
auxiliary model in our eye tracking algorithm to facilitate
identifing the most related key number of an eye image.

In summary, this paper makes the following contribu-
tions.

• We design a novel side-channel attack approach that
enables attackers to infer a victim’s password on
smartphone touchscreen by analyzing the video of
eye movements. Our approach only requires the
front camera permission on smartphones that is com-
monly deemed as normal in daily use, thus poten-
tially jeopardizing mobile device security.

• We propose a sensitive image extraction algorithm,
which takes the pupil center as the datum to crop
fine-grained eye contour images, then utilizes an
image similarity based method to determine the sen-
sitive images from the video.

• We develop an auxiliary model for gaze estimation
algorithm, aiming to enhance its classification ac-
curacy. Experiment result shows that the auxiliary
model effectively improves the average inference
rate of single key number from 59.03% to 77.89%.

• We recruit 26 participants in our experiment and
evaluate GazeRevealer on three commercial off-the-
shelf smartphones. The result shows that GazeRe-
vealer is capable to identify 6-digit password at a
rate of 84.38% in the best case.

The rest of the paper is organized as follows. Section 2
gives the background and related work. Section 3 describes
the detailed design of our system. Section 4 presents the
evaluation and discussion is summarized in Section 5. We
give the conclusion and future work in Section 6.

2 BACKGROUND AND RELATED WORK

2.1 Threat Model

In our attack, we are not aiming to hack those genuine
payment-related apps and manipulate their functionalities.
We only require GazeRevealer to be installed on the victim’s
smartphones and run in the background. According to the
report [15] in 2018, an increasing number of smartphone
users are jeopardized by untrusted apps, which can be in-
stalled in many ways, such as drive-by-download, silent in-
stallation, and third-party application market. Many studies
have shown that it is not challenging to install malware on
smartphones [16, 17]. We therefore believe this assumption
does make sense.

The front camera access permission is also required to be
granted to GazeRevealer by the users. We believe that most
users have no misgivings about granting this permission if
GazeRevealer is disguised as normal apps. For example, it
is understandable for users to authorize the front camera
permission to the selfie apps and mirror apps. It is not our
wishful thinking that users are not sufficiently vigilant for
this permission. According to the finding in [18], the attacker
can acquire the camera permission by any app with some
inventiveness. In addition, World Wide Web Consortium
(W3C) has lately updated the HTML Media Capture speci-
fication to facilitate web access to the camera by JavaScript,
which is supported by Android 3+ and iOS 6+ [19]. This
implies that GazeRevealer can be more handily embedded
in a website and launched online, without installing any
applications on the user’s smartphones.

GazeRevealer listens to the user’s sensitive events, such
as pop-ups of password field and number pad. It activates
the front camera to record videos when sensitive events
are detected, and turns off the camera once the events are
finished. With some coding efforts, this event listener could
be easily implemented [20]. After recording, GazeRevealer
starts to infer the victim’s sensitive inputs.

2.2 Gaze Estimation

The rationale of GazeRevealer is based on gaze estimation
techniques that estimate the direction of gaze and track the
position of the eyes from eye images. Combined the ad-
vanced techniques in computer vision and the current low-
cost sensors, gaze estimation has been used in many areas
such as marketing to identify which products consumers
are interested in. Gaze estimation can be divided into two
categories, shape-based and appearance-based tracking ap-
proaches.

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

The shape-based approaches mainly rely on a model of
the eyeball and geometrically calculate the gaze direction
[21, 22]. In order to build a reliable model of the eye, these
approaches require an unalterable distance between screen
and user, as well as calibrations for different users. When
using multiple cameras, each camera and screen should be
placed in a fixed position. Subsequently, a slight change
in such parameters may result in a great estimation error
[23]. In addition, when using low-resolution cameras and
variable lighting conditions, it is difficult for the these
approaches to robustly estimate gaze location [24].

Compared with the shape-based approaches, the
appearance-based approaches track the gaze direction di-
rectly from eye images. Specifically, these approaches treat
the process of gaze tracking as a regression problem, they
use machine learning and deep learning algorithms to
learn mapping functions from eye images to gaze locations
[13, 25]. Because these approaches commonly extract high-
dimensional features from an entire eye image and map the
features to low-dimensional gaze locations, they are capa-
ble to handle low-quality images and adaptive to variable
lighting conditions [26]. A major issue of these approaches is
that they are significantly affected by head poses, requiring
an assumption of keeping head pose fixed [27]. In this
paper, we leverage on the appearance-based gaze estima-
tion approach due to its superiority for processing low-
quality images and managing lighting condition changes.
In addition, by taking into account differnet head poses in
mobile scenarios, we create a model to mitigate its impact
on estimation.

2.3 Keystroke Inference Attacks

Keystroke inference attacks have been developed based on
the sensitive information captured from side channels and
sensors, falling in the following categories.

1) WiFi signal based: The attacker infers the keystrokes
through WiFi signal. This is motivated that keystrokes will
cause different finger motions, which will lead to unique
changes in WiFi’s channel state information (CSI). Many
studies have demonstrated its effectiveness. Ali et al. [1]
introduced WiKey that leverages the distinct changes in
the CSI caused by the motions of user’s finger to identify
keystrokes on an external keyboard. Similarly, Zhang et al.
[28] and Li et al. [5] also used CSI signals to eavesdrop
the graphical unlock patterns and the 6-digit passwords on
mobile devices, respectively.

In these works, the attacker must first deploy WiFi de-
vices near the victims. Note that the device should be close
enough to the victims (e.g., 30cm in [1] and 1m in [5]). If a
target who has high security awareness does not connect to
public WiFi, these approaches will hence fail. They also re-
quire the users to keep a fixed hand gesture in a motionless
condition when typing. Besides, the distance and direction
between the WiFi antenna and the victims should be stable,
since CSI values may vary with any change in these settings.
These highly controlled requirements seriously affect their
practical application. We only require a video recording of
victim’s eye movements generated during password input.
With no constraints on fixed typing gestures and user be-
haviors, GazeRevealer is more applicable to reality.

2) Video based: By using an external camcorder, an at-
tacker records victim’s sensitive motions to infer keystrokes.
Balzarotti et al. [4] recovered the text entered on a keyboard
by analyzing a video of victim’s typing motion. Maggi et
al. [7] used a feature-based template-matching approach
to recognize the keystrokes on touchscreen. By recording
touchscreen reflections from victim’s sunglasses or directly
recording victim’s touchscreen through shoulder surfing,
Raguram et al. [29] reconstructed the text being typed on
smartphones. Analogously, Xu et al. [30] exploited reflec-
tions from the eyeball when a victim types on touchscreen
to detect key presses. Sun et al. [6] recorded a video of the
motion patterns of the device’s backside caused by taps on
touchscreen to infer keystrokes. In [31] and [32], the authors
analyzed the shadow formation around the fingertip and
the hand dynamics from a video of victim’s typing process,
respectively, to recover the typed text on smartphones. In
[8], the authors used a camcorder to capture victim’s eye
movements when typing on smartphones, then extracted
gaze trace from the video to infer keystrokes.

Similar to WiFi-based attacks, these approaches also
require an external device nearby, i.e., camcorder, to cap-
ture victim’s full view of the sensitive information when
typing (e.g., touchscreen reflections from sunglasses or eye-
balls, finger motions, and eye movements). If an area is
crowded, the victim may be shielded from the view of the
camcorder by surrounding obstructions, these attacks will
consequently not work. This limitation does not exist in our
attack, we only rely on the smartphone’s embedded camera.
Furthermore, these attacks adopt a wide range of compli-
cated image analysis techniques for motion tacking and
eye tracing. Our approach only employs a generic image
processing method and simple mathematic representations
of eyes and head to identify keystrokes. The simplification
of our method implies that it can easily be conducted by
a new attacker who has little or even no image processing
background.

3) Sensor based: Smartphone embedded sensors pro-
vide side-channel attacks to a capacious platform that can
be used to eavesdrop user’s interactions with the device.
Cai et al. [9] presented an accelerometer based inference
approach to infer the keys on smartphone’s soft keyboard.
Later, Owusu et al. [10] applied a similar idea to extract
victim’s 6-character password on smartphones by using ac-
celerometer readings. Xu et al. [33] utilized the combination
of accelerometer and gyroscope to deduce sensitive context
on smartphone’s touchscreen. Schlegel et al. [11] developed
an application by exploiting audio sensor to target privacy
information. Moreover, microphone and camera on smart-
phones were also adopted to collect victim’s sensitive touch-
events for inferring keystrokes [18, 34].

These attacks more or less require victim to type in a
specific manner. For example, in [9] and [33], a victim is
required to hold smartphone by one hand and type on
touchscreen by the other hand. In [10] and [18], a victim is
assumed to type only using thumbs. In our attack scenario,
we do not restrict typing habits, the participants in our
experiments may input passwords in their own ways. In
addition, the key issue to separate our attack from the
sensor based attacks lies in the extendable application range.
Because we only require a video of eye movements for

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

password input, our attack has the potential as a side-
channel to implement on other devices, such as bank ATMs
and door locks, using pinhole camera, as well as laptops
with internal web camera. Comparatively, it is difficult to
apply the sensor based attacks to such scenarios since they
rely on a variety of mobile sensors.

The most related work to this paper is EyeTell [8]. In
this paper, the authors developed an attack to infer victim’s
keystrokes on the touchscreen relying on a video of the
eye movements captured by an external HD camcorder.
There are several notable factors that distinguish our work
from EyeTell. (1) To capture eye movements, they placed an
external camcorder in front of a target meters away. Given
a victim who conceals her/is eye motions from the view of
the camcorder, for example, the victim can lower the head
to type on smartphone or pedestrians pass through during
recording, their attack would hence fail. Our attack relies
on the built-in front camera on smartphone, it is thereby
more reliable to capture eye movements. (2) To identify
keystrokes, EyeTell adopts a number of intricate techniques
for image processing and modeling of the eye trace on
touchscreen. Our attack only relies on a generic image
processing method and uses simple mathematic and geo-
metric representations of head poses and gaze locations to
distinguish different keystrokes. The simplicity of our attack
makes it much easier to launch. (3) Their attack was shown
to work effectively only within a limited recording angle
(i.e., 5°), even using a wide-angle camcorder. This is because
they did not take into account the head postures which are
sensitive to eye tracking. In our attack, we do not assume
that the victim keeps a relatively fixed head/typing gestures
during password input. We design a 3D geometry model for
the head to estimate the constantly changing head postures.
Besides, we get rid of eye blink images from the video to
eliminate their negative effects on inference, which is not
addressed in EyeTell. Overall, with these unique features,
GazeRevealer offers a low-cost (i.e., we do not require an
additional HD camcorder) and thoroughly different breed
of side-channel attack from that in [8].

3 SYSTEM DESIGN

In this section, we introduce the system design of GazeRe-
vealer and its key modules and algorithms.

3.1 High-Level Overview

The primary goal of GazeRevealer is to deduce the sensitive
information (i.e., password) victims input on smartphone.
As illustrated in Fig. 1, GazeRevealer starts to work when
keyboard events are detected. The front camera is invoked
to record video when a victim inputs a password. Once
recording is finished, GazeRevealer extracts features from
image frames and adopts machine learning based methods
to estimate digits the victim inputted. To improve the esti-
mation accuracy, we propose an enhanced method based
on pupil’s center location. In the last inference stage, 6-
digit password is deduced by applying a candidate election
method to the estimated digits.

Fig. 2 presents the overall framework of GazeRevealer,
which consists of three main modules. (1) Keystroke eye

Fig. 1. Illustration of the password inference from eye movements on
smartphone.

Fig. 2. Framework of GazeRevealer.

image extraction module, which is used to automatically
identify the eye images of different keystrokes from an input
video stream; (2) Data processing module, which extracts
relevant features and estimates head poses from eye images;
(3) Keystroke recognition module, which determines the
keystrokes based on the extracted features and head poses
of different eye images.

3.2 Keystroke Eye Image Extraction Module
3.2.1 Eye Detection, Image Normalization, and Eye Blink
Filtering
In this stage, GazeRevealer first extracts the Region of In-
terest (ROI) of eyes from each image frame. The process of
eye ROI extraction is presented in Fig. 3. For more accurate
detection of eye positions, we first rapidly approximate face
position from the frame by using a cascade classifier based
on Local Binary Patterns (LBP) [35] to narrow down the
detection area for eye-pairs (i.e., the blue bounding rectangle
in Fig. 3(a)). After procuring the facial region, eye ROI can be
accurately extracted by using the Haar-based classifier [36],
as shown in Fig. 3(b). If eye detection fails in this process,
we delete the corresponding images from the video stream.

We scale down the eye ROI to a fixed size (i.e., 100×100
pixels in our scenario). In the detected eye ROI, it still
contains some factors that are not conducive to gaze esti-
mation, such as eyebrows, hairs, and eyeglass frames. As a
consequence, we require a much tighter region around eyes
for gaze prediction. The most ideal region is to crop a certain

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

(a) Face detection (b) Eye detection on
face area

(c) Pupil center lo-
cation on eye ROI

(d) Final eye image (e) Eye blink (f) Eye motion blur

Fig. 3. Eye image extraction process. (a)-(d) illustrate the four steps of
the eye image extraction. (e) and (f) are the examples of eye blink and
eye motion blur, respectively, in which the pupil detection fails.

quantity of pixels around the pupil center, this can get rid
of interference as well as preserve the main information of
eyes. To locate the pupil center from low-resolution images
(i.e., those captured by smartphone front camera), we utilize
the MIC based method [12], which is effective on those low-
resolution images. In poor lighting conditions, pupil center
may not effectively be detected, we increase the contrast to
compensate for the low illumination images. As shown in
Fig. 3(c), pupil center is located by the red dot. Next, the
upper and lower areas of the pupil center are clipped 20
pixels off, respectively, while the horizontal axis keeps 100
pixels unchanged. As shown in Fig. 3(d), the size of the final
eye image is normalized to 40×100 pixels. In Fig. 3, we take
the left eye as an example to illustrate the extraction process.
The right eye is processed using the same method.

Eye blinks and eye motion blur are also useless infor-
mation for gaze estimation and need to be filtered out. Eye
blink is a rapid closing of the eyelid, which results in the
disappearance of the pupil from the video, as shown in
Fig. 3(e). Eye motion blur is the streak-like effect in the
frame that occurs when the eye blinks, as shown in Fig.
3(f), part of the pupil is covered by the eyelid. Intuitively,
these interferences can be detected through determining the
existence of the pupil. If the pupil detection fails, the eye
blinks and eye motion blur are detected. We can also use the
MIC based method [12] in this process, since the pupil center
is located by this method mainly based on the relatively
unbroken pupil image.

3.2.2 Keystroke Eye Images Extraction
After normalization, we obtain two correlated sequences of
fixed-size eye images (i.e., the left eye and the right eye).
In general, human two eyes are yoked so that they blink at
the same time and point towards the same fixation position
[37]. In this work, we do not consider special cases such
as strabismus. Besides, the study [38] also demonstrated
that measurements obtained in one eye are similar to those
of the other eye. In this stage, we use the sequence of a
single eye to determine the fixation images that can typically

represent the corresponding keystrokes. After the keystroke
images are determined in the sequence of the single eye, we
consequently extract the images from the sequence of the
other eye by their correlation properties. The fixation refers
to the visual gaze on a specific key that the victim is enter-
ing. In the field of eye tracking, the existing fixation image
extraction schemes rely on certain defined regulations. For
example in [13], the video is divided into several chunks
by fixed time intervals (i.e., predetermined duration of the
fixation), then different fixation images can be picked out
from the chunks. This method is not effective in our scenario
since fixation for a key during password input is usually
transient (on an order of milliseconds) and non-keystroke
images at the beginning of the video are likely to be divided
into such chunks. To address this problem, we propose a
novel algorithm to precisely extract keystroke eye images.
The extraction algorithm consists of three steps as follows:

1) Image Similarity Estimation. An eye movement is
comprised of fixations and saccades (e.g., a quick eye switch
from one key to the next). If we can determine the break
points of all fixations and saccades, the stream can be
split into multiple segments. Then we can extract image
from fixation segment as the feature image for a particular
keystroke. Based on this, we introduce image similarity
to search the break points in the stream. Fig. 4 illustrates
the comparison of histograms of four different eye image
frames over gray-scale intensity. Fig. 4(a) and Fig. 4(b) show
the histograms of two frames that are selected from the
same fixation segment (i.e., key number 1). We compare the
histograms in Fig. 4(e) and observe that different frames
under same eye state would lead to similar histograms.
Fig. 4(c) displays the histogram of a frame extracted from
key number 2 fixation. As can be observed in Fig. 4(f),
different eye states result in dissimilar histograms. Fig. 4(d)
presents the histogram of a frame in the saccade moving
from number 1 to number 2. We compare it with the his-
tograms of number 2 and number 1 in Fig. 4(g) and Fig.
4(h), respectively. It can be observed that they are different
from each other. The comparison motivates us to conclude
that frames in different eye states would cause intuitive
transitions in histogram. We therefore use histogram as the
metric to quantize the similarity between two images as
follows:

S(h, h′) =
1

n

n∑
i=1

(
1− |hi − h′i|

Max(hi, h′i)

)
, (1)

where S(h, h′) (the value lies in [0, 100]) denotes the simi-
larity between histograms (h and h′) of two images and n
is the total number of histogram bins (n = 256 in our case).
The greater the value is, the higher the similarity would be.

2) Image Stream Similarity Building. By using the
above equation, we can calculate the ith similarity between
the ith and the (i+ 1)

th image in the stream which can be
expressed as {Si(Ii, Ii+1)}i=1:n−1 where n is the number
of images in the stream. Given the Frames per Second
(FPS) of camera f , and the video time duration t, n can be
represented by f × t. As shown in Fig. 5(a), we take a video
of a 6-digit password input as an example to illustrate. After
calculating the similarities of all images in the sequence,
a similarity waveform can be built. We focus on the red

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

Fig. 4. Image histograms of different eye states. (a) and (b) are the histograms of two different eye image frames when looking at key number 1, (c)
is the histogram when looking at kye number 2, and (d) is the histogram of saccade when moving the sight from key number 1 to key number 2.
(e)-(h) are the overlaid plots for intuitive comparison.

(a) Image stream similarity waveform

(b) Keystroke segment determination

Fig. 5. Keystroke image extraction.

dots where the similarities are lower than the predefined
threshold, they are likely to be the break points between
fixations and saccades. The threshold denoted by the blue
horizontal line is empirically set to 90 in our experiments. It
is defined based on the procedure of similarity comparison

on our dataset, as illustrated in Fig. 4, which separates the
fixation and the saccade for most subjects. We do not con-
sider the impact of light changes on similarity calculation,
since the durations of fixation and saccade are typically
short during password input (approximately a few hundred
milliseconds), light conditions basically maintain stable in
such a short time. Therefore, we adopt simple histogram-
based method with an empirically predefined threshold to
compare eye images rather than using more sophisticated
methods such as deep learning.

3) Keystroke Image Extraction. After separating the
image sequence into several segments by the break points,
we next determine the fixation segments of the keystrokes.
We continue to use the example in Fig. 5(a), 17 break points
divide the sequence into 16 segments. In Fig. 5(b), we count
the number of images in each segment, and select the seg-
ments that have numbers satisfying the threshold constraint
as our potential keystroke segments (denoted by the purple
bars). We measure the threshold constraint based on our
investigation of the 26 participants in the experiment. By
inspecting the video sequences of 6-digit password input,
we find that a keystroke fixation typically contains 11-
28 frames and a saccade between two keystroke fixations
usually lasts 1-7 frames. This finding is consistent with
that in [39] where the authors stated that the duration of
a reflexive saccade is usually less than 250ms (i.e., 8 frames
recorded by the 30fps camera in our scenario). To determine
the six keystroke segments from the seven fixation segments
(i.e., Segment 1, 5, 7, 9, 12, 14, and 16), we count the saccade
frames between every two fixations and check whether the
result falls within the range 1-7 frames. As we can see
from Fig. 5(b), the saccades between the six consecutive
fixation segments, i.e., Segment 5, 7, 9, 12, 14, and 16, satisfy

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

Algorithm 1 Keystroke Frames Extraction
Input: Frame sequence: F = {f1, f2, ..., fn};

Break point set: B = φ;
Frame segment set: Seg = φ;
Potential keystroke segment set: Sp = φ;
Keystroke segment set: S = φ;

Output: Six keystroke frames:
Fkey =

{
F 1
key, F

2
key, ..., F

6
key

}
;

1: Compute similarity simi(fi, fi+1), i = 1, 2, ..., n − 1
using equation (1);

2: for i = 1 to n− 1 do
3: if simi < 90 then
4: append fi to B;
5: end if
6: end for
7: Update B = {fi1 , fi2 , ..., fij , ..., fim};
8: Update Seg = {[fij+1, fij+1−1]} , j = 1, 2, ...,m− 1;
9: Num Segj = Count(fij+1, fij+1−1); //Count the

number of frames in each segment.
10: for j = 1 to m− 1 do
11: if 11 < Num Segj < 28 then
12: append Segj to Sp;
13: end if
14: end for
15: Update Sp =

{
Segj1, Seg

j
2, ..., Seg

j
k, ..., Seg

j
h

}
;

16: Num Sk = Count(Segjk, Seg
j
k+1); //Count the num-

ber of frames between every two segments.
17: for k = 1 to h do
18: if Num Sk < 8 then
19: append Segjk and Segjk+1 to S;
20: end if
21: end for
22: Select six consecutive segments from S;
23: Extract the center frame from each segment;
24: Output the keystroke frames:

Fkey =
{
F 1
key, F

2
key, ..., F

6
key

}
;

the constraint. We hence regard these six fixations as the
keystroke segments for the 6-digit password. Finally, we
choose the center frame in each keystroke segment as the
key frame to represent the corresponding keystroke. This
is because blurry transition frames (e.g., from saccade to
fixation) may exist at the beginning and at the end of the
keystroke segment, while the center frame is more stable.
In Algorithm 1, we conclude the the above three steps for
keystroke eye images extraction.

3.3 Data Processing Module
In this section, we extract features from the selected
keystroke images for gaze estimation. In addition, consid-
ering that users are not likely to keep a fixed head pose in
front of the screen when inputting password, they may have
variational head poses that would affect the accuracy of gaze
prediction. For example, head may shift around during a
conversation while the eyes may still maintain tracking on
the screen during password input. In order to ensure the
effectiveness of our system, we also need to estimate user’s
head poses and define relevant features.

Fig. 6. Feature visualization of an
eye image.

Fig. 7. Principal components selec-
tion.

3.3.1 Eye Feature Extraction
For appearance-based gaze estimation methods, it is impor-
tant to choose appropriate method and features to discrimi-
nate keystrokes. In our scenario, we simply assume that user
has an ordinary smartphone with a front-facing camera. We
do not assume users commonly have the latest hardware
for smartphones that allows the use of computationally
expensive methods, such as convolutional neural networks
(CNNs) [40]. As such we use the feature-based estimation
technique in our implementation.

Since ambient illumination changes may arise in dif-
ferent usage scenarios, we select Histogram of Oriented
Gradients (HoG) as the descriptor which is invariant to
the influence of illumination effects [41]. Besides, HoG can
distinguish the iris and sclera in low-resolution eye images.
As shown in Fig. 6, the HoG features of an eye image
are visualized. It is observed that iris region (highlighted
by red bounding ellipse) is darker than the surrounding
sclera region, which means HoG can effectively represent
our eye images. Therefore, we choose HoG features and
use the scikit-image tool [42] for gaze estimation, using the
following parameters: 9 orientations, 2×2 pixels per cell,
and 2×2 cells per block.

HoG features extracted from an eye image would result
in high dimension (over 33k) and suffer from noise. Next,
we use Principal Component Analysis (PCA) to reduce the
size of the original feature space to a lower dimension.
PCA is expected to find the most correlated features and
remain the representative information of an image. Fig. 7
shows the result. We observe that the first 4 components
almost retain all variance of the original data. As a result,
high dimensional original data can be compressed to 4
dimensions in our work. To extract features from an eye-
pair, we apply the method described above to both of the
eye images. As a consequence, we have 8 features in this
stage.

3.3.2 Head Pose Estimation
To make our system more flexible in real-world scenario,
we measure user’s head poses and extract relevant features
from the raw face images of the keystrokes. Here the raw
face images refer to the intact video frame, such as the
frames in Fig. 3(a) and Fig. 3(b).

We use the geometry features to determine the head’s
orientation. As shown in Fig. 8(a), the 3D head movement
can be decomposed into three motions, i.e., yaw, pitch, and
roll. From a 2D face image captured by the front camera,

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

(a) The three degrees of free-
dom of head orientation

(b) Yaw angle calculation

(c) Pitch angle calculation (d) Roll angle calculation

Fig. 8. Decomposition of head pose.

we intuitively find that the distance between the eyes dee
changes in the case of yaw; the spacing of the nose to the
midpoint between two eyes dne varies in the case of pitch;
the position of dne displaces in the case of roll. Ideally, to
calculate the angles of the three motion, users are required
to look directly at the front camera for the nominal “0”
angles. At this point, we thus have the reference against the
subsequent keystroke images to be compared. In our attack
scenario, we cannot strictly calibrate the victim’s face for the
reference. We select a face image which is approximately
looking straight ahead from the victim’s video as our refer-
ence. In what follows, we detail the process of calculating
the angles.

As shown in Fig. 8(b), yaw can be projected onto the
xz plane. Assuming that the eyes move from the reference
positions el = (xl, yl), er = (xr, yr) to e

′

l = (x
′

l, y
′

l), e
′

r =
(x

′

r, y
′

r) by rotating β degrees, where el, er, e
′

l, and e
′

r are
the pixel positions in the image. Formally, β is calculated as:

β = cos−1(
x

′

r − x
′

l

xr − xl
). (2)

Similarly, in Fig. 8(c), pitch can be projected onto the zy
plane. When the head rotates from n to d, where the pixel

positions of n and d are (xl+xr

2 , yl+yr

2) and (
x
′
l+x

′
r

2 ,
y
′
l+y

′
r

2),
respectively. γ can thus be calculated as:

γ = cos−1(
y

′

r + y
′

l

yr + yl
). (3)

By projecting roll to xy plane, the angle α in Fig. 8(d)
represents the rotation for a keystroke eye image. In the
image, the nose position o (xo, yo) is calculated by nose
detection, the positions of the midpoints n and a between

the eyes are (xl+xr

2 , yl+yr

2) and (
x
′
l+x

′
r

2 ,
y
′
l+y

′
r

2), respectively.
Formally α can be derived as:

α = tan−1(
y

′

r + y
′

l − 2yo
x′
r + x

′
l − 2xo

)− tan−1(yr + yl − 2yo
xr + xl − 2xo

). (4)

Next we use the three angles as head pose features for
a keystroke image and combine them with the eye features
(i.e., a total of 11 features) for gaze estimation.

3.4 Keystroke Inference Module
In this module, we will discuss the details of keystroke
recognition based on the extracted features and our en-
hancement method that aims to improve the inference ac-
curacy.

3.4.1 Keystroke Recognition
In our work, keystroke recognition is essentially a ten-class
classification problem. Based on the features extracted from
eye-pairs and head poses, GazeRevealer estimates the cor-
responding key number. In our experiment, we use Support
Vector Classification (SVC) [43] with Radial Basis Function
(RBF) kernel as our classifier. Other classifiers (e.g., Gaussian
Process Classifier and Random Forest Classifier) are also
deployed for comparison, and we confirm that SVC achieves
the best performance.

SVC with RBF kernel is constrained by two parameters,
C and γ. C trades off misclassification of training data
against simplicity of the decision hyperplane. γ defines how
far the influence of a sample can reach. The low values of
γ means lower bias and higher variance while high values
means higher bias and lower variance. The optimal values
are selected from a prebuilt set of possible parameters,
based on experiments that adopt 5-fold-cross-validation: for
each pair of possible parameters, 4/5 of the data is used
as training data, while the remaining 1/5 data is used
as validation data for evaluating the performance of the
classifier, the process is then repeated 5 times. We choose
the pair of parameters that performs the best result as the
final parameters for SVC. Specifically, in our experiment,
the initial set of the parameters contains 6 values which is
logarithmically spaced from 10−3 to 102. After testing, the
best values for C and γ are 100 and 10−1, respectively.

3.4.2 Classification Enhancement
Although the classification algorithm can differentiate the
most probable key number based on the 11 features, some
unavoidable factors such as the distance between eyes and
smartphone, the touchscreen size, the camera resolution,
and even body postures (e.g., standing, sitting, and slouch-
ing) are more or less expected to negatively affect the
classification. In order to minimize such influence on key
number inference, we propose an auxiliary method to the
basic classification algorithm to improve the results.

We first measure the average pixel position of pupil
center for each of the ten keystroke eye images, denoted
as {Li

avg(x
i
avg, y

i
avg)}i=0:9. As mentioned in Section 3.2.2,

two eyes perform similar measurements during movements.
To calculate the reference value for each number, we use
the 100x100-pixel images of the single eye in our dataset

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

TABLE 1
Average pupil center positions for the ten key numbers.

Key Number Position Key Number Position
0 (48,32) 5 (50,16)
1 (63,13) 6 (42,21)
2 (54,17) 7 (58,27)
3 (39,16) 8 (42,23)
4 (61,18) 9 (52,25)

and measure their average pupil center position instead of
calculating the positions for the two eyes separately. We
report the measurements in Table 1 and take these ten tuples
as the references for further use. To infer the corresponding
key number of an input eye image, we calculate its pupil
center position L(x, y) and the classification probabilities
{Pi}i=0:9. Then, we arrange the ten probabilities in a de-
scending order and select the top n highest estimates num-
bers as the candidates for the input eye image. Generally,
the higher Pi, the more possible that the correct inference
number is covered in the candidate set. In our experiment,
n is empirically set to 3 (determination of n would be
discussed in Section 4.3). Simultaneously, we measure the
Euclidean distance between the pupil center of the input
eye image and the average pupil center of each of the n
candidates as follows:

{D((x, y), (xiavg, y
i
avg))}i=1:n

= {
√
(x− xiavg)2 + (y − yiavg)2}i=1:n,

(5)

where (x, y) is the pupil center of the input eye image
and (xiavg, y

i
avg) represents the average pupil center of the

selected candidate. The above calculation is a generic com-
pensation for the keystroke recognition in Section 3.4.1 and
relies on an assumption that different users may perform
similar pupil center positions when looking at the same
location on screen. This assumption is proved by the study
[44] under a constraint that the distance between the eyes
and the screen is relatively unchanged. In the implementa-
tion, we collect data at a distance of about 20cm 1, resulting
in similar pupil center distributions for different users.

Ultimately, a score for each candidate is calculated as:

{Scorei = Pi/Di}i=1:n, (6)

where Pi represents the classification probability of the
candidate and Di refers to the corresponding Euclidean
distance. The equation denotes that the higher the score is,
the more likely that the candidate is the victim’s input key
number. GazeRevealer chooses the candidate that has the
maximum score as our predicted keystroke number. The
above process of inference enhancement is concluded in
Algorithm 2.

4 EVALUATION

In this section, we evaluate the performance of our system.

4.1 System Setup
We now move to evaluate GazeRevealer. We conduct our
experiments on a popular online payment platform, WeChat

1. In general, most people tend to hold smartphones about 20cm from
their eyes when typing. This smartphone habits report is available at:
https://www.entrepreneur.com/article/232665.

Algorithm 2 Classification Enhancement
Input: A keystroke eye image img:

L(x, y); //Pupil center location.
Output: Inferred key number n;

1: Pi|i=0:9 = clf.SV C(I); //Calculate the probability es-
timates using SVC classifier.

2: Ni|i=0:9 = SortDescending(Pi|i=0:9); //Arrange the
ten probabilities in descending order.

3: Select the top 3 candidates from Ni|i=0:9;
4: Search the corresponding average pupil center location
Lj
avg(x

j
avg, y

j
avg)|j=0:2 for the 3 candidates from Table 1;

5: Measure the distance between L(x, y) and
Lj
avg(x

j
avg, y

j
avg)|j=0:2 using equation (5);

6: Calculate scores Sj |j=0:2 for the 3 candidates using
equation (6);

7: Select number nwith the maximum score as the inferred
key number;

8: Output the inferred key number n;

Fig. 9. GazeRevealer setup.

Pay offered by the social media application WeChat. The
experimental setting is illustrated in Fig. 9. When a payment
interface is brought up on the screen, the front camera starts
to record a video of the victim’s eye movements during
the password input process. The video sample will be then
fed into GazeRevealer to infer the 6-digit password. We
use three types of smartphones, i.e., Huawei Honor V8,
Oppo R11, and Samsung Galaxy S5. These smartphones are
equipped with a 30fps front camera and a screen size of
5.7 inches, 5.5 inches and 5.1 inches, respectively. In the
setting of front camera for video capturing, we use the frame
resolution of 1280×720 pixels and the X1 zoom level (i.e., the
default zoom setting of front camera for most of the off-the-
shelf smartphones) for all the experiments.

We recruit 26 participants (i.e., 8 females and 18 males)
in our experiments, of whom 17 are wearing glasses, and
the others are not. They are student volunteers aged be-
tween 19 to 33 and they do not have eye problems (e.g.,
esotropia and exotropia). During data collection, we follow
a typical password entering scenario (as illustrated in Fig.
9), a participant sits on a bench in a naturally lit research
office where the illumination is in a range between 500-1000
lux. The participants are instructed to hold a smartphone in
front of themselves at a distance of approximately 20cm, and
input password by following their own styles (e.g., in their
own typing speed on touchscreen, free to blink their eyes as

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

usual during input). We use the above default settings for
our experiments unless stated otherwise.

4.2 Data Collection
We first conduct an experiment to evaluate the inference
accuracy of entering single key number. Next, we evaluate
the inference accuracy of entering 6-digit password. Finally,
we discuss the robustness of GazeRevealer against various
factors including the distance between eyes and smartphone
screen, the ambient illumination intensity, and the motion of
victims.

To collect single key numbers, each of the 26 participants
is asked to perform 10 cycle samples, where a cycle is
defined as a video that records the participant’s eye move-
ments when entering the key number from 0 to 9 on soft
keyboard. For each type of the three smartphones, we hence
obtain a total number of 26 participants× 10 cycles×10
numbers = 2600 keypresses. Keeping the phone at roughly
the same position and repeating the same actions may cause
fatigue, which could greatly affect the variance across the
data. To reduce the impact of fatigue and collect realistic
data, we ask the participants to take a breaks between cycles
and stop collection freely once they feel tired.

To collect 6-digit passwords, each of the 26 participants
is required to input 50 random passwords produced by a
password generator. For each of the three smartphones, the
dataset contains 26 participants× 50 sets = 1300 samples.
To behave as naturally as possible, for a random password,
we ask the participants to keep it in mind. After they claim
that they have remembered the random password, they
start to enter the password in front of the smartphone. As
we can imagine, this data collection process requires the
participant to remember the randomly generated password
and input it naturally, which may cause extreme fatigue.
Similarly, to reduce the impact of fatigue on our data,
we take two measures to relieve such negative effects as
much as possible. For one thing, the participants are told
to get enough rest between random passwords and stop
data collection whenever they need a break. For another, we
control the data collection time, and ask the participants to
complete 5 random passwords on a single day.

In our experiment, collecting the above two types of data
costs us more than 20 days. For the data of impact factor
experiments, we will present the details in each relevant
section.

4.3 Single Key Number Inference
In this section, we apply the inference method described
in Section 3 on our collected data and investigate whether
the proposed method is effective enough to infer different
keystrokes. In real-attack scenarios, it is unlikely for attack-
ers to obtain sufficient data to train a specific model for each
victim. To make our attack more realistic, we build a generic
model by using data from 26 participants with 5-fold cross
validation in the experiment. For every 10 cycles data, 8 of
them are used for training and the remaining 2 are used for
testing.

We use Huawei Honor V8 as an example to elaborate the
inference process. We first evaluate the performance of SVC
classification on our dataset. Fig. 10 shows the confusion

Fig. 10. Confusion matrix of SVC classification on Honor V8.

TABLE 2
Inference process of number 3.

Input key number: 3
Pupil center position: (45,18)
3 Candidates:
Number 3, P3 = 0.3365
Number 5, P5 = 0.194
Number 2, P2 = 0.1178
Distance comparison:
D3,3 =

√
(39− 45)2 + (16− 18)2 ≈ 6.32

D5,3 =
√

(50− 45)2 + (16− 18)2 ≈ 5.39

D2,3 =
√

(54− 45)2 + (17− 18)2 ≈ 9.06
Scores:
S3 = P3/D3,3 ≈ 0.058

√

S5 = P5/D5,3 ≈ 0.036
S2 = P2/D2,3 ≈ 0.013

TABLE 3
Inference process of number 1.

Input key number: 1
Pupil center position: (61,10)
3 Candidates:
Number 2, P2 = 0.3275
Number 4, P4 = 0.2166
Number 1, P1 = 0.1408
Distance comparison:
D2,1 =

√
(54− 61)2 + (17− 10)2 ≈ 9.9

D4,1 =
√

(61− 61)2 + (18− 10)2 = 8.0

D1,1 =
√

(63− 61)2 + (13− 10)2 ≈ 3.61
Scores:
S2 = P2/D2,1 ≈ 0.033
S4 = P4/D4,1 ≈ 0.027
S1 = P1/D1,1 ≈ 0.039

√

matrix of the result for Honor V8. For a specific key number,
the confusion matrix presents the corresponding prediction
accuracy which is shown along the diagonal regions. Darker
areas in the figure denote higher predictive accuracy for
a specific key number. We observe from the matrix that
the classifier typically confuses each actual input number
with other two numbers. This phenomenon may due to
the physical layout of numeric soft keyboard where each
number has 2 to 3 closest neighbors.

Based on such observation, we then use our classification
enhancement method (which is concluded in Algorithm
1) to improve accuracy. We choose the first 3 highest-
probability candidates, and determine the best candidate
for each actual input number. In Table 1, we have measured

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

Fig. 11. Inference accuracy per key.

Fig. 12. Inference accuracy on different devices.

all the average pupil center positions of the ten numbers.
We take an example in Table 2 to illustrate the calculation
process of our enhancement method. From the table, we
observe that although the distance D5,3 (i.e., the distance
between the average position of candidate 5 and the position
of the actual input number 3) is smaller than D3,3, our
method ultimately chooses the candidate number 3 with the
highest score as our inferred number. From the classification
results, we can see that the classifier recognizes the input
key number correctly (the prediction probability of number
3 is the highest, i.e., 0.3365). It seems unnecessary to add
the following distance comparison. In Table 3, we provide
another example to explain its necessity. From prediction
probabilities, we can figure out that the classifier recognizes
the actual input key number 1 as number 2 (the prediction
probability of number 2 is 0.3275, which is the highest).
However, after appending the distance comparison con-
straint, number 1 achieves the highest score. As a result,
we take number 1 as our final inference for the input key
number. Fig. 11 presents the average inference accuracy of
each key number on Honor V8. We observe a significant
improvement on individual keys when employing the en-
hancement method to the classifier, i.e., the overall average
accuracy of all the ten numbers increases from 59.03% to
77.89%.

Fig. 12 shows the accuracy of each key number on the
three devices we used, i.e., Huawei Honor V8, Oppo R11,
and Samsung Galaxy S5. The result shows that GazeRe-
vealer achieves an overall average accuracy of 77.89% on
V8, 74.26% on R11, and 68.64% on S5, respectively, for all
the ten numbers. In WeChat Pay, the numeric soft keyboard
size is adaptively adjusted to the size of smartphone screen,
users cannot customize the size of the soft keyboard. In
other words, the bigger the screen size is, the larger the soft

keyboard will be. From the accuracy results, we see that
the size of smartphone screen does influence accuracy. The
bigger the screen size is, the higher the inference accuracy
will achieve. V8 has the highest accuracy with a screen size
of 5.7 inches, the accuracy of R11 with a screen size of 5.5
inches is slightly lower than that of V8. S5 with a screen
size of 5.1 inches has the lowest accuracy among the three
devices.

4.4 6-digit Password Inference
In this experiment, we evaluate the performance of GazeRe-
vealer for 6-digit password inference.

For each type of the three smartphones, we have col-
lected 1300 random passwords, which include 7800 key
numbers. The results show that a total of 6125 key numbers
are accurately inferred on V8 (78.53%), 5913 key numbers
are recovered on R11 (75.81%), and 5260 key numbers
are recovered on S5 (67.44%), respectively. In a real-world
scenario, for inferring an integral 6-digit password, it fails
when any single digit in the password is misjudged. To
improve the inference accuracy for 6-digit password, we
introduce a premise which is similar to that in [5]. For
deducing a 6-digit password, an attacker can implement
several attempts to obtain the correct password. It resembles
a bit the brute-force attack which tries at most 999,999 times
to crack a 6-digit password. We further investigate how
many attempts it needs that GazeRevealer can correctly
predict a 6-digit password. Each digit number is associated
with an eye image. GazeRevealer analyzes the image and
yields the first 3 candidates with the highest scores. The
overall predicted score of a 6-digit password is defined as:

Soverall =
6∏

i=1

Si (7)

where Si is the score of an individual digit number. As each
digit number has 3 candidates, we obtain 36 = 729 potential
passwords for a 6-digit password. It is much smaller than
the number of attempts needed in the brute-force attack. We
next arrange the potential passwords in a descending order
by their scores. Then, we can estimate how many attempts
it needs to infer the actual password. Fig. 13 shows the in-
ference rate of different attempts on the three smartphones.
If given only 1 trial, GazeRevealer is able to successfully
infer 41.46% of the 1300 passwords on V8, 38.46% on R11,
and 32.38% on S5, respectively. Given 31 trials, the recovery
rate can be significantly improved to 84.38% on V8, 69.15%
on R11, and 55.69% on S5, respectively. In reality, most of
the mobile payment apps have their own security policies,
e.g., the app will be locked if the user enters the password
incorrectly more than 3 times. In our attack, if we try 3 times,
the inference rate achieves 48.77% on V8, 39.38% on R11,
and 37.54% on S5, respectively. It means that we have at
least over one-in-three chance to crack user’s password in a
practical attack.

As we can see from Table 4, in order to achieve a
relatively reasonable inference rate (i.e., less number of trials
and higher rate of password inference), V8, R11 and S5
require approximately 31, 50, and 60 attempts, respectively.
The corresponding inference rates are 84.38%, 77.53%, and
69.00%, respectively. The result also demonstrates that, for

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

Fig. 13. The impact of different trials on inferring 6-digit password.

TABLE 4
Inference rate on different devices.

Attempts 31 40 50 60 70
V8 84.38% 84.38% 84.38% 84.62% 84.62%
R11 69.15% 74.46% 77.53% 77.61% 77.61%
S5 55.69% 57.23% 61.38% 69.00% 69.00%

inferring 6-digit passwords in WeChat Pay, the recovery rate
is correlated with the smartphone’s screen size. It is much
easier to infer passwords on a smartphone with a larger
screen size.

4.5 Impact Factors
In this section, we study the impact of various factors on
the inference rate of GazeRevealer, including the distance
between eyes and screen, the illumination intensity for
video recording, the recording angle, the user’s motion,
and the eyeglasses. We use the default experimental settings
(displayed in Table 5), unless stated otherwise.

4.5.1 Influence of Eyeglasses
As shown in Fig. 14, we generate 3 groups from the 8
participants to study the factor of eyeglasses. Each par-
ticipant is asked to enter 10 randomly generated 6-digit
passwords on each of the three smartphones. Each pass-
word is repeated 5 times. The inference rates are shown in
Fig. 15. As we can observe, for the same smartphone, the
inference rate keeps almost the same. The result means that
dividing the participants based on eyeglasses does not have
a great influence on inference rate. The factor of wearing
eyeglasses does not affect the final inference mainly due
to the following two reasons. On the one hand, we apply
eye image clipping process to remove potential interferences
(e.g., eyeglass frames), as mentioned in Section 3.2.1. On
the other hand, in normal lighting conditions, the reflection
from eyeglasses is not strong so that it would not produce
much noise in the images.

4.5.2 Influence of Distance
In real situations, the distance between victim’s eyes and
smartphone screen varies from one to another. According to
a study in [45], people are likely to hold smartphones at a
distance between 30 cm to 40 cm, and people who are under
age 25 tend to keep a distance as close as 18 cm or 20 cm. In
this experiment, we use three distances, i.e., 20 cm, 30 cm,
and 40 cm, to evaluate the performance of GazeRevealer.

TABLE 5
Experiment settings.

Settings Parameters
Number of Participants 8 (4 are wearing eyeglasses)
Distance 20cm
Illumination Intensity Normal lighting (500-1000 lux)
Recording Angle 0 degree
Motion Sitting
Number of Trials 60

Fig. 14. Diagram of participant grouping for studying the impact of
eyeglasses. The 8 participants are partitioned into 3 groups: Group 1, 4
are wearing eyeglasses; Group 2, 4 are not wearing eyeglasses; Group
3, randomly select 4 participants, of whom 2 are wearing eyeglasses,
and the other 2 are not.

For each distance, We ask each participant to record videos
for entering 10 randomly generated passwords on each of
the smartphones, and each password is repeated 5 times.

Fig. 16 shows the result for this experiment. When the
distance increases from 20 cm to 40 cm, the inference rate
decreases from 84.5% on V8, 76.25% on R11, 66.25% on S5
to 66.25%, 59.75%, and 52%, respectively. This indicates that
the performance of GazeRevealer can be greatly affected
by distance. It is mainly because with a fixed screen size,
eye movements become less apparent with longer distance.
Hence, the recognition of the eye image for different key
numbers reduces, leading to decrease in inference rate. Even
so, if given enough trials, GazeRevealer can perform an
acceptable rate on 6-digit password inference. The results
are listed in Table 6. As we can see, if given 300 attempts
in this experiment, the recovery rate of V8 in the distance
of 20cm, 30cm, and 40cm can reach to 84.75%, 82.25%,
and 74.00%, respectively. Similarly, R11 rises up to 80.25%,
75.25%, and 64.50%, respectively, and S5 achieves 69.25%,
63.25%, and 60.75%, respectively. This also demonstrates
that GazeRevealer significantly reduces the search space
of the potential passwords. In addition, such limitation is
expected to be relieved if the attacker uses more advanced
video recording techniques. For example, automatic adjust-
ment of zoom settings according to the distance.

4.5.3 Influence of Illumination Intensity

In this section, we investigate the usability of GazeRevealer
under three different illumination scenarios: low illumina-
tion with less than 50 lux (e.g., twilight and areas with
dark surroundings), normal illumination with 500-1500 lux
(e.g., office work and library), and high illumination with
10,000-30,000 lux (e.g., full daylight and sunlight). For each
scenario, we ask each participant to record videos for en-
tering 10 randomly generated passwords on each of the
smartphones, and each password is repeated 5 times.

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

Fig. 15. Impact of glasses on inference rate for different smartphones.

Fig. 16. Impact of distance on inference rate for different smartphones.

The result is shown in Fig. 17. As we can observe,
when the illumination switches to low and high, the in-
ference rates significantly decrease to less than 21% and
64%, respectively. The reason can be explained as follows.
Low illumination usually causes blurry and dim images, as
illustrated in Fig. 18(a). In high illumination environment,
especially for people who wear eyeglasses, it causes strong
light reflection from eyeglasses as shown in Fig. 18(b). Gaz-
eRevealer fundamentally relies on gaze estimation from eye
images, unlike the eye image in normal lighting conditions
(shown in Fig. 18(c)), the accuracy of gaze estimation and
pupil center detection in such two cases degrades, leading
to reduction in password inference.

Noteworthily, we find that screen brightness is automati-
cally adjusted to a higher level in the dark environment (e.g.,
0-20 lux), eye images thus can be clearly recorded by the
front camera (illustrated in Fig. 18(d)). We do not consider
the case of wearing eyeglasses since it leads to excessively
strong light reflection, just as the image in Fig. 18(b). We ask
the 4 participants who are not wearing eyeglasses to input
10 randomly generated passwords 5 times in this scenario
and evaluate the performance. From Fig. 17 we can see
that the performance is even higher than that in normal
lighting conditions. This is expected because eye contour
and pupil center can be clearly captured, thus resulting in
better inference rate.

4.5.4 Influence of Recording Angle

Next, we study the impact of angle between eyes and front
camera. We evaluate the performance of GazeRevealer on
two types of angles, i.e., horizontal angle and vertical angle,
they are 0°, 10°, 20°, and 30°, respectively. In this experiment,
because the distance between eyes and screen is 20cm,

TABLE 6
Inference rates of different trials in different distances.

Device Attempts 20cm(%) 30cm(%) 40cm(%)

V8
60 84.50 80.25 66.25
180 84.75 81.75 69.50
300 84.75 82.25 74.00

R11
60 76.25 72.75 59.75
180 80.25 74.00 63.25
300 80.25 75.25 64.50

S5
60 66.25 61.00 52.00
180 66.25 63.25 53.25
300 69.25 63.25 60.75

Fig. 17. Impact of illumination on inference rate for different smart-
phones.

the four different angles can be adjusted by moving the
smartphone horizontally and vertically. In each scenario,
each participant is asked to perform 10 randomly generated
passwords on each of the smartphones. Each password is
repeated 5 times.

Fig. 19(a) and Fig. 19(b) show the results under hori-
zontal angle and vertical angle, respectively. The inference
rates in both scenarios drop sharply to less than 35% as
the angles increase to 30°. It indicates that GazeRevealer is
greatly effected by recording angle. This is because of the
following two reasons. First, the eye images that are used
for training the classifier and calculating the average pupil
center are recorded under less than 10°. Second, especially
for 20°and 30°scenarios, part of an eye or an entire eye may
not be captured by the front camera. We do not construct the
model for one eye gaze estimation, because we find that all
the 26 participants tend to hold the smartphone in front of
their faces during password input (i.e., the recording angle
is less than 10°). We do not explicitly ask them to hold the
smartphone right in front of their faces before data collec-
tion. Gaze estimation under varying head positions (i.e., ar-
bitrary recording angles) is still a challenge in this field [46].
To overcome this issue in our attack scenario (we cannot
require the victims to calibrate their head locations before
using GazeRevealer), we plan to create several models in
our future work. Each model consists of one position and
distance of the head. Accordingly, by fitting several models,
the system could infer the gaze of users more accurately in
varying angles. Furthermore, an increasing number of new
smartphones support wide-angle camera, which is easier to
capture both eyes in a larger recording angle. We believe
that the performance of GazeRevealer could be better on
those smartphones with wide-angle camera.

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

(a) Low illumi-
nation

(b) High illumi-
nation

(c) Normal illu-
mination

(d) Screen back-
light

Fig. 18. Eye Images in Different Illuminations.

(a) Horizontal angle (b) Vertical angle

Fig. 19. Impact of recording angle on inference rate for different smart-
phones.

4.5.5 Influence of Motion

We now evaluate the impact of user’s walking motion on
inference rate. In this experiment, we ask each participant
to record videos for entering 10 randomly generated pass-
words 5 times on each device under two states, i.e., static
and motion (walking at a speed of about 1.2 m/s). Fig. 20
shows the inference rate of GazeRevealer with different user
states. From the result, we see that the inference rates nearly
keep the same on the three devices when the user state
changes. The result indicates that GazeRevealer still works
well when the users are in typical walking. The reason is that
users’ steady walking motion has little impact on recording
of eye patterns and consequently causes little impact on
password inference.

5 DISCUSSION

5.1 Limitations

GazeRevealer is currently implemented in a lab environ-
ment. While our results are encouraging, several limitations
need to be considered before real deployment.

1) Front Camera FPS. The FPS of front camera directly
relates to the number of images in gaze fixation and saccade.
Keystroke eye image extraction process relies on how many
images in each segment. Different FPS result in different
numbers of images in fixation and saccade segments, which
would affect the threshold. Consequently, it is difficult to
apply GazeRevealer to infer victim’s password on smart-
phones with different FPS. For most of the off-the-shelf
smartphones, the current front camera records videos at
a speed of 30 FPS. In our experiment, we use several
smartphones (Huawei Honor V8, Oppo R11, and Samsung
Galaxy S5) with front cameras of 30 FPS to demonstrate
the practicability of the proposed camera-based keystroke
inference approach. To overcome this limitation, the most
straightforward solution is to train and construct various
models with different FPS.

Fig. 20. Impact of motion on inference rate for different smartphones.

2) Lighting Conditions. Through experiments and ob-
servation, the performance of GazeRevealer is not very ideal
in low and high illumination scenarios. In high illumination,
for people who are wearing eyeglasses, it causes light reflec-
tion from eyeglasses, leading to inaccurate gaze estimation
and pupil center detection. To solve this issue, we plan to
adopt an image inpainting approach [47] to eliminate the re-
flections in eye images. Low lighting conditions also lead to
the failure of GazeRevealer. To alleviate this limitation, some
videography tips can be employed. For example, adjusting
the ISO sensitivity to a higher level, thereby capturing more
light. With further coding effort, GazeRevealer can be more
robust in various lighting conditions.

3) Recording Angle. In our experiments, we find that
the performance of GazeRevealer drops significantly when
recording angle is larger than 10°. This is because the classi-
fication algorithm and the enhancement algorithm we used
in the paper assume that the recording angle is less than
10°. This limitation can be addressed by creating several
models with various head positions. In addition, user’s one
eye may not be captured by the camera when recording
angle increases. To improve the accuracy of gaze estimation
by using features from one single eye, we intend to apply
more advanced eye tracking techniques to our system. For
example, the approach in [48] effectively estimates eye gaze
from single eye image. Besides, this limitation could also be
alleviated on smartphones with wide-angle camera as we
mentioned in Section 4.5.4.

4) Gaze Direction. The study is based on the observa-
tion that the gaze directions follow the fingers as they move
from one keystroke to another during password entry. This
is true in most cases, while some users may not strictly
look at each digit, just mechanically moving their fingers
because of muscle memory. In this case, as long as the user
is not utterly typing without using the sense of sight, we
can construct a password dictionary and train probabilistic
classifiers to assist our approach. This solution resembles
the dictionary-based method in character keystroke recog-
nition to some extent [4], which reduces the complexity of
password searching for GazeRevealer.

5.2 Mitigation Strategies
We discuss the mitigation strategies in the following three
aspects.

1) Avoidance. Since our attack only leverages the user’s
eye information to infer the sensitive inputs on smart-

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

phones, the most direct countermeasure is to hide their gaze
information during password input. For example, users can
narrow or squint their eyes when inputting password. They
can also wear sunglasses to input on touchscreen, so that
the gaze information can hardly be acquired by the attacker.
Besides, users can mimic the eye movements when typing
before entering the real password, the system may thus
mistakenly identify those mimicked images as the sensitive
images, leading to inference failure.

Another approach against this attack is to employ ran-
domized layout of numeric soft keyboard, the exact number
cannot be deduced even if an attacker is capable of figuring
out the gaze position on the screen. However, randomizing
soft keyboard provides defenses at the cost of usability. For
example, it is hard to build muscle memory to type, and
hence typing accuracy will be reduced.

2) Elimination. Preventing data acquisition is also an
effective defense against the camera-based side-channel at-
tack. Firstly, app stores such as Google Play should provide
a comprehensive inspection mechanism to prevent mali-
cious apps from displaying on the shelves and request every
released app to declare the intention of accessing the front
camera and other sensors. Secondly, users should selectively
grant sensor permissions to the apps on their smartphones
especially to those that contain payments functionality.

In addition, a more extreme solution is to eliminate the
use of password. Biometrics-based authentication such as
fingerprint identification, facial scan, and speech recognition
may be an alternative to replace password. Users can forget
or lose a password, but it is challenging for attackers to steal
and forge the personal characteristics.

3) Workaround. One easy approach to stay on top of
security is to sign up for text alerts for the accounts, e.g.,
banking and online payment. If the user receives a text
notifying that an account has been breached, coupled with
considering the credential-stuffing attack, it is imperative to
change the password that is also associated with any other
accounts. Users should subsequently recheck the apps and
remove the suspicious ones on their smartphones.

Besides, taking into account trade-offs in term of security
and convenience, payment apps can provide one-time pass-
word (OTP) services to users. Under OTP services, small
amount payments simply require memorized static pass-
words; dynamic OTPs are necessitated once the payments
exceed users’ autonomously preset limits. Because of the
one-use nature, OTPs have the potential to secure users even
that their keystrokes are captured by attackers.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel side-channel based
keystroke inference approach using eye movement record-
ings captured by smartphone’s front camera. We present the
detailed design of GazeRevealer and evaluate our approach
on three types of commercial off-the-shelf smartphones. The
evaluation results show the promise of employing front
camera as the side channel to recognize the victim’s pass-
word on smartphones. We study several external factors that
may influence GazeRevealer on password inference, includ-
ing eyeglasses, distance, ambient illumination, recording
angle, and motion. In contrast to prior works, our approach

only relies on smartphone’s front camera without the need
of complex and easily perceived external devices.

For our future work, we will investigate new approaches
to alleviate the limitations and improve practicability. We
also plan to evaluate GazeRevealer with more external
factors, such as studying performance under different body
gestures (e.g., standing, sitting, and slouching). Further-
more, we will extend GazeRevealer in other application
scenarios, such as number dialing, smartphone unlocking,
and keystroke inference on a full QWERTY soft keyboard.

ACKNOWLEDGMENTS

This work is supported by the Key Science and Technology
Program Grant (No. 2015GY015) of China, and ARC Dis-
covery Project Grant (No. DP180103932) of Australia. We
wish to thank Xiaoluan Zhang and Qianfeng Wang for their
supports to this paper.

REFERENCES
[1] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke recog-

nition using wifi signals,” in Proc. ACM Annu. Int. Conf. Mobile
Comput. Netw., 2015, pp. 90–102.

[2] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emana-
tions revisited,” ACM Trans. Inform. Syst. Secur., vol. 13, no. 1, 2009.

[3] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks using
keyboard acoustic emanations,” in Proc. ACM SIGSAC Conf. Com-
put. Commun. Secur., 2014, pp. 453–464.

[4] D. Balzarotti, M. Cova, and G. Vigna, “Clearshot: Eavesdropping
on keyboard input from video,” in IEEE Symp. Secur. Priv., 2008,
pp. 170–183.

[5] M. Li, Y. Meng, J. Liu, H. Zhu, X. Liang, Y. Liu, and N. Ruan,
“When CSI meets public WiFi: Inferring your mobile phone
password via wifi signals,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2016, pp. 1068–1079.

[6] J. Sun, X. Jin, Y. Chen, J. Zhang, R. Zhang, and Y. Zhang, “Visible:
Video-assisted keystroke inference from tablet backside motion.”
in Proc. ISOC Netw. Distrib. Syst. Secur. Symp., 2016.

[7] F. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and S. Zanero, “A
fast eavesdropping attack against touchscreens,” in IEEE Int. Conf.
Inform. Assur. and Secur., 2011, pp. 320–325.

[8] Y. Chen, T. Li, R. Zhang, Y. Zhang, and T. Hedgpeth, “Eyetell:
Video-assisted touchscreen keystroke inference from eye move-
ments,” in IEEE Symp. Secur. Priv., 2018, pp. 144–160.

[9] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch
screen from smartphone motion,” in Proc. USENIX Workshop Hot
Topics Secur., 2011.

[10] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory:
password inference using accelerometers on smartphones,” in
Proc. ACM Workshop Mob. Comput. Syst. Applic., 2012.

[11] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A stealthy and context-aware sound
trojan for smartphones.” in Proc. Netw. Distrib. Syst. Secur. Symp.,
vol. 11, 2011, pp. 17–33.

[12] R. Valenti and T. Gevers, “Accurate eye center location through
invariant isocentric patterns,” IEEE Trans. Patt. Anal. Mach. Intell.,
vol. 34, no. 9, pp. 1785–1798, 2012.

[13] Q. Huang, A. Veeraraghavan, and A. Sabharwal, “Tabletgaze:
dataset and analysis for unconstrained appearance-based gaze
estimation in mobile tablets,” J. Mach. Vis. Applic., vol. 28, no. 5-6,
pp. 445–461, 2017.

[14] R. Wang, J. Qiu, K. Luo, L. Peng, and P. Han, “Eye gaze tracking
based on the shape of pupil image,” in Proc. SPIE Int. Conf. Opt.
Instr. Tech., vol. 10620, 2018.

[15] I. Mehta, “500,000 android users downloaded malware made
by one developer,” Nov. 19, 2018. [Online]. Available: https:
//twitter.com/EdwardGately/status/1065313844577411072.

[16] A. Eshmawi and S. Nair, “Smartphone applications security: Sur-
vey of new vectors and solutions,” in Proc. IEEE Int. Conf. Comput.
Syst. Applic., 2013, pp. 1–4.

[17] X. Lu and S. S. Huang, “Malicious apps may explore a smart-
phone’s vulnerability to detect ones activities,” in Proc. IEEE Int.
Conf. Adv. Inform. Netw. Applic., 2017, pp. 787–794.

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

[18] L. Simon and R. Anderson, “Pin skimmer: Inferring pins through
the camera and microphone,” in Proc. ACM Works. Secur. Priv.
Smartph. Mob. Dev., 2013, pp. 67–78.

[19] A. Kostiainen, I. Oksanen, and H. Dominique, “Html media
capture,” Feb. 1, 2018. [Online]. Available: https://www.w3.org/
TR/html-media-capture.

[20] A. Wulf, “Stealing passwords is easy in native
mobile apps despite oauth,” Jan. 12, 2011. [On-
line]. Available: https://welcome.totheinter.net/2011/01/12/
stealing-passwords-is-easy-in-native-mobile-apps-despite-oauth.

[21] D. W. Hansen and Q. Ji, “In the eye of the beholder: A survey of
models for eyes and gaze,” IEEE Trans. Patt. Anal. Mach. Intell.,
vol. 32, no. 3, pp. 478–500, 2010.

[22] E. Wood and A. Bulling, “Eyetab: Model-based gaze estimation on
unmodified tablet computers,” in Proc. ACM Symp. Eye Track. Res.
Applic., 2014, pp. 207–210.

[23] Z. Guo, Q. Zhou, and Z. Liu, “Appearance-based gaze estimation
under slight head motion,” J. Mult. Tools Applic., vol. 76, no. 2, pp.
2203–2222, 2017.

[24] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “Appearance-based
gaze estimation in the wild,” in Proc. IEEE Conf. Comput. Vis. Patt.
Rec., 2015, pp. 4511–4520.

[25] A. Mayberry, P. Hu, B. Marlin, C. Salthouse, and D. Ganesan,
“iShadow: design of a wearable, real-time mobile gaze tracker,”
in Proc. ACM Annu. Int. Conf. Mob. Syst. Applic. Serv., 2014, pp.
82–94.

[26] F. Lu, Y. Sugano, T. Okabe, and Y. Sato, “Adaptive linear regression
for appearance-based gaze estimation,” IEEE Trans. Patt. Anal.
Mach. Intell., vol. 36, no. 10, pp. 2033–2046, 2014.

[27] K. Liang, Y. Chahir, M. Molina, C. Tijus, and F. Jouen,
“Appearance-based gaze tracking with spectral clustering and
semi-supervised gaussian process regression,” in Proc. ACM Conf.
Eye Track., 2013, pp. 17–23.

[28] J. Zhang, X. Zheng, Z. Tang, T. Xing, X. Chen, D. Fang, R. Li,
X. Gong, and F. Chen, “Privacy leakage in mobile sensing: Your
unlock passwords can be leaked through wireless hotspot func-
tionality,” J. Mob. Inform. Syst., 2016.

[29] R. Raguram, A. M. White, D. Goswami, F. Monrose, and J. Frahm,
“iSpy: Automatic reconstruction of typed input from compro-
mising reflections,” in Proc. ACM SIGSAC Conf. Comput. Cmmun.
Secur., 2011, pp. 527–536.

[30] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J. Frahm, “See-
ing double: Reconstructing obscured typed input from repeated
compromising reflections,” in Proc. ACM SIGSAC Conf. Comput.
Cmmun. Secur., 2013, pp. 1063–1074.

[31] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind
recognition of touched keys on mobile devices,” in Proc. ACM
SIGSAC Conf. Comput. Cmmun. Secur., 2014, pp. 1403–1414.

[32] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your
hands reveal your secrets!” in Proc. ACM SIGSAC Conf. Comput.
Cmmun. Secur., 2014, pp. 904–917.

[33] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors,” in Proc.
ACM Conf. Secur. Priv. Wir. Mob. Netw., 2012, pp. 113–124.

[34] S. Narain, A. Sanatinia, and G. Noubir, “Single-stroke language-
agnostic keylogging using stereo-microphones and domain spe-
cific machine learning,” in Proc.ACM Conf. Secur. Priv. Wir. Mob.
Netw., 2014, pp. 201–212.

[35] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with
local binary patterns: Application to face recognition,” IEEE Trans.
Patt. Anal. Mach. Intell., vol. 28, no. 12, pp. 2037–2041, 2006.

[36] P. I. Wilson and J. Fernandez, “Facial feature detection using haar
classifiers,” J. Comput. Sci. Coll., vol. 21, no. 4, pp. 127–133, 2006.

[37] J. Findlay and R. Walker, “Human saccadic eye movements,” J.
Scholarpedia, vol. 7, no. 7, 2012.

[38] A. Karakosta, M. Vassilaki, S. Plainis, N. H. Elfadl, M. Tsilimbaris,
and J. Moschandreas, “Choice of analytic approach for eye-specific
outcomes: one eye or two,” Am. J. of Ophthalmol., vol. 153, no. 3,
pp. 571–579, 2012.

[39] I. Sluganovic, M. Roeschlin, K. B. Rasmussen, and I. Martinovic,
“Using reflexive eye movements for fast challenge-response au-
thentication,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2016, pp. 1056–1067.

[40] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar,
W. Matusik, and A. Torralba, “Eye tracking for everyone,” in Proc.
IEEE Conf. Comput. Vis. Patt. Rec., 2016, pp. 2176–2184.

[41] P. Koutras and P. Maragos, “Estimation of eye gaze direction

angles based on active appearance models,” in Proc. IEEE Int. Conf.
Img. Proc., 2015, pp. 2424–2428.

[42] Scikit-Image, “Image processing in Python,” 2014. [Online].
Available: https://scikit-image.org.

[43] C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE Trans. Neur. Netw., vol. 13, no. 2,
pp. 415–425, 2002.

[44] J. G. Wang, E. Sung, and R. Venkateswarlu, “Eye gaze estimation
from a single image of one eye,” in Proc. IEEE Int. Conf. Comput.
Vis., 2003, pp. 136–143.

[45] T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of
comfort: Predicting visual discomfort with stereo displays,” J. Vis.,
vol. 11, no. 8, p. 11, 2011.

[46] R. Valenti, N. Sebe, and T. Gevers, “Combining head pose and eye
location information for gaze estimation,” IEEE Trans. Img. Proc.,
vol. 21, no. 2, pp. 802–815, 2012.

[47] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proc. IEEE
Conf. Comput. Vis. Patt. Rec., 2016, pp. 2536–2544.

[48] S. Park, A. Spurr, and O. Hilliges, “Deep pictorial gaze estima-
tion,” in Proc. Europ. Conf. Comput. Vis., 2018, pp. 721–738.

Yao Wang received the B.S. degree and the
M.S. degree in software engineering from Xi-
dian University, China. He is currently pursu-
ing the Ph.D. degree in computer science and
technology at Northwestern Polytechnical Uni-
versity, China. His research interests include pri-
vacy protection, mobile computing, and machine
learning.

Wandong Cai is currently a Professor at the De-
partment of Computer Science and Technology,
Northwestern Polytechnical University, China.
He is the director of Information Security Institute
of Northwestern Polytechnical University, the se-
nior member of China Computer Federation. He
authored 16 teaching materials, published over
220 technical papers, holds more than 10 autho-
rized invention patents. His research interests in-
clude complex network and information security.

Tao Gu is currently an Associate Professor in
the School of Computer Science and Information
Technology at RMIT University. He obtains his
Ph.D. degree in Computer Science from National
University of Singapore in 2005. He is a Senior
Member of IEEE and a Member of ACM. His re-
search interests lie in the areas of ubiquitous and
pervasive computing, mobile computing, wire-
less sensor networks, big data analytics, and
Internet of Things.

Wei Shao received the B.S. degree and the M.S.
degree in software engineering from Xidian Uni-
versity, China and the University of Hong Kong,
respectively. He is currently pursuing the Ph.D.
degree in computer science at RMIT University,
Australia. His interest research area focuses on
data mining, spatio-temporal data analysis and
device-free activity recognition.

sdpro 8.1 64
Typewritten text
IEEE Transactions on Mobile Computing, August 2019

