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Abstract—Data hiding usually involves the alteration of a cover
signal for embedding a secret message. In this paper, we propose
a construction based data hiding technique which transforms a
secret message into a fingerprint image directly. Unlike the con-
ventional data hiding techniques, this scheme does not need any
cover signals to participate. Instead, it generates the fingerprint
image based on a piece of hologram phase constructed from the
secret message. The hologram phase consists of the spiral phase
and the continuous phase. Firstly, we propose to map the secret
message to a polynomial and encode it into a set of points with
different polarities, from which the spiral phase is computed
and constructed. Then, we construct the continuous phase by
decomposing a fingerprint image synthetically generated. The
spiral phase and the continuous phase are combined to form the
hologram phase. This is eventually used to construct a fingerprint
image in a common form such as a grayscale fingerprint image,
a binary fingerprint image, or a thinned fingerprint image. The
secret message can be extracted by detecting the encoded points
in the constructed fingerprint. We conduct the experiments by
constructing fingerprint images with ordinary sizes, the results
show that the secret message can be extracted accurately. It is
also difficult to detect the existence of secret message from the
constructed fingerprint images.

Index Terms—Data hiding, fingerprint, construction

I. I NTRODUCTION

Data hiding is a technique of embedding a secret message
into a cover signal by subtly altering selected locations. It
is widely applied in authentication, secure communication
and copyright protection. Generally speaking, the cover signal
could be any meaningful digital signal including the digital
audio/image/video [1]–[7], text [8], and even the 3D meshes
[9], [10]. Among various data hiding techniques, image based
data hiding is the most popular, where the cover signal is a
digital image (i.e., the cover image) such as a natural image
[2], [5], [6], a medical image [11], [12] or a biometric image
[13]–[15]. Image based data hiding can be developed for
images in different forms, including color/grayscale images
[2], [5], [6], [13] and binary images [3], [4], [14], [15].

Most of the existing image based data hiding techniques
require a cover image to participate. The pixels of the cover
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image will be modified to host the secret message, which
inevitably causes distortions visually or statistically. Thus, it is
possible to develop steganalysis tools to reveal the existence of
the secret message in the stego-images (i.e., the images with
hidden data) [16]–[19].

In recent years, a few data hiding techniques have been
developed without the incorporation of cover images [20]–
[22]. Instead of altering the pixels, these techniques perform
data embedding by constructing a stego-image directly from
the secret message. Meanwhile, the secret message can be
extracted (or decoded) from the constructed stego-image. Such
construction based data hiding techniques do not involve the
alteration of pixels during the data embedding, which creates
challenges for traditional steganalysis tools.

All the existing construction based data hiding techniques
use texture synthesis for the construction of stego-images. This
concept is initially proposed by Otori and Kuriyama [20],
where the secret message is encoded into a dotted pattern.
The data embedding is conducted such that the local binary
patterns of all the blocks in the dotted pattern represent
the secret message. The texture image with hidden data is
then synthesized by painting the dotted pattern. This scheme
is robust to image recapturing, however, it offers relatively
low data hiding capacity. In [21], the authors propose a
patch-based texture synthesis which is message-oriented. This
method distributes the source texture into a composition image
reversibly. The data embedding is performed by pasting proper
source patches on the composition image, where the choice of
source patches depends on the data to be hidden. Compared
with the work in [20], this approach achieves higher data
hiding capacity, but it offers no robustness when there is
any change on the image content. A marbling based data
hiding approach is proposed in [22]. In this scheme, the secret
message is printed on a background image and deformed into
different marbling textures using reversible functions. Similar
to the work in [20], this scheme offers limited capacity with
robustness against printing and scanning.

In this paper, instead of constructing texture images, we
propose to construct fingerprint images directly from the secret
messages. The reason behind is the popularity of biometrics
recognition systems nowadays, and fingerprint biometrics is
the most popular. A typical fingerprint recognition system
requires a communication channel to transmit the fingerprint
image which captures all the key features of the fingerprint
[23]. There are three common forms of fingerprint images in-
cluding the grayscale fingerprint image, the binary fingerprint
image and the thinned fingerprint image [24], as shown in Fig.
1. The last two forms are obtained by fingerprint binarization
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(a) (b) (c)

Fig. 1. Fingerprint images that are commonly used in fingerprint recognition
systems. (a) The grayscale fingerprint image, (b) the binary fingerprint image
(obtained by binarization of (a)), and (c) the thinned fingerprint image
(obtained by morphological thinning of (b)).

and thinning on the grayscale fingerprint images, which are
popular fingerprint image operations during the transmission.
Researchers have devoted efforts to developing data hiding
techniques for these fingerprint images for various applications
[13]–[15], [25]. However, these approaches require a cover
fingerprint image to work and they are not robust against
fingerprint binarization and thinning. The secret can not be
extracted at all once the stego-images are binarized or thinned.
Thus, it is necessary to develop data hiding techniques that can
construct fingerprint images directly from the secret messages.
In addition, they should also be robust against various attacks
including popular fingerprint image operations as well as
common image operations.

The proposed scheme is based on the fingerprint hologram
phase which consists of the spiral phase and the continuous
phase. The spiral phase corresponds to the fingerprint minutiae
(i.e., the ridge endings and bifurcations). We propose to map
the secret message to a polynomial and encode it into a set of
two dimensional points to mimic the fingerprint minutiae, so as
to construct the spiral phase. The continuous phase is related
to fingerprint orientation and frequency, the construction of
which is conducted by decomposing the hologram phase of a
synthetic fingerprint image. We then combine the spiral phase
and continuous phase to form the hologram phase, based on
which we generate a fingerprint image in any of the three
common forms mentioned before. In data extraction, we detect
the encoded points in the fingerprint image and reconstruct the
polynomial. The experimental results demonstrate the high da-
ta extraction accuracy and robustness of our proposed scheme.
Furthermore, the existence of secret message is difficult to be
detected using the existing steganalysis tools.

The organization of the paper is as follows. Section II
introduces the background of fingerprint synthesis. Section III
gives a brief review on the phase representation of the fin-
gerprint and the corresponding phase decomposition. Section
IV and Section V introduce the fingerprint image construction
and the data extraction, respectively. Section VI presents the
experimental results, followed by some discussions in Section
VII. Our conclusions and future work are given in the last
section.

(a) (b)

(c) (d) (e)

Fig. 2. Fingerprints belong to different classes. (a) Left loop, (b) right loop,
(c) whorl, (d) tented arch, and (e) arch. The solid circles and triangles refer
to the cores and deltas, respectively.

II. BACKGROUND: FINGERPRINT SYNTHESIS

In general, there are five major fingerprint classes including
left loop, right loop, whorl, tented arch and arch [26]. Finger-
prints belong to different classes have different distributions of
singularities (i.e., cores and deltas) as shown in Fig. 2. The aim
of fingerprint synthesis is to generate a synthetic fingerprint
image of a certain class based on a set of parameters. In liter-
ature, people have proposed various techniques for synthetic
fingerprint generation, which are mainly designed to build
large fingerprint databases or understand the rules involved
in the biological process to form fingerprints.

Cappelli et al. [27] propose a synthetic fingerprint image
generation scheme by iteratively applying Gabor filtering on
a seed image. The ridge pattern of the fingerprint gradually
grows during the filtering. Similarly, in [28], the ridge pattern
is iteratively generated using filters of binary masks instead
of Gabor filters. Besides these filtering based approaches,
fingerprint can be synthesized according to the biological
process of fingerprint formation. In [29], the authors argue
that fingerprints are formed due to the buckling process in the
basal cell layer of the epidermis, where the ridge pattern is
generated by the solution of von Karman equation. Fingerprint
formation can also be treated as a general biological pattern
formation problem which could be solved using the Turing’s
(or reaction-diffusion) model [30]–[32]. The Turing’s model
offers the flexibility in generating various patterns we observe
in nature. However, it usually requires the model parameters
to be carefully selected [33]. Some other techniques are
developed with the ability to restore a few missing areas in a
fingerprint image [34], [35]. These approaches work well for
fingerprint restoration or enhancement. However, they cannot
be used to synthesize a complete new fingerprint image.

Despite the variety of synthetic fingerprint generation ap-
proaches, none of them are designed with the ability to conceal
secret messages during the fingerprint construction. The data
(parameters) incorporated in the fingerprint synthesis are with
limited entropy and difficult to be correctly extracted. In this
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paper, we take advantage of the phase representation of the
fingerprint and encode the secret message as a set of spirals
with some redundancy. Most of the spirals remain the same
during the fingerprint construction. Such a property ensures
the secret message to be correctly extracted by detecting the
spirals from the constructed fingerprint image.

III. T HE PHASE REPRESENTATION OF FINGERPRINT

As indicated in [36], the structure of a fingerprint can be
represented as a hologram, i.e., a phase modulated fringe
pattern. Given a grayscale fingerprint imageF , the intensity
of each pixel(x, y) can be modeled by

F (x, y) = A(x, y) +B(x, y) · cos[ψ(x, y)] +N(x, y), (1)

where A(x, y) is the offset of the intensity of the image,
B(x, y) is the amplitude of the ridge pattern,ψ(x, y) is the
hologram phase of the ridge pattern, andN(x, y) refers to
the noise of the image. The hologram phaseψ determines the
location of the ridges and minutiae of the fingerprint, which
can be demodulated by:

ψ(x, y) = Arg{−e−iǫ(x,y) · ℜ[F (x, y)−A(x, y)]+
F (x, y)−A(x, y)}, (2)

whereArg(z) returns the principal value of the argument ofz,
ǫ(x, y) is the local gradient andℜ is a demodulation operator
such that

ℜ[F (x, y)−A(x, y)] ∼= F−1{eiϕ(u,v)F{F (x, y)−A(x, y)}},
(3)

whereF(·) andF−1(·) are the Fourier transform and inverse
Fourier transform, andeiϕ(u,v) is a spiral phase Fourier
multiplier [37]:

eiϕ(u,v) =
u+ iv√
u2 + v2

. (4)

The fingerprint hologram phase can be decomposed into
the continuous phase and the spiral phase according to the
Helmholtz Decomposition Theorem [38]:

ψ(x, y) = ψc(x, y) + ψs(x, y), (5)

whereψc is the continuous phase,ψs is the spiral phase. The
value of different types of phase is within the range of(0, 2π].
In the following discussions, the hologram phase will also
be termed as the composite phase for clarity. The continuous
phase depends on the orientation and ridge frequency of the
fingerprint, while the spiral phase can be calculated by a set
of spirals:

ψs(x, y) =

n
∑

i=1

pi arctan

(

y − yi
x− xi

)

, (6)

wheren is the number of spirals,(xi, yi) is the location of
the ith spiral, andpi ∈ {−1, 1} is the corresponding polarity.

It has been observed in [36] that the fingerprint minutiae
(i.e., ridge endings and bifurcations) can be represented by
spirals of either positive or negative polarity. And multiple
minutiae points can be generated from the spirals using Eq. (6).
The spirals are with abrupt phase changes and in accordance
with the minutiae, which are located at the points with phase

(a) (b) (c)

Fig. 3. Different types of phase images of the same fingerprint. (a) The
composite phase image, (b) the spiral phase image, and (c) the continuous
phase image. The phase images are shown in grayscale for illustration purpose.
The empty circles and squares refer to the minutiae points with positive and
negative polarities, respectively.
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Fig. 5. The process of the secret message encoding. The empty circles and
squares refer to the points with positive and negative polarities, respectively.

residuals of either−2π or 2π [39]. In the following discus-
sions, both the minutiae and the spirals refer to the fingerprint
ridge endings and bifurcations. Fig. 3 shows the images of
different types of phase computed from the fingerprint image
given in Fig. 1(a). It can be seen that the locations of the
spirals are in accordance with the fingerprint minutiae, while
the continuous phase image has the same ridge flow as that
of the fingerprint structure.

IV. F INGERPRINT IMAGE CONSTRUCTION

The flowchart of our fingerprint image construction scheme
is shown in Fig. 4. We propose to construct the spiral phase
and the continuous phase separately from a secret message
and a construction key. The constructed spiral phase and con-
tinuous phase are combined to compute the composite phase.
Finally, we apply proper post processing steps to construct
fingerprint images in different forms based on the composite
phase. Table I gives the notations for quick reference.

A. Spiral phase construction

In order to construct the spiral phase, we propose to encode
the secret messages into a set ofn two dimensional points
{(xi, yi)}ni=1 with the corresponding polarities{pi}ni=1. The
basic idea is to map the secret message to a polynomial. Then,
we evaluate the polynomial onn different elements over a
Galois field to computexi, yi andpi, as shown in Fig. 5. The
details of the encoding process are summarized below.

1) Compute a set of cyclic redundancy check (CRC) bits
according tos, which is used for error detection during
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Fig. 4. The flowchart of the proposed fingerprint image construction scheme.

TABLE I
NOMENCLATURE

Notation(s) Description
s Secret message
s
′ Secret message with CRC bits appended
k Number of symbols partitioned froms′

s
′

j The jth of thek symbols
℘k Polynomial constructed by thek symbols
r Number of bits per symbol
(αi, βi) Point constructed on℘k

(xi, yi) Location of an encoded point (spiral)
pi Polarity of an encoded point (spiral)
n Number of encoded points (spirals)
∆ Scaling factor for mapping(αi, βi) to (xi, yi, pi)
sx, sy Displacements for mapping(αi, βi) to (xi, yi, pi)
M, N Width and hight of the fingerprint image
κ Construction key
fκ, Oκ Frequency and orientation of the synthetic fingerprint
Ou

κ Unwrapped orientation computed fromOκ

u Integer for computing the unwrapped orientation
ci, di Locations of cores and deltas of the synthetic fingerprint
nc, nd Number of cores and deltas of the synthetic fingerprint
λ Parameter controlling the curvature of the arch
σ Bandwidth of the Gabor filter
φ0, φ1,

Value of composite phase of four neighboring pixels
φ2, φ3
γ(x, y) Phase residual of the pixel located at(x, y)
Γ(φa, φb) Compute the phase difference betweenφa andφb
ψs Constructed spiral phase
ψc Constructed continuous phase
ψ Constructed composite phase
τ Threshold for binarization
Fb Fingerprint after binarization

data extraction. Lets′ denote the message after append-
ing the CRC bits tos.

2) Partitions′ into a group ofk symbols withr bits per
symbol:s′ = {s′j}k−1

j=0 . These symbols are mapped to a
polynomial℘k with

℘k(x) =
k−1
∑

j=0

s′jx
j . (7)

3) Evaluate the polynomial℘k over the Galois fieldF =
GF (2r) at n (n ≥ k) different elements:x = {αi}ni=1,
whereαi is the ith element of a vector containing a
random permutation (based onκ) of the integers from 1
to n inclusive. As such, we have a list of evaluationsy =
{βi}ni=1, whereβi = ℘k(αi). Accordingly, we construct
a set of pointsP = {(αi, βi)}ni=1.

4) Map the pointsP to a set of encoded spiralsEs =
{(xi, yi, pi)}ni=1 by

xi = ∆αi + sx
yi = ∆βi−LSB(βi)

2 + sy
pi = 2LSB(βi)− 1

, (8)

where∆ is a scaling factor to handle the noise during
the fingerprint construction,LSB(βi) refers to the value
of the least significant bit ofβi, andsx and sy are the
displacements.

The locations and polarities of the encoded spiralsEs refer to
that of the minutiae in the constructed fingerprint image. With
the encoded spirals available, the constructed spiral phaseψs

can be computed using Eq. (6).
We apply the IBM CRC-16 to generate a set of 16 CRC bits

from the secret messages. Therefore, the number of secret
bits utilized for the spiral phase construction (i.e., the data
embedding capacity) iskr− 16 with the maximum ofk asn.

The values ofn and r are constrained by the size of the
fingerprint image to be constructed. Let’s denote the width and
height of the fingerprint image asM andN, respectively. Since
the maximum ofαi andβi aren and 2r − 1, the maximum
of xi andyi can be computed as (see Eq. (8))

xmax = ∆n+ sx
ymax = ∆(2r−1 − 1) + sy

. (9)

Obviously, xmax < M and ymax < N. Thus, we have the
following constraints forn andr:

n < M−sx
∆

r < log2

(

N−sy
∆ + 1

)

+ 1
. (10)

In other words, we can fix the width and height of the
fingerprint image and determine the value ofn andr. As long
asn ≥ k, secret messages with different length (i.e., different
k) can be encoded to form a set ofn encoded spirals, where
more redundancy (i.e.,n−k spirals) will be added for shorter
messages.

B. Continuous phase construction

Intuitively, the continuous phase can be constructed by
decomposing the composite phase of an original fingerprint
image according to Eq. (5). However, this will expose the
continuous phase of the original fingerprint. To deal with such
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an issue, we propose to construct the continuous phase by
decomposing the composite phase of a synthetic fingerprint
image. In particular, all the spirals in the synthetic fingerprint
image will be removed to construct the continuous phase.

1) Synthetic fingerprint image generation:We adopt the
Garbor filtering based fingerprint synthesis scheme [27] to
generate the synthetic fingerprint image, which is to obtain the
overall ridge flow of the constructed fingerprint. We choose
this approach because it is able to generate a full synthetic
fingerprint image without ad-hoc parameter selection. It re-
quires the following three pieces of inputs, including 1) an
initial image containing several seed points; 2) the fingerprint
ridge frequency (termed as the ridge frequency for simplicity);
and 3) the fingerprint orientation (termed as the orientation for
simplicity).

Next, we introduce how we generate the inputs based on the
construction keyκ. Generally speaking, the number of seed
points is proportional to the number of minutiae points (i.e.,
the spirals) in the synthetic fingerprint image. In our case,
we want the number of spirals to be as few as possible to
make the phase decomposition easier for the continuous phase
construction. If there are no spirals in the synthetic fingerprint
image, we can construct the continuous phase directly by
demodulating the synthetic fingerprint image according to Eq.
(2), which does not need the phase decomposition at all.
Therefore, we set the initial image with only a single seed
point located at the center of the fingerprint image. The ridge
frequency determines the number of ridges within an unit
distance, we random set it (sayfκ) as a constant over the
whole fingerprint image within the range of[1/9, 1/6] (based
on κ), which covers the typical range of ridge frequency in
500-dpi fingerprint images [24]. The orientation measures the
directions of the fingerprint ridges from 0 toπ. It is the
most important information for the topology of a fingerprint,
which determines the fingerprint class as shown in Fig. 6. We
determine the class of the synthetic fingerprint to be generated
according toκ and the categorical distribution of the five major
fingerprint classes [26]. For synthetic fingerprints with singular
points (i.e., left loop, right loop, whorl and tented arch), we
adopt the zero-pole model [40] to compute the orientation at
point (x, y):

Oκ(x, y) =
1

2

[

nc
∑

i=1

Arg(z − ci)−
nd
∑

i=1

Arg(z − di)

]

, (11)

wherez = y + jx is a complex number,ci (i = 1, 2, ..., nc)
and di (i = 1, 2, ..., nd) refer to the locations (both are
in the complex domain) of the fingerprint cores and deltas,
respectively. This model is able to generate the synthetic
orientation by some simple constraints on the locations of
singular points [40], which can be guided easily based onκ.
For synthetic fingerprints without singular points (i.e., arch),
the orientation at point(x, y) is computed by the following
arch orientation model [27]:

Oκ(x, y) = arctan
(

λ cos
(xπ

M

))

, (12)

whereλ is the parameter controlling the curvature of the arch,
the range of which is randomly set (based onκ) within [0.3, 3].

(a) (b)

(c) (d) (e)

Fig. 6. The corresponding orientation estimated from the fingerprints given
in Fig. 2. (a) Left loop, (b) right loop, (c) whorl, (d) tented arch, and (e) arch.
The solid circles and triangles refer to the cores and deltas, respectively.

Fig. 7. Intermediate ridge patterns generated using Gabor filtering. The
number of iterations increases from left to right.

With the initial image, the ridge frequency and the orienta-
tion available, we now iteratively apply a Gabor filter for each
pixel located at(x, y) on the initial image [27]:

G(x′, y′; fκ, Oκ, σ) = e−((x′2+y′2)/2σ2) · cos[2π · fκ
·(x′ · cos(Oκ(x, y)) + y′ · sin(Oκ(x, y)))]

, (13)

whereσ is the bandwidth of the filter. The value ofσ is chosen
such that the filter does not contain more than three effective
peaks, which is determined by the solution of the following
equation [24]:

e
−

[

( 3

2fκ
)2

/

2σ2

]

= 10−3. (14)

The iterative process will be terminated until the synthetic
fingerprint is filled with an uniform ridge pattern, as shown in
Fig. 7.

The orientation of such a synthetic fingerprint image is
generated using classic and well known orientation models.
These models ensure the smoothness and topology of the
orientation. Therefore, it should be statistically similar to the
original fingerprint orientation. This is to say, the ridge flow of
the synthetic fingerprint image is similar to that of the original
fingerprints.

2) Synthetic phase demodulation and decomposition:Once
the synthetic fingerprint image is generated, we can construct
the continuous phase using the phase demodulation and de-
composition. According to Eq. (2), the composite phase can
be demodulated if the AC component and the gradient of the
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Fig. 8. Illustration of the fingerprint gradient using the arrows (on the left)
and the grayscale image (on the right). The branch cut is shown in blue, and
the solid circle and triangle refer to the core and delta.

fingerprint are known. We estimate the AC component by
removing the mean pixel value from the synthetic fingerprint
image. The gradient of the fingerprint is perpendicular to its
orientationOκ. However, the range of the local orientation
is (0, π] (see Fig. 6), while the range of the local gradient
is (0, 2π]. To solve the ambiguity, we unwrapOκ to get
an unwrapped orientationOu

κ with the range of(0, 2π]. For
fingerprint without singular points, we have

Ou
κ(x, y) = Oκ(x, y) + uπ, (15)

where u is an integer satisfying the condition that the un-
wrapped orientation between any two adjacent pixels differs
no more thanπ/2. Different strategies can be adopted to visit
the pixels in the synthetic fingerprint image such as the depth-
first or the breadth-first because the result is independent of the
scan order [38]. For fingerprint with singular points, there is
inevitable discontinuity around the area of the singular points.
We adopt a well known branch cut based phase unwrapping
algorithm [41] to mitigate this issue. This algorithm computes
the branch cut by tracing the ridge of the fingerprint starting
from each of the singular points. The unwrapping process is
the same as in the fingerprint without any singular points,
except that the pixels located at the branch cut can not be
crossed and unwrapped. Given the unwrapped orientationOu

κ ,
the gradient can be computed asOu

κ + π
2 .

With the AC component and the gradient available, the com-
posite phase of the synthetic fingerprint can be demodulated
according to Eq. (2). Fig. 8 illustrates the gradient of the
synthetic fingerprint image shown on the right of Fig. 7. It
can be seen that the range of the gradient covers from0 to
2π, and the discontinuity appears only around the branch cut
area.

In order to decompose the composite phase of the synthetic
fingerprint, we first detect the spirals according to its resid-
uals, which are calculated by summing the phase difference
clockwise around each set of four adjacent pixels [41]. For
each pixel located at(x, y), the set of four adjacent pixels are
defined as pixel(x, y), pixel (x + 1, y), pixel (x + 1, y + 1)
and pixel (x, y + 1) as shown in Fig. 9. For simplicity, the
corresponding phase values of the four adjacent pixels are
termed asφ0, φ1, φ2 andφ3 (see Fig. 9). The residualγ(x, y)
for the pixel(x, y) is then computed by

γ(x, y) =

3
∑

i=0

Γ(φ(i+1) mod 4, φi), (16)

wheremod is the modulo operator andΓ(φa, φb) is the

 x y !x+ !y 

!x+ !y+ !"x y+ !

 "   

 # $

Fig. 9. The set of four adjacent pixels (the solid squares) defined for pixel
(x, y) with φ0 to φ3 as the corresponding phase values.

function calculating the phase difference betweenφa andφb:

Γ(φa, φb) = (φa − φb + π) mod 2π − π. (17)

It has been proved thatγ(x, y) will either be zero,2π or −2π
[39]. Pixels with residuals equal to2π or−2π indicate positive
spirals or negative spirals, respectively. Note that, the pixels
around the branch cut area are not taken into account for the
spirals detection due to the discontinuity of gradient.

Once the spirals are detected, we can compute the spiral
phase of the synthetic fingerprint using Eq. (6). Consequently,
the continuous phaseψc is constructed by subtracting the spiral
phase from the composite phase of the synthetic fingerprint.

C. Post processing

With the constructed spiral phaseψs and continuous phase
ψc, the composite phaseψ of the constructed fingerprint is
computed by combining them together according to Eq. (5).
During the phase combination, the local fingerprint orientation
will be slightly changed (when compared withOκ) due to the
creation of minutiae points.

According to the model given in Eq. (1), the phase modu-
lated signalcos(ψ) represents an ideal fingerprint, while the
other components just make the fingerprint to be realistic.
The gradual change of the cosine wave forms the fingerprint
ridges and valleys. The value of the composite phase also
gradually increases or decreases from(0, 2π] or [2π, 0) within
two consecutive ridges as shown in Fig. 10. This property
makes it easy to obtain a binary fingerprint image directly from
ψ using a single threshold. Concretely, a binary fingerprint
imageFb can be computed by

Fb(x, y) =

{

1 if ψ(x, y) > τ
0 otherwise

, (18)

where τ ∈ (0, 2π) is the threshold to construct the binary
fingerprint image. The value ofτ controls the thickness of the
fingerprint ridges. It can be seen from Fig. 11 that the ridges
become thinner whenτ decreases.

We setτ = π to obtain the final binary fingerprint image and
τ = 0.4π to get a coarsely thinned fingerprint image. Please
refer to Section VI-A for the settings ofτ . The final thinned
fingerprint image is constructed by iteratively removing the
boundary pixels from the coarsely thinned fingerprint image
using the algorithm proposed in [42] (see Fig. 12(a)). To
construct the grayscale fingerprint image, we treat the binary
fingerprint image as the master fingerprint. Then, as suggested
in [27], we perform noising on the master fingerprint by adding
small white blobs of various sizes and shapes (see Fig. 12(b)).
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Fig. 10. An example of the constructed composite phase, where the
continuous phase is constructed based on the synthetic image shown on the
right of Fig. 7. Part of the composite phase is zoomed in and the phase image
is shown in grayscale for illustration purpose. Dark pixels refer to the pixels
with phase value close to zero, whereas the white pixels mean the pixels with
phase value close to2π.

Fig. 11. Different binary fingerprint images computed based on different
thresholds from the composite phase in Fig. 10. From left to right:τ = 1.4π,
τ = π, andτ = 0.4π.

The post processing hardly affects the locations of the
fingerprint minutiae, as shown in Fig. 10, Fig. 11, and Fig.
12. This is to say, the spirals of the constructed fingerprint,
which encode the secret message, will be very close before
and after the post processing. Please refer to Section VI-A
for quantitative measures of the distortion of the constructed
fingerprint before and after post processing.

V. DATA EXTRACTION

Given a constructed fingerprint image in any of the three
forms, we perform the fingerprint enhancement using an
existing algorithm [43], which is to remove the noise or
other detailed features created during the post processing.
First of all, we generate the synthetic orientationOκ based
on κ. This is used to demodulate the enhanced fingerprint
image to get the composite phase. Then, we detect a set
of spirals E′

s = {(x′k, y′k, p′k)}n
′

k=1 based on the residuals
of the composite phase. In particular, spirals are located at
the pixels with residuals of either2π or −2π. Please refer
to Section IV-B2 for details of the phase demodulation and
spirals detection. The detected spirals are further processed to
obtain the pointsP′ = {(α′

k, β
′

k)}n
′

k=1, where

α′

k = round(
x′

k−sx
∆ )

β′

k = round(
2(y′

k−sy)
∆ +

p′

k+1
2 )

, (19)

whereround(•) means the rounding operation.
In order to extract the secrets, we have to reconstruct the

polynomial℘κ based on the pointsP′ over the Galois field
F. According to the definition of the original view of Reed-
Solomon code [44], every codeword contains a sequence of
n evaluations of a polynomial of degree less thank, where
the message is represented as a sequence of the polynomial

(a) (b)
Fig. 12. The constructed thinned fingerprint image (a), and the constructed
grayscale fingerprint image (b).

x

y

αi

κ  ! !"#
$

 

%&'! ( )!α′k ,β ′k  !α′k′ , β′k′ !

"α′k ,β′k 

!α′k′ , β′k′ 

 ! " #$ !k , !k !"#$
%&

Fig. 13. Illustration of the point categorization, whereαi = α′

k
= α′

k′
.

coefficients. Thus, we can treat the evaluations (i.e.,β′

k) as
a codeword and apply an existing Reed-solomon decoder for
data extraction. The advantage of the Reed-Solomon encod-
ing/decoding is to correct the errors occur in burst. Regardless
the number of bits in a evaluation are in error, it is counted
as a single error. This is well-suited to correct the errors in
our constructed fingerprint image, which appear in burst in
terms of spurious spirals or missed spirals. The spurious spirals
refer to the newly generated spirals that can not be found in
the original spirals. The missed spirals are the original spirals
that can not be detected from the constructed fingerprint. Each
error spiral (spurious or missed) corresponds to a set ofr bits.

In general, a Reed-solomon decoder is able to correct up to
(n−k)/2 error points [45]. This is to say, as long as there are
n−(n−k)/2 = (n+k)/2 original points inP′, the polynomial
can be reconstructed successfully. Please refer to Appendix
A for an introduction of the Reed-solomon decoder and the
decoding process. Given the point listP′ = {(α′

k, β
′

k)}n
′

k=1,
we formulate the following data extraction steps.

1) Compute the same vectorx = {αi}ni=1 based onκ as
what have done in the spiral phase construction (see
Section IV-A).

2) Categorize the points inP′ into n different binsbini,
where

bini = {pt(αi, ∗)}, (20)

where pt(αi, ∗) refers to all the points inP′ with x-
coordinate ofαi. An illustration of the above point
categorization process is shown in Fig. 13 with the
algorithmic process given in Algorithm 1. If there are
no points that can be found forbini, the point with x-
coordinate nearest toαi will be categorized intobini.
As such, each bin contains at least one point.
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Algorithm 1 Point Categorization

Input :P′ = {(α′

k, β
′

k)}n
′

k=1, α1, α2, ... , αn

Output : bin1, bin2, ... ,binn

for i = 1 to n do
bini = NULL
for k = 1 to n′ do

if αi == α′

k then
add the point(α′

k, β
′

k) to bini

updatebini

end if
end for

end for

3) Form a set of candidate point lists which consists of all
the combinations by selecting one point from each bin.
Thus, each candidate point list containsn points.

4) Select one candidate point list and forward it to the Reed-
Solomon decoder to reconstruct the polynomial℘κ. If
the decoding fails, select another one and repeat this
step. Otherwise, concatenate the decoded polynomial
coefficients to get a decoded message and goto the next
step.

5) Compute the CRC bits of the firstkr − 16 bits of
the decoded message and compare it with the last16
bits. If they are exactly the same, the secret message
is extracted as the firstkr − 16 bits of the decoded
message. Otherwise, the data extraction has not been
successful, we will select another candidate point list and
goto step 4) until all the candidate point lists are visited.
If there are no more candidate point lists available, the
data extraction fails.

Such a data extraction process achieves high probability of
successful data extraction and low probability of incorrect data
extraction, please refer to Appendix B for details.

VI. EXPERIMENTAL RESULTS

A. Threshold settings for post processing

The post processing requires a thresholdτ to determine
the thickness of the fingerprint ridges. In our implementation,
we adopt two thresholds for constructing the final binary
fingerprint image and a coarsely thinned fingerprint image,
respectively. Putting the ridge thickness aside, the setting of
τ also affects the performance of data extraction. The optimal
value ofτ should be the one that is able to produce a binary
or a thinned fingerprint image containing the most original
spirals.

We construct a set of 1000 fingerprints before post process-
ing (i.e., the constructed composite phase) of size300× 300
(i.e,M = N = 300) with n = 40 andr = 6. We set the scaling
factor as∆ = 7, the displacements assx = 8 and sy = 8,
and the value ofk from 20 to 32. Such a scaling factor is
able to handle three pixels of horizontal or vertical shift for
the original spirals during the fingerprint image construction.
This is to say, if both the horizontal and vertical shift of an

τ

0.2π 0.4π 0.6π 0.8π π 1.2π 1.4π 1.6π 1.8π

P
ro

ba
bi

lit
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 m

is
se
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0.5

0.6
Binary
Thinned

Fig. 14. The probability of missed spirals for the binary and thinned
fingerprint images under different settings ofτ .

original spiral are no more than three pixels, it can be correctly
detected from the constructed fingerprint. We vary the value
of τ to construct binary fingerprint images with different
ridge thickness, from which we obtain the corresponding
thinned fingerprint images. Fig. 14 gives the distortion of
the constructed fingerprint images in terms of the probability
of missed spirals, i.e., the probability that an original spiral
can not be correctly detected. It can be seen that, as long as
τ is within [0.8π, 1.4π], its impact on the existence of the
spirals is low with little sensitivity for the binary fingerprint
images. Such range is changed to[0.4π, 1.4π] for the thinned
fingerprint images.

In our implementation, we setτ = π, which corresponds to
the valley of the wavecos(ψ), to construct a binary fingerprint
image with ridges and valleys of roughly the same width. This
is in accordance with most ordinary real fingerprint images.
We setτ = 0.4π to obtain a coarsely thinned fingerprint image
for easier computation of the final thinned fingerprint image.
Each of the settings is within the appropriate range ofτ to
achieve relatively good performance.

Besides the probability of missed spirals, we further consid-
er two other measures given below to evaluate the distortion
of the constructed fingerprints.

1) Probability of spurious spirals: the probability to detect
a spiral that does not exist in the original spirals.

2) Shift of spirals: the average distance (in pixels) between
the correctly detected spirals and the corresponding
original spirals.

Table II reports the values of these measures estimated from
the constructed fingerprints with the implemented settings of
τ . It can be seen that all the original spirals can be detected
in the constructed composite phase, while most of the original
spirals could still be detected after the post processing. On the
other hand, our fingerprint construction creates a few spurious
spirals, which also slightly shifts the original spirals regardless
the post processing.

B. Capacity and data extraction accuracy

The capacity is the amount of secret bits that can be hidden
in the constructed fingerprint image. According to what we
have discussed in Section IV-A, the capacity depends on
the resolution of the constructed fingerprint image and the
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TABLE II
QUANTITATIVE MEASURES OF THE DISTORTION OF THE CONSTRUCTED FINGERPRINTS BEFORE AND AFTER POST PROCESSING.

before post processing after post processing
constructed composite phasebinary fingerprint thinned fingerprint grayscale fingerpirnt

Probability of missed spirals 0 0.0276 0.0681 0.0452
Probability of spurious spirals 0.0527 0.0891 0.1387 0.1119
Shift of spirals (in pixels) 1.2475 1.5227 1.8901 1.6204
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Fig. 15. Data extraction accuracy of the proposed scheme. Top: Size I with (a) binary fingerprint images, (b) thinned fingerprint images, and (c) grayscale
fingerprint images; Bottom: Size II with (d) binary fingerprint images, (e) thinned fingerprint images and (f) grayscale fingerprint images.

redundancy of the encoded points. In order to make the
constructed fingerprint image natural, the image resolution and
the number of minutiae points should be within a normal
range. In [24], the authors summarize the resolutions of
the fingerprint images captured from common commercial
sensors, where the maximum is600× 600 and the minimum
is 95 × 95. The scanners for capturing multi-fingerprints can
produce fingerprint images with a resolution up to3000×3200.
Furthermore, the number of minutiae points varies from15 to
over100 for fingerprint images captured from a single finger.

We construct fingerprint images with the following two
sizes: 1) Size I:300 × 300, and 2) Size II:500 × 500. We
set∆ = 7, sx = 8 andsy = 8 for both the two sizes. We set
n = 40 andr = 6 for Size I, andn = 70 andr = 7 for Size
II. This satisfies the constraints betweenn (or r) and the size
of the constructed fingerprint image (see Eq. (10)).

We vary the value ofk to construct the fingerprint images
with Size I and Size II. For each size and a specifick, we
construct 1000 fingerprints using different secret messages
with length ofkr−16. These fingerprints consist of five major
fingerprint classes including200 arch,200 tented arch,200 left
loop, 200 right loop and200 whorl. Each of the fingerprints
contains three different forms including the binary fingerprint
image, the thinned fingerprint image, and the grayscale fin-
gerprint image. For each form, we perform data extraction
on different fingerprint classes separately, the accuracy of

which is given in Fig. 15. Since the Reed-solomon decoder
is able to correct up to(n − k)/2 error points, smallerk
(i.e., shorter length of secret message) corresponds to more
tolerance of error points. It is expected to see from Fig. 15
that the data extraction accuracy increases upon the decreasing
of k. It can also be seen that the data extraction accuracy varies
among different fingerprint classes as well as different forms
of fingerprint images. In terms of fingerprint classes, the arch
achieves the highest data extraction accuracy, which appears
to be the lowest for the whorl. In terms of the forms, the data
extraction accuracy of the binary fingerprint images are higher
than that of the other two forms (thinned and binary), with
100% data extraction accuracy for Size I atk = 28 and Size
II at k = 50. The corresponding capacity is28×6−16 = 152
bits and50× 7− 16 = 334 bits, respectively.

The above phenomenon could be explained below. Our
fingerprint construction may create some spurious spirals due
to the discontinuity of the unwrapped orientation on the branch
cuts and the post processing. Fingerprint classes with more
singular points and branch cut areas have the tendency to
create more spurious spirals. For arch, there is no singular
point and the orientation can be unwrapped perfectly without
any discontinuity. Thus, there are hardly any spurious spirals
in the constructed arch fingerprint image, as shown in Fig.
16(a). For other fingerprint classes, spurious spirals may be
detected around the singular point and the branch cut area, as
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(a) (b)

Fig. 16. The locations of the spirals detected after the fingerprint construction,
the blue circles refer to the spirals representing the secret message, and the
black triangles refer to the spurious spirals. (a) A binary arch fingerprint
image, and (b) a binary whorl fingerprint image. The images are made
transparent for illustration purpose.

shown in Fig. 16(b). The fingerprints of whorl contain the most
number of singular points (see Fig. 2) as well as the branch cut
areas. It is expected to find that their data extraction accuracy
is lower than other classes.

On the other hand, additional thinning or noising process
is applied on the binary fingerprint images to obtain the
thinned or grayscale fingerprint images, which would generate
more spurious spirals. For example, thinning may create small
islands in the fingerprint, which might lead to spurious spirals.
The small white blobs added during the noising might also
result in spurious spirals. Locations of the ridge endings and
bifurcations may be slightly displaced due to the thinning or
noising process. If the displacement is beyond certain distance,
original spirals will be removed and spurious spirals will be
generated. This explains why the binary fingerprint image
achieves the highest data extraction accuracy among the three
forms. It should be noted that, for the grayscale fingerprint
images, the accuracy also depends on how much the noise
is added. Severe noising will result in low data extraction
accuracy. Some other examples of the constructed fingerprint
images are given in Fig. 17.

Similar to the real fingerprint images, our constructed fin-
gerprint images contain fine details such as pores, noise or
other fine level features, which are mainly created due to the
post processing. As indicated in [36], these details can not be
easily modeled and a noise term has to be considered (see Eq.
(1)). In the phase demodulation, the noise has to be removed
beforehand as shown in Eq. (2). This is why we apply the
fingerprint enhancement on the constructed fingerprints during
the data extraction, which is also a necessary and important
step in the phase demodulation. To verify its effectiveness,
we perform data extraction on all the fingerprint images
constructed before without the enhancement, the accuracy
of which is shown in Fig. 18. It can be seen that, without
the fingerprint enhancement, we are not able to perform any
correct data extraction for the grayscale fingerprint images.
Because the noising has a severe impact on the fine details of
the grayscale fingerprint images, and the noise term can not
be neglectable at all in the phase demodulation. For binary
and thinned fingerprint images, the data can be still extracted,
but the accuracy is much lower compared with that after

Fig. 17. Examples of the constructed fingerprint images. From left to right:
binary fingerprint images, thinned fingerprint images, and grayscale fingerprint
images.

fingerprint enhancement.

C. Robustness

In this section, we discuss and evaluate the robustness
of the proposed scheme in two aspects: 1) the robustness
of fingerprint construction, and 2) the robustness of data
extraction.

1) Robustness of fingerprint construction:Our fingerprint
construction contains three major steps including the spiral
phase construction, the continuous phase construction and
the phase combination. Among these steps, the outputs of
the spiral phase construction and the phase combination are
deterministic given a piece of specific secret message and
continuous phase. While the construction of continuous phase
is performed by demodulating and decomposing a synthetic
fingerprint. Therefore, the robustness of our fingerprint con-
struction relies on the robustness of the synthetic fingerprint
generation. As what we have mentioned in Section IV-B1,
we adopt the Gabor filtering based approach for synthetic
fingerprint generation, where the ridge frequencyfκ and
orientationOκ are generated based on the construction keyκ
for input. The constraints of these two pieces of inputs are well
studied in literature [24], [27], [40]. To verify the effects offκ
andOκ, we show in the first and second column of Fig. 19 the
synthetic fingerprint image and the corresponding continuous
phase image with different settings offκ andOκ. It can be
seen that all the continuous phase are properly constructed,
where the ridge frequency depends onfκ and the overall
ridge flow depends onOκ. These continuous phase can be
combined with the spiral phase representing the same piece
of secret message, which produces the composite phase (of
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Fig. 18. The data extraction accuracy with and without the fingerprint enhancement for images of (a) Size I and (b) Size II.

the constructed fingerprint) with the same message hidden as
shown in the third column of Fig. 19.

2) Robustness of data extraction:To test the robustness of
our scheme in data extraction, various kinds of attacks are
applied on the constructed fingerprint images using StirMark
Benchmark 4.0 [46], including JPEG compression, random
noise addition, filtering, rotation, scaling, shearing, linear
transform, line removal and cropping. To make the StirMark
Benchmark 4.0 workable on both the binary and thinned
fingerprint images, we convert these images to grayscale by
assigning the grayscale intensity of 0 and 255 for the black and
white pixels, respectively. Besides these StirMark attacks, we
consider four more types of attacks: fingerprint binarization,
fingerprint thinning, salt and pepper noise addition and spiral
alteration. The spiral alteration refers to the case that the
attacker is aware of the fingerprint construction and uses it
to attack the constructed fingerprint images. In such a case,
he can conduct the phase demodulation and decomposition on
the fingerprint image and modify the locations and polarities
of the spirals. The modified spiral phase can be combined
with the continuous phase to form a new construct fingerprint
image.

Two sets of fingerprint images (constructed in Section VI-B)
are incorporated in this test including: Size I withk = 24 and
Size II with k = 40. The data extraction accuracy without and
with different attacks are given in Table III. In this table,QF
is the quality factor of JPEG compression;ST is intensity
of the noise (normalized from 0 to 100);R is the angle of
rotation (in degrees);SC is the scaling ratio,Ax and Ay

are the horizontal and vertical shear factors;LT1 andLT2 are
two linear transforms withLT 1 = [1.005, 0.009; 0.010, 1.006]
andLT 2 = [1.004, 0.008; 0.009, 1.003]; LR means one line
is removed in everyLR lines horizontally and vertically;C
refers to the cropping ratio; andSN is the number of spirals
that are altered.

It can be seen that, regardless of the forms, the constructed
fingerprint images perform extremely well in resisting the
popular fingerprint image operations (binarization and thin-
ning) and the JPEG compression. For the binary and grayscale
constructed fingerprint images, the data extraction accuracy
remains high even whenQF = 5. And most of them are
able to resist moderate noise addition and all the filtering. For
the thinned fingerprint images, however, noise addition and
filtering have severe impact on the data extraction accuracy.

The reason is that the thinned fingerprint images only contain
ridges of one pixel width, the ridge endings and bifurcations
(which represent the secret message) are sensitive to operations
such as noise addition or filtering. Our scheme is less robust
in resisting geometric transforms especially for images with
large size. The reason is that the geometric transforms change
the locations of all the spirals, which creates challenges in
detecting the correct spirals for data extraction. We can also
see from the table that, for most of the constructed fingerprint
images, the data can be correctly extracted when a few spirals
are altered.

D. Steganalysis on the constructed fingerprint images

In this section, we evaluate the performance of the existing
steganalysis tools on the constructed fingerprint images. For
grayscale fingerprint images, we use the rich model [17], a
popular tool for steganalysis on grayscale or color images.
Since both the binary and thinned fingerprint images belong
to the binary images, tools for binary image steganolysis
are needed for the evaluation. Unlike the grayscale or color
images, there is limited work regarding the binary image
stegonalysis in the literature [47]–[50]. We here apply the
latest work [50] for steganalysis on the binary and thinned
fingerprint images.

As suggested in [21], a set of pure synthetic images could
be generated and served as the cover images. In our case,
we generate the pure synthetic fingerprint images (i.e., the
cover images) with the size of300× 300. The corresponding
constructed fingerprint images are served as the stego-images
which share the same continuous phase as the cover images.
For each of the three forms, we generate 1000 cover images
and 1000 stego-images, where half of them are used for
training and the rest are used for testing. The performance
of the steganalysis tools on these fingerprint images are given
in Table IV, wherePp means the rate of detecting a cover
image as a stego-image andPn refers to the rate of detecting
a stego-image as a cover image, andPa is the average detection
error:

Pa =
Pp + Pn

2
. (21)

It can be seen that, regardless of the form, the existing
steganolysis tools are not effective in detecting the existence
of secret message on the constructed fingerprint images, where
the average detection error is close to 50%.
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TABLE III
THE ACCURACY OF DATA EXTRACTION (IN PERCENTAGE) WITHOUT AND WITH DIFFERENT KINDS OF ATTACKS

Fingerprints
Size I Size II

Binary Thinned Grayscale Binary Thinned Grayscale
No attack 100.0 100.0 100.0 100.0 100.0 100.0

Fingerprint operation Binarization - - 100.0 - - 100.0
Thinning 100.0 - 100.0 100.0 - 100.0

JPEG compression
QF = 5 100.0 78.9 97.5 100.0 80.2 100.0
QF = 25 100.0 100.0 100.0 100.0 100.0 100.0
QF = 45 100.0 100.0 100.0 100.0 100.0 100.0

Random noise
ST = 5 100.0 60.7 100.0 100.0 45.6 100.0
ST = 15 100.0 26.1 97.0 100.0 6.2 96.6
ST = 25 91.8 0.0 81.3 85.2 0.0 71.4

Salt and pepper noise
ST = 5 100.0 7.5 100.0 100.0 0.0 100.0
ST = 15 100.0 0.0 100.0 100.0 0.0 100.0
ST = 25 100.0 0.0 98.6 100.0 0.0 96.0

Median filter (3x3) 97.5 0.0 93.0 95.2 0.0 90.4
Gaussian filter (default setting) 96.5 0.0 91.1 94.3 0.0 88.9
Sharpening (default setting) 98.9 67.1 97.3 97.9 55.8 95.2

Rotation R = 0.25 100.0 81.4 95.1 100.0 63.2 79.8
R = 0.50 98.7 57.0 71.0 73.6 27.2 47.3

Scaling SC = 0.995 99.1 75.6 91.8 72.1 38.3 62.0
SC = 1.005 100.0 77.7 95.0 75.8 40.9 64.4

Shearing Ax = 0.01, Ay = 0.01 97.1 60.0 68.5 0.0 0.0 0.0
Ax = 0.05, Ay = 0.05 0.0 0.0 0.0 0.0 0.0 0.0

Linear transform
LT1 37.1 3.8 15.5 0.0 0.0 0.0
LT2 66.8 10.1 38.0 0.0 0.0 0.0

Line removal LR = 150 85.2 19.3 68.9 66.1 5.4 48.2
LR = 200 92.3 27.7 80.1 78.8 10.9 61.1

Cropping C = 0.95 0.0 0.0 0.0 0.0 0.0 0.0
C = 0.99 97.8 71.3 89.3 80.9 50.5 71.1

Spiral alteration SN = 2 99.5 73.8 98.0 100.0 85.0 100.0
SN = 4 95.7 56.4 93.1 98.3 61.1 96.4

TABLE IV
PERFORMANCE OF THE EXISTING STEGANALYSIS TOOLS ON THE

CONSTRUCTED FINGERPRINT IMAGES.

Fingerprint images Pp (%) Pn (%) Pa (%)
Binary 64.4 36.0 50.2

Thinned 55.8 44.4 49.6
Grayscale 58.4 45.2 51.8

E. Security

For a constructed fingerprint image, the security of the secret
depends on the secrecy of the construction keyκ. During the
fingerprint image construction, we encode the secret message
by evaluating a polynomial onn different elements, the values
of which are obtained by random permutation (based onκ)
of the integers from 1 ton inclusive. In data extraction,
these elements have to be correctly computed for decoding.
Therefore, a brute force attack would have to tryn! times
to extract the secret, which corresponds tolog2(n!) bits of
security. Forn = 40 andn = 70, the security of the secret is
roughly 159 and 332 bits, respectively. Of course, the attacker
can also do a brute force attack to recoverκ for data extraction.
Assume the strength ofκ is Lκ bits andLκ < log2(n!), the
security of the secret will be reduced toLκ bits. Otherwise,
the security of the secret remainslog2(n!) bits.

VII. D ISCUSSIONS

Our proposed scheme can be deployed in the communica-
tion channels of fingerprint recognition systems, because it is
unsuspicious to transmit fingerprint images in such channels

and our scheme has the ability to resist popular fingerprint
image operations. Concretely, we are able to convey short
messages such as encryption/decryption keys or URLs in
the channels using our constructed fingerprint images. First
of all, the channel may only accept fingerprint images in
one of the three common forms (see Fig. 1). Secondly, the
fingerprint image may be binarized or thinned during the
transmission. Our scheme is flexible in constructing fingerprint
images in any of the common forms that is acceptable in the
channel. On the other hand, we can still extract the message
even if the fingerprint image is binarized or thinned during
the transmission. It should be noted that our scheme is not
workable if the fingerprint recognition system extracts the
fingerprint feature locally, where the data transmitted through
the channel is not the fingerprint image.

Next, we discuss the statistical distance among our con-
structed fingerprints, the pure synthetic fingerprints, and the
original fingerprints. Regardless of the forms of the fingerprint
image, there are two main levels of fingerprint features includ-
ing the orientation and the minutiae. The orientation describes
the ridge flow of the fingerprint. The minutiae capture the
fingerprint ridge endings and bifurcations. As what we have
pointed out in Section IV-B1, our constructed fingerprints and
the synthetic fingerprints share the same orientation (ridge
flow). While the distribution of the synthetic fingerprint orien-
tation is similar to that of the original fingerprint orientation.

For the minutiae, some researchers indicate that they tend
to cluster around the singular points, which are not uniformly
distributed [51]. In our constructed fingerprint and the syn-
thetic fingerprint, however, there are no constraints on the
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Fig. 19. Fingerprint construction based on different settings offκ andOκ.
From left to right: synthetic fingerprint images, the constructed continuous
phase images, and the composite phase images of the constructed fingerprints.
The phase images are shown in grayscale for illustration purpose. (a) and (b):
Right loop fingerprints constructed withfκ = 1/6 andfκ = 1/9,Oκ of both
fingerprints are computed based on the zero-pole model with a core located
at (150, 100) and a delta located at(50, 150), (c) and (d): arch fingerprints
constructed withfκ = 1/6 and fκ = 1/9, Oκ of both fingerprints are
computed based on the arch orientation model with the arch curvature of 2.5.

distribution of minutiae. Therefore, the statistical distance
among different fingerprints mainly depends on their minutiae,
which can be roughly measured using the Kullback Liebler
(KL) divergence [52]. In particular, we build three fingerprint
databases including 1000 constructed fingerprint images, 1000
synthetic fingerprint images, and 800 original fingerprint im-
ages obtained from FVC2000 DB1A [53]. All the images
are in grayscale with the size of 300×300. The number of the
minutiae points of the constructed or synthetic fingerprint is
controlled within the range of 15 to 60, which is similar to that
of the original fingerprints in FVC2000 DB1A. We perform
the fingerprint alignment such that the primary singular point
of each fingerprint image is located at the center with angle
of π/2 [54]. To compute the KL divergence, we partition the
aligned fingerprint image into 50×50 non-overlapping blocks.
Then, we accumulate the number of minutiae points in each
block from all the fingerprints in each database. As such, we

obtain a 6×6 probability density map indicating the minutiae
distribution for each database. According to these maps, the
KL divergence between the constructed fingerprints and the
synthetic fingerprints is computed as 0.2112. This is increased
to 0.2732 for the constructed fingerprints and the original
fingerprints.

VIII. C ONCLUSIONS ANDFUTURE WORK

A novel construction based data hiding technique is pro-
posed in this paper. Instead of constructing textures as what
have been done in the literature, we propose to construct
fingerprint images directly from the secret message. The
proposed scheme is based on the construction of the composite
phase of the fingerprint, which is the combination of the
spiral phase and the continuous phase. The spiral phase
is constructed by encoding the secret message to a set of
two dimensional points with different polarities, while the
continuous phase is constructed from a fingerprint image
synthetically generated. Different fingerprint images can be
generated based on the constructed composite phase, including
the binary fingerprint image, the thinned fingerprint image, and
the grayscale fingerprint image. The experimental results show
that our scheme achieves satisfactory data extraction accuracy
and robustness. In addition, we demonstrate the ineffectiveness
of the existing steganalysis tools on the constructed fingerprint
images.

Our scheme does not put any constraints on the distribution
of the minutiae of the constructed fingerprints, which slightly
differs from the synthetic fingerprints or the original finger-
prints. This leaves traces for designing specific steganalysis
tools. A straightforward way is to use the probability density
map of the minutiae to train the classifier. We use the three
fingerprint image databases adopted in Section VII. For each
database, half of the images are used for training, while
the rest are used for testing. For each fingerprint image, we
extract a6× 6 minutiae probability density map by following
the procedure described in Section VII, which serves as the
feature for training and testing. The average detection error is
35.25% and 31.20% for detecting the constructed fingerprint
images from the pure synthetic fingerprint images and the
original fingerprint images, respectively. This demonstrates the
usefulness of the fingerprint specific features for steganalysis.
In the future, the traces left due to the fingerprint construction
should be further studied to improve the performance of
steganalysis. Meanwhile, a better spiral phase construction
approach should be investigated by putting proper constraints
on the distribution of the encoded spirals.

APPENDIX A
THE REED-SOLOMON DECODER AND THE DECODING

PROCESSING

Let’s denote a candidate point list formed fromP′ asR =
{(αi, ri)}ni=1. Assume there are at moste errors inR, i.e., at
moste values ofi such thatri 6= ℘k(αi). The decoding relies
on the following two lemmas [45].

Lemma 1:There exists non-zero polynomialsE(x) of de-
gree≤ e andQ(x) of degree≤ k + e− 1 such that

Q(αi) = riE(αi) for all i = 1, 2, ..., n (22)
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Proof: Let I = {i1, i2, ..., im} be the set of error
positions, i.e.,i ∈ I if ri 6= ℘k(αi). Let

E(x) =
∏m

j=1(x− αij ),

Q(x) = ℘k(x)E(x).
(23)

Thus,E(x) has degreem ≤ e. Since℘k(x) has degree≤
k − 1, it also follows thatQ(x) has degree≤ e + k − 1. If
i is not an error position, i.e.,i /∈ I, then ri = ℘k(αi), so
Q(αi) = ℘k(αi)E(αi) = riE(αi). If i is an error position,
i.e., i ∈ I, thenE(αi) = 0, soQ(αi) = ℘k(αi)E(αi) = 0 =
riE(αi). Therefore, Eq. (22) holds for everyαi.

Lemma 2: If E(x) andQ(x) satisfy Eq. (22), and the num-
ber of errors is at moste = (n−k)/2, thenQ(x) = ℘(x)E(x).
Hence, we can compute℘(x) = Q(x)/E(x).

Proof: Both Q(x) and ℘(x)E(x) are polynomials of
degree≤ e + k − 1, so is their differenceD(x) = Q(x) −
℘(x)E(x). If i is not an error position, then℘k(αi) = ri and
we haveD(x) = 0. Since there are at leastn − e non-error
positions, the polynomialD(x) should have at leastn − e
distinct roots in the Galois fieldF. According to the theorem
of algebra [55], if the number of distinct roots is larger than the
degree of the polynomial, the polynomial will be identically
zero. Therefore, ifn−e > e+k−1 (i.e.,e < (n−k+1)/2), we
must haveD(x) = 0 identically. Thus, whene ≤ (n− k)/2,
the polynomial can be reconstructed successfully.

Given a candidate point listR = {(αi, ri)}ni=1, the de-
coding starts by assuming the maximum number of errors
(i.e., e = (n − k)/2), which then introduces variables
u0, u1, ..., uk+e−1 andv0, v1, ..., ve to stand for the coefficients
of Q(x) andE(x), so

Q(x) =
∑k+e−1

i=0 uix
i,

E(x) =
∑e

i=0 vix
i.

(24)

For eachαi, we substitutex = αi in Q(x) andE(x) given
above to evaluate Eq. (22), which results in a system ofn
linear equations. If the equations can not be solved,e is
reduced by 1 and the above process is repeated until the
equations can be solved ore is reduced to 0.Lemma 1 and
Lemma 2 guarantee that, when the actual number of errors
e ≤ (n−k)/2, we can find a non-zero solution of this system
to getQ(x) andE(x) explicitly, and the message polynomial
can be recovered by℘k(x) = Q(x)/E(x) with a reminder of
0.

APPENDIX B
PROBABILITY OF SUCCESSFUL AND INCORRECT DATA

EXTRACTION

In this appendix, we first empirically estimate the probabil-
ity of successful data extraction, which is a measure of how
likely the secret message can be correctly extracted from a
constructed fingerprint image. It is also a good indicator of
the performance of the data extraction.

Let’s denote the candidate point list with the most original
points as the optimal point list. This list contains all the
original points that can be detected. The probability to get
an error point in the list equals to the probability that an

original point can not be detected (i.e., the probability of
missed spirals), an empirical estimation of which can be found
in Table II. For each of then points in the optimal point list,
let’s consider whether it is an error point or not as an event, so
we can getn independent events from the list. The number of
successes of then events (i.e., the number of error points) is a
random variable (sayX) following the binomial distribution.
Thus, the probability of gettinge error points is given by

Pr(X = e) =

(

n

e

)

des(1− ds)
(n−e), (25)

where ds refers to the probability of missed spirals. The
probability of successful reconstruction is the probability that
the optimal point list contains at most(n− k)/2 error points,
i.e.,

P =

(n−k)/2
∑

e=0

Pr(X = e). (26)

According to Table II,P is 1 for the fingerprint without post
processing. Whenn = 40 andk = 20, P is 1 − 7.80× 10−9

for the binary fingerprint images,1 − 5.28 × 10−5 for the
thinned fingerprint images and1−1.10×10−6 for the grayscale
fingerprint images.

It is possible that the Reed-Solomon decoder incorrectly
decodes the polynomial due to the limitation of error cor-
rection. In general, this can be verified by comparing the
CRC bits. However, it may happen that the CRC bits of the
extracted message are the same as the last16 bits of the
message decoded directly from the polynomial, even though
the polynomial is incorrectly decoded. In such a case, we will
extract an incorrect message, the probability of which depends
on the capability of the decoder and the length of the CRC
bits, which can be roughly estimated as

Pe = (1− P)2−16. (27)

For a binary fingerprint image withP = 1− 7.80× 10−9, the
value ofPe is 1.2× 10−13.
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