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Towards Construction Based Data Hiding: From
Secrets to Fingerprint Images

Sheng Li and Xinpeng Zhang

_ Abstract—Data hiding usually involves the alteration of a cover image will be modified to host the secret message, which
signal for embedding a secret message. In this paper, we proposejnevitably causes distortions visually or statistically. Thus, it is
a construction based data hiding technique which transforms a ,5ggip|e to develop steganalysis tools to reveal the existence of

secret message into a fingerprint image directly. Unlike the con- th t in the st . . the i ith
ventional data hiding techniques, this scheme does not need anytN€ Secret message in the stego-images (i.e., the images wi

cover signals to participate. Instead, it generates the fingerprint hidden data) [16]-[19].

image based on a piece of hologram phase constructed from the In recent years, a few data hiding techniques have been
secret message. The hologram phase consists of the spiral phasgleveloped without the incorporation of cover images [20]-
and the continuous phase. Firstly, we propose to map the secret ;551 |nstead of altering the pixels, these techniques perform
message to a polynomial and encode it into a set of points with . . . .

different polarities, from which the spiral phase is computed data embedding by ConStrUCt'ng a stego-image directly from
and constructed. Then, we construct the continuous phase by the secret message. Meanwhile, the secret message can be
decomposing a fingerprint image synthetically generated. The extracted (or decoded) from the constructed stego-image. Such
spiral phase and the continuous phase are combined to form the construction based data hiding techniques do not involve the

hologram phase. This is eventually used to construct a fingerprint alteration of pixels during the data embedding, which creates
image in a common form such as a grayscale fingerprint image, I . '

a binary fingerprint image, or a thinned fingerprint image. The challenges f_or_tradltlonal St(_eganaIySIS tools. . .
secret message can be extracted by detecting the encoded points All the existing construction based data hiding techniques
in the constructed fingerprint. We conduct the experiments by use texture synthesis for the construction of stego-images. This

constructing fingerprint images with ordinary sizes, the results concept is initially proposed by Otori and Kuriyama [20],
show that the secret message can be extracted accurately. It iSyhare the secret message is encoded into a dotted pattern.
also difficult to dete_ct t_he existence of secret message from the_l_h dat bedding i ducted h that the | | bi
constructed fingerprint images. e data embedding is conducted such that the local binary
patterns of all the blocks in the dotted pattern represent
the secret message. The texture image with hidden data is
then synthesized by painting the dotted pattern. This scheme
l. INTRODUCTION is robust to image recapturing, however, it offers relatively
o ] ) low data hiding capacity. In [21], the authors propose a
~ Data hiding is a technique of embedding a secret messaggeh-pased texture synthesis which is message-oriented. This
into a cover signal by subtly altering selected locations. fethod distributes the source texture into a composition image
is widely applied in authentication, secure communicatiq@yersibly. The data embedding is performed by pasting proper
and copyright protection. Generally speaking, the cover signgjyrce patches on the composition image, where the choice of
could be any meaningful digital signal including the digitafyrce patches depends on the data to be hidden. Compared
audio/image/video [1]-[7], text [8], and even the 3D meshggi, the work in [20], this approach achieves higher data
[9], [10]. Among various data hiding techniques, image baseying capacity, but it offers no robustness when there is
data hiding is the most popular, where the cover signal isdy change on the image content. A marbling based data
digital image (i.e., the cover image) such as a natural imaggjing approach is proposed in [22]. In this scheme, the secret
[2], [3]. [6], a medical image [11], [12] or a biometric imagemnessage is printed on a background image and deformed into
[13]-{15]. Image based data hiding can be developed fgfiferent marbling textures using reversible functions. Similar
images in different forms, including color/grayscale imageg ine work in [20], this scheme offers limited capacity with
[2], [5], [6], [13] and binary images [3], [4], [14], [15]. robustness against printing and scanning.
Most of the existing image based data hiding techniques| this paper, instead of constructing texture images, we
require a cover image to participate. The pixels of the covgfopose to construct fingerprintimages directly from the secret

. . . . messages. The reason behind is the popularity of biometrics
This work was supported in part by the National Natural Science Foun-

dation of China under Grant 61602294, Grant U1636206, Grant 6152526§C0gnition systems nowadays, and fingerprint biometrics is
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Plan under Grant 16XD1401200. [23]. There are three common forms of fingerprint images in-
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Fig. 1. Fingerprint images that are commonly used in fingerprint recognitig /,

systems. (a) The grayscale fingerprint image, (b) the binary fingerprint img j \
(obtained by binarization of (a)), and (c) the thinned fingerprint imag Al
(obtained by morphological thinning of (b)). At

7

inni ; int i i ig. 2. Fingerprints belong to different classes. (a) Left loop, (b) right loop,
and th""?'”g On. th(.a grayscale fl_ngerprln_t Images, Whl(.:h .agwhorl, (d) tented arch, and (e) arch. The solid circles and triangles refer
popular fingerprint image operations during the transmissiqg the cores and deltas, respectively.
Researchers have devoted efforts to developing data hiding
techniques for these fingerprint images for various applications

[13]-[15], [25]. However, these approaches require a cover Il. BACKGROUND: FINGERPRINT SYNTHESIS
fingerprint image to work and they are not robust against;, genera), there are five major fingerprint classes including

fingerprint binarization and thinning. The secret can not bfgft loop, right loop, whorl, tented arch and arch [26]. Finger-
extracted at all once the stego-images are binarized or thinngﬁn

e - ) ts belong to different classes have different distributions of
Thus, it is necessary to develop data hiding techniques that

fi o7 directly f h ularities (i.e., cores and deltas) as shown in Fig. 2. The aim
construct fingerprintimages directly from the secret messag F“fingerprint synthesis is to generate a synthetic fingerprint

In addition, they should also be robust against various attagks, o of 4 certain class based on a set of parameters. In liter-
including _popular flnggrprmt image operations as well %ure, people have proposed various techniques for synthetic
common image operations. fingerprint generation, which are mainly designed to build

The proposed scheme is based on the fingerprint hologr(_l?rfge fingerp_rint databases or un_derstar_nd the rules involved
phase which consists of the spiral phase and the continudighe biological process to form fingerprints. o
phase. The spiral phase corresponds to the fingerprint minutia&aPpelli et al. [27] propose a synthetic fingerprint image
(i.e., the ridge endings and bifurcations). We propose to mggneration scheme by iteratively applying Gabor filtering on
the secret message to a polynomial and encode it into a sefgie€d image. The ridge pattern of the fingerprint gradually
two dimensional points to mimic the fingerprint minutiae, so g&0Ws during the filtering. Similarly, in [28], the ridge pattern
to construct the spiral phase. The continuous phase is reldfedferatively generated using filters of binary masks instead
to fingerprint orientation and frequency, the construction §f Gabor filters. Besides these filtering based approaches,
which is conducted by decomposing the hologram phase of/3Jerprint can be synthesized according to the biological
synthetic fingerprint image. We then combine the spiral phaBEPcess of fingerprint formation. In [29], the authors argue
and continuous phase to form the hologram phase, basedt@ fingerprints are forme_d duelto the buckllng_ process in the
which we generate a fingerprint image in any of the thrdasal cell layer of the. epidermis, where the r_ldge patternlls
common forms mentioned before. In data extraction, we det§@nerated by the solution of von Karman equation. Fingerprint
the encoded points in the fingerprint image and reconstruct flgEmation can also be treated as a general biological pattern
polynomial. The experimental results demonstrate the high dgtmation problem which could be solved using the Turing's
ta extraction accuracy and robustness of our proposed scheffi reaction-diffusion) model [30]-[32]. The Turing's model

Furthermore, the existence of secret message is difficult to $f&rs the flexibility in generating various patterns we observe
detected using the existing steganalysis tools. in nature. However, it usually requires the model parameters

to be carefully selected [33]. Some other techniques are

The organization of the paper is as follows. Section Heveloped with the ability to restore a few missing areas in a
introduces the background of fingerprint synthesis. Section fihgerprint image [34], [35]. These approaches work well for
gives a brief review on the phase representation of the fifingerprint restoration or enhancement. However, they cannot
gerprint and the corresponding phase decomposition. Sectimnused to synthesize a complete new fingerprint image.
IV and Section V introduce the fingerprint image construction Despite the variety of synthetic fingerprint generation ap-
and the data extraction, respectively. Section VI presents thi@aches, none of them are designed with the ability to conceal
experimental results, followed by some discussions in Sectisecret messages during the fingerprint construction. The data
VII. Our conclusions and future work are given in the lasparameters) incorporated in the fingerprint synthesis are with
section. limited entropy and difficult to be correctly extracted. In this
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paper, we take advantage of the phase representation of t
fingerprint and encode the secret message as a set of spirg
with some redundancy. Most of the spirals remain the samg
during the fingerprint construction. Such a property ensures
the secret message to be correctly extracted by detecting t
spirals from the constructed fingerprint image.

Ill. THE PHASE REPRESENTATION OF FINGERPRINT
As indicated in [36], the structure of a fingerprint can be

represente_d as a hologram., 1.e., a p_hase mOd.UIateC! f”%‘? 3. Different types of phase images of the same fingerprint. (a) The
pattern. Given a grayscale fingerprint image the intensity composite phase image, (b) the spiral phase image, and (c) the continuous

of each pixel(x,y) can be modeled by phase image. The phase images are shown in grayscale for illustration purpose.
The empty circles and squares refer to the minutiae points with positive and

F(:E,y) _ A(:c,y) + B(:E,y) ~cos[1/)(:c,y)] + N(:c,y), (1) negative polarities, respectively.

where A(z,y) is the offset of the intensity of the image, ¥
B(z,y) is the amplitude of the ridge pattergh(z,y) is the
hologram phase of the ridge pattern, aNdz,y) refers to i |
the noise of the image. The hologram phasdetermines the #
location of the ridges and minutiae of the fingerprint, whick ="~
can be demodulated by:

P(z,y) = Arg{—e Y . R[F(z,y) — A(z,y)]+
F(Ia y) - A(Ia y)}7

whereArg(z) returns the principal value of the argumentof _ i _
Fig. 5. The process of the secret message encoding. The empty circles and

e(xﬁ)hls the local gradient ani is a demodulation OPEerator s ares refer to the points with positive and negative polarities, respectively.
such that

§R[F‘(l.ay) - A(l‘,y)] = Sil{eup(um)g{F(xvy) - A(Za y)}}v

(3) residuals of either-27 or 27 [39]. In the following discus-
whereF(-) and3 () are the Fourier transform and inversaions, both the minutiae and the spirals refer to the fingerprint
Fourier transform, and#(“) is a spiral phase Fourierridge endings and bifurcations. Fig. 3 shows the images of

o

O o &.yip) o
o o

o o

2

multiplier [37]: different types of phase computed from the fingerprint image
io(um) U+ v given in Fig. 1(a). It can be seen that the locations of the
e = N (4) spirals are in accordance with the fingerprint minutiae, while

i i _the continuous phase image has the same ridge flow as that
The fingerprint hologram phase can be decomposed ipihe fingerprint structure.

the continuous phase and the spiral phase according to the

Helmholtz Decomposition Theorem [38]; IV. FINGERPRINT IMAGE CONSTRUCTION

V(@ y) = Ye(x,y) + Ys(2,9), (5)  The flowchart of our fingerprint image construction scheme
is shown in Fig. 4. We propose to construct the spiral phase

value of different types of phase is within the range@f2]. and the continu_ous phase separately from a secret message
In the following discussions, the hologram phase wil als?)nd a construction key. The constructed spiral phase and con-

be termed as the composite phase for clarity. The continu&lﬁyous phase are combined to compute the composite phase.

phase depends on the orientation and ridge frequency of gally, we apply proper post processing steps to construct
fingerprint, while the spiral phase can be calculated by a gerprint images in different forms based on the composite
of spirals: phase. Table | gives the notations for quick reference.

where).. is the continuous phasey is the spiral phase. The

n
bs(a,y) = Zpi arctan (y Y )7 (6) A. Spiral phase construction

i=1 T In order to construct the spiral phase, we propose to encode
wheren is the number of spirals(z;, ;) is the location of the secret messageinto a set ofn two dimensional points
the ith spiral, andp; € {—1,1} is the corresponding polarity. {(zi,¥:)}7=; with the corresponding polaritiefp; };,. The

It has been observed in [36] that the fingerprint minutideasic idea is to map the secret message to a polynomial. Then,

(i.e., ridge endings and bifurcations) can be represented \W§ evaluate the polynomial on different elements over a
spirals of either positive or negative polarity. And multiplé>alois field to compute:;, y; andp;, as shown in Fig. 5. The
minutiae points can be generated from the spirals using Eq. @§tails of the encoding process are summarized below.
The spirals are with abrupt phase changes and in accordancE) Compute a set of cyclic redundancy check (CRC) bits
with the minutiae, which are located at the points with phase according tos, which is used for error detection during
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Secret message Spiral Phase | 7 V/W;.\\/;\\N
10010... Constructi
onstruction /
f A
. Phase Post / (73N
Construitlon key ] Combination ] Processing
Continuous
Phase — =
Construction Fingerprint images in
different forms
Fig. 4. The flowchart of the proposed fingerprint image construction scheme.
TABLE | . .
NOMENCLATURE 4) Map the pointsP to a set of encoded spiraB; =
{(xia yiapi)}?:l by
Notation(s) | Description
s Secret message T; = Ao + Sg
s’ Secret message with CRC bits appended __ ABi—LSB(Bi) 8
k Number of symbols partitioned from Yi 2ALSB(2ﬂ ) 1+ Sy o (8)
s% The jth of the k symbols bi = i)
] T
Pk Polynomial constructed by the symbols where A is a scaling factor to handle the noise during
r Number of bits per symbol . . .
CINED) Boint constructed oy, the ﬂngerprmt_ cqr!structhrLSB(ﬂi) refers to the value
Ti, Ui Location of an encoded point (spiral) of the least significant bit of;, ands, ands, are the
y
Di Polarity of an encoded point (spiral) displacements.
n Number of encoded points (spirals) . . )
A Scaling factor for mappingas, 5:) 10 (21, 41, p7) The Iocatlon§ an_d pplarltles of the enco_ded spllml.srefer to .
Sz, Sy Displacements for mappinx;, Bi) 10 (zi, yi, p:) that of the minutiae in the constructed fingerprint image. With
e \C/Zvécr‘wtgtrazgor:gkrg of the fingerprint image the encoded spirals available, the constructed spiral phase
K ucti y .
frr Ok Frequency and orientation of the synthetic fingerprint can be CompUted using Eq. (6). .
oY Unwrapped orientation computed fro®, We apply the IBM CRC-16 to generate a set of 16 CRC bits
u Integer for computing the unwrapped orientation ~from the secret message Therefore, the number of secret
ci, i Locations of cores and deltas of the synthetic fingerpfint ;15 tilized for the spiral phase construction (i.e., the data
T, Ng Number of cores and deltas of the synthetic fingerprint . . . . .
P Parameter controlling the curvature of the arch embedding capacity) isr — 16 with th_e maximum Of_k’ asn.
o Bandwidth of the Gabor filter The values ofn andr are constrained by the size of the
ig’ i;’ Value of Composite phase of four neighboring pixe|s flngel’pl’lnt |mage tO be Constructed Let’S denOte the W|dth and
Y 9) Phase residual of the pixel Tocated (&t 3) height of_ the fingerprintimage a4 andN, respectlvely._Slnce
T(fa,®,) | Compute the phase difference betwegnand ¢, the maximum ofa; and 8; aren and2” — 1, the maximum
bs Constructed spiral phase of z; andy; can be computed as (see Eq. (8))
e Constructed continuous phase
[ Constructed composite phase Tmaz = AN + Sz
T Threshold for binarization Ymas = A(Qr—l —1)+s, (9)
F, Fingerprint after binarization mae Y

2)

3)

Obviously, z,,ee < M and y,e. < N. Thus, we have the
following constraints fom andr:

data extraction. Les’ denote the message after append- M—s,

) . n < =3

ing the CRC bits tcs. N—s, . (10)

Partitions’ into a group ofk symbols withr bits per 7 <logs ( a 1) +1

. k—

symbol:s’ = {s/},-;. These symbols are mapped t0 4 other words, we can fix the width and height of the

polynomial o, with fingerprint image and determine the valuenofindr. As long
k1 asn > k, secret messages with different length (i.e., different

o () = Z s;xj. (7) k) can be encoded_ to form a set mfe_ncoded spirals, where

=0 more redundancy (i.en, — k spirals) will be added for shorter

) o messages.
Evaluate the polynomiagb, over the Galois fieldF =

GF(2") atn (n > k) different elementsx = {a;}?, . )

where o, is the ith element of a vector containing aB- Continuous phase construction

random permutation (based af of the integers from 1 Intuitively, the continuous phase can be constructed by
to n inclusive. As such, we have a list of evaluatignss decomposing the composite phase of an original fingerprint
{6}, whereg; = pi(a;). Accordingly, we construct image according to Eq. (5). However, this will expose the
a set of pointsP = {(ay, 8;) 1 ;. continuous phase of the original fingerprint. To deal with such
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an issue, we propose to construct the continuous phase by P/ NNNNNN 222%7;:2§$$$$
decomposing the composite phase of a synthetic fingerprint Y727 anNNNNNNI A R R A NN
image. In particular, all the spirals in the synthetic fingerprint 555?23“““\ H““H“““
image will be removed to construct the continuous phase. %%ﬁﬁsisgi\ H{RQEEEESSS

1) Synthetic fingerprint image generationVe adopt the ,;;;;555;}{{{{ ZAINNNNNNY
Garbor filtering based fingerprint synthesis scheme [27] to A/ 7NN AN NN
generate the synthetic fingerprint image, which is to obtain the SAL LSS A N | S —
overall ridge flow of the constructed fingerprint. We choose_,____ (@) (b)
this approach because it is able to generate a full synthg 45527722303\ 7507722 =3|  22222—=
fingerprint image without ad-hoc parameter selection. It r 7577777',‘;§\R§ 7500000 XR| 00022 =R

. . . : . . /11717 P/ 11 VNN 17777772~ N\\ 1777 7=~ N\A\\
quires the following three pieces of inputs, including 1) 4 ///“\\0//1? N I S S SN I N NN
initial image containing several seed points; 2) the fingerpri 7 1 1 { \\X27 7 ; t“ AN 2220
- - oy for simotomt 14| 22 1R | R | 727770
ridge frequency (termed as the ridge frequency for simplicityy 7/ | \XXZZ20 1 1N || 22000000 s || 5220050220
and 3) the fingerprint orientation (termed as the orientation f{ 4 AIIJZ225 1 LI || 22222222330\ || 2222007200
simplicity). yoo~~———r /77 AN || s~ SNNN\NN || s s —NN

Next, we introduce how we generate the inputs based onthe ~ (C) (d) (e)

constru_ctlon key’?' Generally speaking, th_e n_umber_ of Seegig. 6. The corresponding orientation estimated from the fingerprints given
points is proportional to the number of minutiae points (i.ein Fig. 2. (a) Left loop, (b) right loop, (c) whorl, (d) tented arch, and (e) arch.
the spirals) in the synthetic fingerprint image. In our caséhe solid circles and triangles refer to the cores and deltas, respectively.
we want the number of spirals to be as few as possible to
make the phase decomposition easier for the continuous pha
construction. If there are no spirals in the synthetic fingerprint \
image, we can construct the continuous phase directly b , ﬂ)))))\
demodulating the synthetic fingerprint image according to Eq

(2), which does not need the phase decomposition at al
Therefore, we set the initial image with only a single seed
point located at the center of the fingerprint image. The ridge

frequency determines the number of ridges within an urfite- 7- Ir_ltermediat_e ridge patterns gene_rated using Gabor filtering. The
distance, we random set it (sa%) as a constant over thenumber of iterations increases from left to right.

whole fingerprint image within the range fif/9,1/6] (based

on «), which covers the typical range of ridge frequency in \yu the initial image, the ridge frequency and the orienta-

5_00—d_p| fingerprint Images [24].' The orientation measures tlﬂSn available, we now iteratively apply a Gabor filter for each
dlrect|_ons of thg fmgerprlnt ridges from O to. It_ is the_ pixel located at(z, y) on the initial image [27]:

most important information for the topology of a fingerprint,
which determines the fingerprint class as shown in Fig. 6. WeG(2/, /'; fx, Ox, o) = e~ (@7 +5*)/20%) . cog[ar - f, (13)
determine the class of the synthetic fingerprint to be generated (2" - cos(Ok(z,y)) +y - sin(Ox(z,y)))]
according ta< and the categorical distribution of the five majo(/vherea is the bandwidth of the filter. The value ofis chosen
fingerprint classes [26]. For synthetic fingerprints with singulasruch that the filter does not contaiﬁ more than three effective

points (i.e., left loop, right loop, whorl and tented arch), we C . X X
adopt the zero-pole model [40] to compute the orientation %gﬁ;;onw?g} Is determined by the solution of the following

point (x,y):

n n _[
c d e
Oulry) = 5 |3 Argle =) = :Arg<zdi>], (1)

i=1 i=1

(%) /20°] _ 103, (14)

The iterative process will be terminated until the synthetic
fingerprint is filled with an uniform ridge pattern, as shown in
Fig. 7.
The orientation of such a synthetic fingerprint image is
enerated using classic and well known orientation models.
ese models ensure the smoothness and topology of the
ientation. Therefore, it should be statistically similar to the
riginal fingerprint orientation. This is to say, the ridge flow of
he synthetic fingerprint image is similar to that of the original
ingerprints.
2) Synthetic phase demodulation and decompositdnce
O, (z,y) = arctan ()\ cos (ﬂ)) , (12) the synthetic fingerprint image is generated, we can construct
M the continuous phase using the phase demodulation and de-
where) is the parameter controlling the curvature of the arckpmposition. According to Eq. (2), the composite phase can
the range of which is randomly set (based«Qmwithin [0.3,3]. be demodulated if the AC component and the gradient of the

wherez = y + jx is a complex numbeg; (i = 1,2,...,n.)
and d; (+ = 1,2,...,nq) refer to the locations (both are
in the complex domain) of the fingerprint cores and delta
respectively. This model is able to generate the synthe
orientation by some simple constraints on the locations 8
singular points [40], which can be guided easily based:on
For synthetic fingerprints without singular points (i.e., arch
the orientation at poinfx,y) is computed by the following f
arch orientation model [27]:
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Fig. 8. lllustration of the fingerprint gradient using the arrows (on the lefffig. 9. The set of four adjacent pixels (the solid squares) defined for pixel
and the grayscale image (on the right). The branch cut is shown in blue, dady) with ¢o to ¢3 as the corresponding phase values.
the solid circle and triangle refer to the core and delta.

fingerprint are known. We estimate the AC component J;L/”C“O” calculating the phase difference betwegrand ¢,

removing the mean pixel value from the synthetic fingerprint T(pa, dp) = (o — ¢ + 7) mod 27 — 7. 17)

image. The gradient of the fingerprint is perpendicular to its

orientation O,.. However, the range of the local orientatiort NS been proved that(x, y) will either be zero2r or —2m
is (0, 7] (see Fig. 6), while the range of the local gradier{§9]- Pixels with residuals equal tor or —2r indicate positive
is (0,27]. To solve the ambiguity, we unwrap, to get spirals or negative spirals, respectively. N(_)te that, the pixels
an unwrapped orientatio®® with the range of(0, 277]. For argund the br.anch cut area are not_ tal_<en into a(_:count for the
fingerprint without singular points, we have spirals detection due to the discontinuity of gradient.
Once the spirals are detected, we can compute the spiral
O} (z,y) = Ou(x,y) + um, (15) phase of the synthetic fingerprint using Eq. (6). Consequently,
the continuous phasg. is constructed by subtracting the spiral

where v is an integer satisfying the condition that the Unspase from the composite phase of the synthetic fingerprint.
wrapped orientation between any two adjacent pixels differs

no more thanr/2. Different strategies can be adopted to visi .
the pixels in the synthetic fingerprint image such as the depthi- Post processing
first or the breadth-first because the result is independent of thVith the constructed spiral phage and continuous phase
scan order [38]. For fingerprint with singular points, there ig., the composite phasg¢ of the constructed fingerprint is
inevitable discontinuity around the area of the singular poing@mputed by combining them together according to Eq. (5).
We adopt a well known branch cut based phase unwrappiRgring the phase combination, the local fingerprint orientation
algorithm [41] to mitigate this issue. This algorithm compute4ill be slightly changed (when compared with,) due to the
the branch cut by tracing the ridge of the fingerprint starting/eation of minutiae points.
from each of the singular points. The unwrapping process isAccording to the model given in Eq. (1), the phase modu-
the same as in the fingerprint without any singular pointiited signalcos(¢)) represents an ideal fingerprint, while the
except that the pixels located at the branch cut can not @&er components just make the fingerprint to be realistic.
crossed and unwrapped. Given the unwrapped orientéxjgn The gradual change of the cosine wave forms the fingerprint
the gradient can be computed @§ + Z. ridges and valleys. The value of the composite phase also
With the AC component and the gradient available, the corgradually increases or decreases fr@y2r] or [27, 0) within
posite phase of the synthetic fingerprint can be demodulafé¢p consecutive ridges as shown in Fig. 10. This property
according to Eq. (2). Fig. 8 illustrates the gradient of th@akes it easy to obtain a binary fingerprintimage directly from
synthetic fingerprint image shown on the right of Fig. 7. I’ using a single threshold. Concretely, a binary fingerprint
can be seen that the range of the gradient covers fram imageF; can be computed by
27, and the discontinuity appears only around the branch cut

1 ifY(ay) > T
area. Fy(x,y) = {0 otherwise ’ (18)

In order to decompose the composite phase of the synthetic . )
fingerprint, we first detect the spirals according to its residhere € (0,2m) is the threshold to construct the binary
uals, which are calculated by summing the phase differerf@@d€rprintimage. The value of controls the thickness of the
clockwise around each set of four adjacent pixels [41]. FgPgerprint ridges. It can be seen from Fig. 11 that the ridges
each pixel located atz, y), the set of four adjacent pixels aré?COme thinner when decreases. _ o
defined as pixelz, y), pixel (z + 1,y), pixel (z + 1,y + 1) We setr = 7 to obtain the fln_al blna_ry ﬂnge.rpn_ntlmage and
and pixel (z,y + 1) as shown in Fig. 9. For simplicity, the ™ = 0.47 to get a coarsely thmngd flngerpr|nt.|mage.. Please
corresponding phase values of the four adjacent pixels &ffer to Section VI-A for the settings af. The final thinned

termed aspo, ¢1, ¢» andes (see Fig. 9). The residualz, y) fingerprint i_mage is constructed by it_erative_ly remqvin_g the
for the pixel (z,y) is then computed by boundary pixels from the coarsely thinned fingerprint image

using the algorithm proposed in [42] (see Fig. 12(a)). To
construct the grayscale fingerprint image, we treat the binary
(@, y) = Z I((i+1) mod 4, $1); (16)  fingerprintimage as the master fingerprint. Then, as suggested

=0 in [27], we perform noising on the master fingerprint by adding
wheremod is the modulo operator an@'(¢,., ¢,) is the small white blobs of various sizes and shapes (see Fig. 12(b)).

3
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AMMAN

(a) (b)

Fig. 10. An example of the constructed composite phase, where thig. 12. The constructed thinned fingerprint image (a), and the constructed
continuous phase is constructed based on the synthetic image shown ongtagscale fingerprint image (b).

right of Fig. 7. Part of the composite phase is zoomed in and the phase image

is shown in grayscale for illustration purpose. Dark pixels refer to the pixels

with phase value close to zero, whereas the white pixels mean the pixels with P = {(a) N
phase value close tor. ., /A_rk\lA
(e, B bing = (a7 B5), (@, B}
(@570
K X

Ko {ai}is,
Fig. 11. Different binary fingerprint images computed based on different ) ' ) o , ,
thresholds from the composite phase in Fig. 10. From left to right: 1.47,  Fig. 13. lllustration of the point categorization, whete = o), = o,.
T =m, andT = 0.4mw.

The post processing hardly affects the locations of ti@efficients. Thus, we can treat the evaluations (i&) as
fingerprint minutiae, as shown in Fig. 10, Fig. 11, and Figt codeword and apply an existing Reed-solomon decoder for
12. This is to say, the spirals of the constructed fingerprifata extraction. The advantage of the Reed-Solomon encod-
which encode the secret message, will be very close befétg/decoding is to correct the errors occur in burst. Regardless
and after the post processing. Please refer to Section VIte number of bits in a evaluation are in error, it is counted
for quantitative measures of the distortion of the construct@§ @ single error. This is well-suited to correct the errors in

fingerprint before and after post processing_ our constructed fingerprint image, which appear in burst in
terms of spurious spirals or missed spirals. The spurious spirals

refer to the newly generated spirals that can not be found in

. i o . the original spirals. The missed spirals are the original spirals
Given a constructed fingerprint image in any of the thr§g,t can not be detected from the constructed fingerprint. Each

forms, we perform the fingerprint enhancement using afor spiral (spurious or missed) corresponds to a setiifs.

existing algorithm [43], which is to remove the noise or |, yeneral, a Reed-solomon decoder is able to correct up to

other detailed features created during the post processifg. 1/ error points [45]. This is to say, as long as there are

First of qll, we generate the synthetic orientation l:_)ased n—(n—k)/2 = (n+k)/2 original points inP”, the polynomial

on . This is used to demodulate the enhanced fingerpritl, pe reconstructed successfully. Please refer to Appendix

image to get the composite phase. Then, we detect a gef,; 4 introduction of the Reed-solomon decoder and the

of spirals B, = {(z},v;.0})}}., based on the reS'd“aISdecoding process. Given the point IBf = {(,, B.)}7 .,

of the composite phase. In particular, spirals are located A tormulate the following data extraction ste;l)cs. ki k=1

the pixels with residuals of eithe?r or —2x. Please refer

to Section IV-B2 for details of the phase demodulation and
spirals detection. The detected spirals are further processed to

V. DATA EXTRACTION

1) Compute the same vectar= {«;}}~, based onx as
what have done in the spiral phase construction (see

obtain the point®’ = {(c, B)}7_,, where Section IV-A). _ o
) 2) Categorize the points i’ into n different binsbin;,
o), = round () , (19) where
B, = Tound(w oty bin; = {pt(c, %)}, (20)
whereround(e) means the rounding operation. where pt(«;, ) refers to all the points irP’ with x-

In order to extract the secrst we have to reconstruct the coordinate ofa;. An illustration of the above point
polynomial p,. based on the pointP’ over the Galois field categorization process is shown in Fig. 13 with the
F. According to the definition of the original view of Reed- algorithmic process given in Algorithm 1. If there are
Solomon code [44], every codeword contains a sequence of no points that can be found féin,, the point with x-

n evaluations of a polynomial of degree less thignwhere coordinate nearest ta; will be categorized inthin;.

the message is represented as a sequence of the polynomial As such, each bin contains at least one point.
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Algorithm 1 Point Categorization

Input:P’ = {(a;,ﬁ,g)}g;l, Qa1 2, ., Oy
OQutput: bing, bing, ... bin,

o
=2}

—A—Binary
—H&—Thinned

o
o

I
IS

for i=1ton do

Probability of missed spirals
o
w

bini = NULL o
for k=1ton' do '
if a; == o, then 0.1
add the point«,, £;,) to bin; 0
Updateblnl 027 047 0.6r 0.8r 7w 127 1.4x 1.6r 187
end if
end for Fig. 14. The probability of missed spirals for the binary and thinned
end for fingerprint images under different settings «f

3) Form a set of candidate point lists which consists of a@iriginal spiral are no more than three pixels, it can be correctly
the combinations by selecting one point from each bigletected from the constructed fingerprint. We vary the value
Thus, each candidate point list contaimpoints. of 7 to construct binary fingerprint images with different

4) Select one candidate point list and forward it to the Reetidge thickness, from which we obtain the corresponding
Solomon decoder to reconstruct the polynomial If thinned fingerpript images: Fig. 14 gives the distortionlgf
the decoding fails, select another one and repeat tfiite constructed fingerprint images in terms of the probability
step. Otherwise, concatenate the decoded polynonfhimissed spirals, i.e., the probability that an original spiral

coefficients to get a decoded message and goto the n@&@ not be correctly detected. It can be seen that, as long as
step. 7 is within [0.87, 1.47], its impact on the existence of the

5) Compute the CRC bits of the firstr — 16 bits of spirals is low with little sensitivity for the binary fingerprint
the decoded message and compare it with the lést images. Such range is changed@otr, 1.47] for the thinned

bits. If they are exactly the same, the secret messagdderprintimages. _
is extracted as the firstr — 16 bits of the decoded N our implementation, we set= 7, which corresponds to

message. Otherwise, the data extraction has not bé@ﬂ valley of.the waveos(v), to construct a binary fingerprint_
successful, we will select another candidate point list af@fage With ridges and valleys of roughly the same width. This
goto step 4) until all the candidate point lists are visiteds I accordance with most ordinary real fingerprint images.

If there are no more candidate point lists available, thi¥e Setr = 0.47 to obtain a coarsely thinned fingerprintimage
data extraction fails. for easier computation of the final thinned fingerprint image.

. . . ... Each of th i is within th i
Such a data extraction process achieves high probability o r?i evoe rtelztiflztl?/ngj Olds F\;g:f ;?mt aﬁ Czpproprlate ranger ab

successful data extraction and low probability of incorrect da?aBesides the probability of missed spirals, we further consid-

extraction, please refer to Appendix B for details. er two other measures given below to evaluate the distortion
of the constructed fingerprints.
VI. EXPERIMENTAL RESULTS 1) Probability of spurious spirals: the probability to detect

A. Thresh0|d Settings for pOSt processing a Spil’a| that dOES not eXiSt in the Original SpiraIS.
2) Shift of spirals: the average distance (in pixels) between

the thickness of the fingerprint ridges. In our implementation, the correctly detected spirals and the corresponding

we adopt two thresholds for constructing the final binari original spirals. )
fingerprint image and a coarsely thinned fingerprint imag able Il reports the values of these measures estimated from

respectively. Putting the ridge thickness aside, the setting B constructed fingerprints with the implemented settings of

7 also affects the performance of data extraction. The optinfal !t €@n be seen that all the original spirals can be detected

value of - should be the one that is able to produce a binal§ the constructed composite phase, while most of the original

or a thinned fingerprint image containing the most originép'rals could stllllbe detgcted after tr_\e post processing. On_ the

spirals. other hand_, our flnggrprlnt cqnstructlor_1 greateg a few spurious
We construct a set of 1000 fingerprints before post proce§§-'rals’ which als_o slightly shifts the original spirals regardless

ing (i.e., the constructed composite phase) of siae x 300 the post processing.

(i.e,M = N = 300) with n = 40 andr = 6. We set the scaling ] )

factor asA = 7, the displacements as, = 8 and s, = 8, B. Capacity and data extraction accuracy

and the value oft from 20 to 32. Such a scaling factor is The capacity is the amount of secret bits that can be hidden

able to handle three pixels of horizontal or vertical shift foin the constructed fingerprint image. According to what we

the original spirals during the fingerprint image constructiomave discussed in Section IV-A, the capacity depends on

This is to say, if both the horizontal and vertical shift of athe resolution of the constructed fingerprint image and the

The post processing requires a thresheldo determine
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TABLE Il
QUANTITATIVE MEASURES OF THE DISTORTION OF THE CONSTRUCTED FINGERPRINTS BEFORE AND AFTER POST PROCESSING
before post processing after post processing
constructed composite phasebinary fingerprint]| thinned fingerprint] grayscale fingerpirn
Probability of missed spirals 0 0.0276 0.0681 0.0452
Probability of spurious spiralg 0.0527 0.0891 0.1387 0.1119
Shift of spirals (in pixels) 1.2475 1.5227 1.8901 1.6204
1 @ @ # » 5
v
%e
08 08 08
206 206 206
IS I 1
3 3 3
< 04| ——arch <04 < 04| ——arch
——tented arch izﬁzed arch ——tented arch
0.2 {H?ﬂ loop 0.2 | | ~5leftloop 0.2 %Igh loop
—*—right loop —%—right loop —*—right loop
—5—whorl —o—whorl ——whorl
% 24 28 32 % 24 28 32 % 24 28 32
k k k
(a) (b) (c)
1 # L 1 - 1 B Lo
—% b —
0.8 0.8 5 0.8
2306 206 206
I I 1
5 5 5
8 8 8
< 04 |—%—arch C0AF—— < 04| —A—arch
——tented arch %ZEZed arch —%—tented arch
02 —B—left loop 02| —E—left loop 02 —&—left loop
—*—right loop —%—right loop —*—right loop
—5—whorl —o—whorl ——whorl
%0 40 50 60 %0 40 50 60 %0 40 50 60
k k k
(d) (e) ®

Fig. 15. Data extraction accuracy of the proposed scheme. Top: Size | with (a) binary fingerprint images, (b) thinned fingerprint images, and (c) graysc
fingerprint images; Bottom: Size Il with (d) binary fingerprint images, (e) thinned fingerprint images and (f) grayscale fingerprint images.

redundancy of the encoded points. In order to make thich is given in Fig. 15. Since the Reed-solomon decoder
constructed fingerprint image natural, the image resolution aisdable to correct up tdn — k)/2 error points, smallerk
the number of minutiae points should be within a normdl.e., shorter length of secret message) corresponds to more
range. In [24], the authors summarize the resolutions taflerance of error points. It is expected to see from Fig. 15
the fingerprint images captured from common commercidlat the data extraction accuracy increases upon the decreasing
sensors, where the maximumdg0 x 600 and the minimum of k. It can also be seen that the data extraction accuracy varies
is 95 x 95. The scanners for capturing multi-fingerprints caamong different fingerprint classes as well as different forms
produce fingerprintimages with a resolution uB@®0 x 3200. of fingerprint images. In terms of fingerprint classes, the arch
Furthermore, the number of minutiae points varies frainto  achieves the highest data extraction accuracy, which appears
over 100 for fingerprint images captured from a single fingeto be the lowest for the whorl. In terms of the forms, the data
We construct fingerprint images with the following twoeXtraction accuracy of the binary fingerprintimages are higher
sizes: 1) Size 1300 x 300, and 2) Size 11:500 x 500. We than that of the other two forms (thinned and binary), with
setA =7, s, = 8 ands, = 8 for both the two sizes. We set100% data extraction accuracy for Size lkat 28 and Size
n =40 andr = 6 for Size |, andn = 70 andr = 7 for Size |l at k = 50. The corresponding capacity2s x 6 — 16 = 152
Il. This satisfies the constraints betweerfor ) and the size bits and50 x 7 — 16 = 334 bits, respectively.

of the constructed fingerprint image (see Eq. (10)). The above phenomenon could be explained below. Our
We vary the value of to construct the fingerprint imagesfingerprint construction may create some spurious spirals due
with Size | and Size Il. For each size and a specifiove to the discontinuity of the unwrapped orientation on the branch
construct 1000 fingerprints using different secret messagrgs and the post processing. Fingerprint classes with more
with length ofkr —16. These fingerprints consist of five majorsingular points and branch cut areas have the tendency to
fingerprint classes includin)0 arch,200 tented arch200 left create more spurious spirals. For arch, there is no singular
loop, 200 right loop and200 whorl. Each of the fingerprints point and the orientation can be unwrapped perfectly without
contains three different forms including the binary fingerprirgny discontinuity. Thus, there are hardly any spurious spirals
image, the thinned fingerprint image, and the grayscale fiim- the constructed arch fingerprint image, as shown in Fig.
gerprint image. For each form, we perform data extractidr6(a). For other fingerprint classes, spurious spirals may be
on different fingerprint classes separately, the accuracy dgtected around the singular point and the branch cut area, as
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Fig. 16. The locations of the spirals detected after the fingerprint constructio/
the blue circles refer to the spirals representing the secret message, and =
black triangles refer to the spurious spirals. (a) A binary arch fingerprin%
image, and (b) a binary whorl fingerprint image. The images are madZ=Z==mX
transparent for illustration purpose.

V

shown in Fig. 16(b). The fingerprints of whorl contain the mos ,
\

number of singular points (see Fig. 2) as well as the branch ¢

areas. It is expected to find that their data extraction accura
is lower than other classes. :\__,\

On the other hand, additional thinning or noising process
is applied on the binary fingerprint images to obtain th@"g. 17.' Exar_np[es of the gonstrupted fir}ge_rprint images. From Ieft_to righ_t:
. . LS . Inary fingerprint images, thinned fingerprint images, and grayscale fingerprint
thinned or grayscale fingerprint images, which would generq&%ges_
more spurious spirals. For example, thinning may create small
islands in the fingerprint, which might lead to spurious spirals.
The small white blobs added during the noising might alsghgerprint enhancement.
result in spurious spirals. Locations of the ridge endings and
bifurcations may be slightly displaced due to the thinning or
noising process. If the displacement is beyond certain distanfe, Robustness
original spirals will be removed and spurious spirals will be |n this section, we discuss and evaluate the robustness
generated. This explains why the binary fingerprint imagsf the proposed scheme in two aspects: 1) the robustness
achieves the highest data extraction accuracy among the théeefingerprint construction, and 2) the robustness of data
forms. It should be noted that, for the grayscale fingerprigktraction.
images, the accuracy also depends on how much the noisg) Robustness of fingerprint constructio®ur fingerprint
is added. Severe noising will result in low data extractioBonstruction contains three major steps including the spiral
accuracy. Some other examples of the constructed fingerpfiitaise construction, the continuous phase construction and
images are given in Fig. 17. the phase combination. Among these steps, the outputs of
Similar to the real fingerprint images, our constructed firthe spiral phase construction and the phase combination are
gerprint images contain fine details such as pores, noisedeterministic given a piece of specific secret message and
other fine level features, which are mainly created due to thentinuous phase. While the construction of continuous phase
post processing. As indicated in [36], these details can not iseperformed by demodulating and decomposing a synthetic
easily modeled and a noise term has to be considered (seeftbgerprint. Therefore, the robustness of our fingerprint con-
(1)). In the phase demodulation, the noise has to be remowtdiction relies on the robustness of the synthetic fingerprint
beforehand as shown in Eq. (2). This is why we apply thgeneration. As what we have mentioned in Section IV-B1,
fingerprint enhancement on the constructed fingerprints duriwg adopt the Gabor filtering based approach for synthetic
the data extraction, which is also a necessary and importéingerprint generation, where the ridge frequenfy and
step in the phase demodulation. To verify its effectivenessijentationO,, are generated based on the constructionkey
we perform data extraction on all the fingerprint imagef®r input. The constraints of these two pieces of inputs are well
constructed before without the enhancement, the accuratydied in literature [24], [27], [40]. To verify the effects 6f
of which is shown in Fig. 18. It can be seen that, withowdndO,;, we show in the first and second column of Fig. 19 the
the fingerprint enhancement, we are not able to perform asynthetic fingerprint image and the corresponding continuous
correct data extraction for the grayscale fingerprint imaggshase image with different settings @¢f and O,. It can be
Because the noising has a severe impact on the fine details@én that all the continuous phase are properly constructed,
the grayscale fingerprint images, and the noise term can mdtere the ridge frequency depends ¢n and the overall
be neglectable at all in the phase demodulation. For binaigige flow depends om,. These continuous phase can be
and thinned fingerprint images, the data can be still extractedmbined with the spiral phase representing the same piece
but the accuracy is much lower compared with that aftef secret message, which produces the composite phase (of
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Fig. 18. The data extraction accuracy with and without the fingerprint enhancement for images of (a) Size | and (b) Size II.

o
o

the constructed fingerprint) with the same message hiddenTée reason is that the thinned fingerprint images only contain
shown in the third column of Fig. 19. ridges of one pixel width, the ridge endings and bifurcations
2) Robustness of data extractiofio test the robustness of(Which represent the secret message) are sensitive to operations
our scheme in data extraction, various kinds of attacks d##éch as noise addition or filtering. Our scheme is less robust
applied on the constructed fingerprint images using StirMalik resisting geometric transforms especially for images with
Benchmark 4.0 [46], including JPEG compression, randol@ge size. The reason is that the geometric transforms change
noise addition, filtering, rotation, scaling, shearing, linedhe locations of all the spirals, which creates challenges in
transform, line removal and cropping. To make the StirMardtetecting the correct spirals for data extraction. We can also
Benchmark 4.0 workable on both the binary and thinnegee from the table that, for most of the constructed fingerprint
fingerprint images, we convert these images to grayscale IBj2ges, the data can be correctly extracted when a few spirals
assigning the grayscale intensity of 0 and 255 for the black afit¢ altered.
white pixels, respectively. Besides these StirMark attacks, we
consider four more types of attacks: fingerprint binarizatiom. Steganalysis on the constructed fingerprint images
fingerprint thinning, salt and pepper noise addition and spiral;, s section, we evaluate the performance of the existing

alteration. The spiral alteration refers to the case that thgy analysis tools on the constructed fingerprint images. For
attacker is aware of the fingerprint construction and uses It

) L ayscale fingerprint images, we use the rich model [17], a
to attack the constructed fingerprint images. In such a cagta ular tool for steganalysis on grayscale or color images.

he can conduct the phase demodulation and decompositiongl.e hoth the binary and thinned fingerprint images belong
the ﬂngerprmt image anc_j _m0d|f3_/ the locations and polarl_t|q8 the binary images, tools for binary image steganolysis
of the spirals. The modified spiral phase can be combinggh \oeqed for the evaluation. Unlike the grayscale or color
Wlth the continuous phase to form a new construct flngerpnmage& there is limited work regarding the binary image
image. . o . . stegonalysis in the literature [47]-[50]. We here apply the

Two sets of fingerprintimages (constructed in Section VI-B}test work [50] for steganalysis on the binary and thinned
are incorporated in this test including: Size | with= 24 and fingerprint images.
Size Il with k = 40. The data extraction accuracy without and ag suggested in [21], a set of pure synthetic images could
with different attacks are given in Table Ill. In this tab@F" e generated and served as the cover images. In our case,
is the quality factor of JPEG compressiofi]” is intensity \ye generate the pure synthetic fingerprint images (i.e., the
of the noise (normalized from 0 to 100K is the angle of coyer images) with the size 800 x 300. The corresponding
rotation (in degrees)SC' is the scaling ratio, A, and A, onstructed fingerprint images are served as the stego-images
are the horizontal and vertical shear factdr$1 andLT2 are \yhich share the same continuous phase as the cover images.
two linear transforms withlL 7’1 = [1.005, 0.009;0.010, 1.006]  For each of the three forms, we generate 1000 cover images
and LT2 = [1.004,0.008;0.009,1.003]; LR means one line anq 1000 stego-images, where half of them are used for
is removed in everyl R lines horizontally and vertically(”  raining and the rest are used for testing. The performance
refers to the cropping ratio; anélV is the number of spirals of the steganalysis tools on these fingerprint images are given
that are altered. in Table IV, whereP, means the rate of detecting a cover

It can be seen that, regardless of the forms, the construcigfige as a stego-image alg refers to the rate of detecting
fingerprint images perform extremely well in resisting thg stego-image as a cover image, &yds the average detection
popular fingerprint image operations (binarization and thigsyror:
ning) and the JPEG compression. For the binary and grayscale P, — Pp + ]P’n. (1)
constructed fingerprint images, the data extraction accuracy 2
remains high even wheF' = 5. And most of them are It can be seen that, regardless of the form, the existing
able to resist moderate noise addition and all the filtering. Fsteganolysis tools are not effective in detecting the existence
the thinned fingerprint images, however, noise addition awdsecret message on the constructed fingerprintimages, where
filtering have severe impact on the data extraction accuratlye average detection error is close to 50%.
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TABLE Ill
THE ACCURACY OF DATA EXTRACTION(IN PERCENTAGE) WITHOUT AND WITH DIFFERENT KINDS OF ATTACKS
] ] Size | Size |l

Fingerprints Binary | Thinned | Grayscale| Binary | Thinned | Grayscale

No attack 100.0 | 100.0 100.0 | 100.0 | 100.0 100.0

. . . Binarization - - 100.0 - - 100.0

Fingerprint operation —piem e 1000 - 100.0 | 100.0 - 100.0

QF =5 100.0 78.9 975 | 100.0 80.2 100.0

JPEG compression | QF = 25 100.0 | 100.0 100.0 | 100.0 | 100.0 100.0

QF =45 100.0| 100.0 100.0| 100.0| 100.0 100.0

ST =5 100.0 60.7 100.0 | 100.0 156 100.0

Random noise | ST = 15 100.0 26.1 97.0 | 100.0 6.2 96.6

ST =25 918 0.0 813| 852 0.0 714

ST =5 100.0 75 100.0 | 100.0 0.0 100.0

Salt and pepper nois¢ ST = 15 100.0 0.0 100.0| 100.0 0.0 100.0

ST =25 100.0 0.0 98.6 | 100.0 0.0 96.0

Median filter (3x3) 975 0.0 930 952 0.0 90.4

Gaussian filter (default setting) 96.5 0.0 91.1 94.3 0.0 88.9

Sharpening (default setting) 98.9 67.1 97.3 97.9 55.8 95.2

Rotation R=0.25 100.0 814 95.1 | 100.0 63.2 79.8

R =050 98.7 57.0 710 736 272 773

Scaling SC =0.99 99.1 756 918 | 721 38.3 62.0

SC =1.005 100.0 777 950 758 40.9 64.4

: A, = 0.01, A, = 0.01 97.1 60.0 685 0.0 0.0 0.0

Shearing A, =0.05 A, =0.05 0.0 0.0 0.0 0.0 0.0 0.0

Linear transform |_LL1 371 3.8 155 0.0 0.0 0.0

T2 6.8 10.1 38.0 0.0 0.0 0.0

. LR =150 85.2 19.3 689 | 661 54 482

Line removal LR =200 92.3 27.7 80.1| 7838 10.9 1.1

. C =005 0.0 0.0 0.0 0.0 0.0 0.0

Cropping =099 978 713 893 809 505 711

. ) SN =2 995 73.8 98.0 | 100.0 85.0 100.0

Spiral alteration | —gx— 95.7 56.4 931 983 611 96.4

TABLE IV . . . .
PERFORMANCE OF THE EXISTING STEGANALYSIS TOOLS ON THE _and our SChe_me has the ability to resist popular fingerprint
CONSTRUCTED FINGERPRINT IMAGES image operations. Concretely, we are able to convey short
messages such as encryption/decryption keys or URLs in
Fingerprint images| P, (%) | Pr (%) | Pa (%) the channels using our constructed fingerprint images. First
T‘i‘?‘afyd gg-g ii-g 28-2 of all, the channel may only accept fingerprint images in
nne . . . .

Grayscale T8 52 *18 one of the three common forms (see Fig. 1). Secondly, the

fingerprint image may be binarized or thinned during the
transmission. Our scheme is flexible in constructing fingerprint
_ images in any of the common forms that is acceptable in the
E. Security channel. On the other hand, we can still extract the message
For a constructed fingerprintimage, the security of the secesten if the fingerprint image is binarized or thinned during
depends on the secrecy of the construction keipuring the the transmission. It should be noted that our scheme is not
fingerprint image construction, we encode the secret messagekable if the fingerprint recognition system extracts the
by evaluating a polynomial on different elements, the valuesfingerprint feature locally, where the data transmitted through
of which are obtained by random permutation (baseds<pn the channel is not the fingerprint image.
of the integers from 1 ton inclusive. In data extraction, Next, we discuss the statistical distance among our con-
these elements have to be correctly computed for decodiggucted fingerprints, the pure synthetic fingerprints, and the
Therefore, a brute force attack would have to trytimes original fingerprints. Regardless of the forms of the fingerprint
to extract the secret, which correspondsitg:(n!) bits of image, there are two main levels of fingerprint features includ-
security. Forn = 40 andn = 70, the security of the secret ising the orientation and the minutiae. The orientation describes
roughly 159 and 332 bits, respectively. Of course, the attackBe ridge flow of the fingerprint. The minutiae capture the
can also do a brute force attack to recovéor data extraction. fingerprint ridge endings and bifurcations. As what we have
Assume the strength of is L, bits andL,, < logz2(n!), the pointed out in Section IV-B1, our constructed fingerprints and
security of the secret will be reduced Ig, bits. Otherwise, the synthetic fingerprints share the same orientation (ridge

the security of the secret remaingz(n!) bits. flow). While the distribution of the synthetic fingerprint orien-
tation is similar to that of the original fingerprint orientation.
VII. DISCUSSIONS For the minutiae, some researchers indicate that they tend

Our proposed scheme can be deployed in the communita-cluster around the singular points, which are not uniformly
tion channels of fingerprint recognition systems, because itdsstributed [51]. In our constructed fingerprint and the syn-
unsuspicious to transmit fingerprint images in such channétetic fingerprint, however, there are no constraints on the
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obtain a 6<6 probability density map indicating the minutiae
distribution for each database. According to these maps, the
KL divergence between the constructed fingerprints and the
synthetic fingerprints is computed as 0.2112. This is increased
to 0.2732 for the constructed fingerprints and the original
fingerprints.

VIII. CONCLUSIONS ANDFUTURE WORK

A novel construction based data hiding technique is pro-
posed in this paper. Instead of constructing textures as what
have been done in the literature, we propose to construct
fingerprint images directly from the secret message. The
proposed scheme is based on the construction of the composite
phase of the fingerprint, which is the combination of the
spiral phase and the continuous phase. The spiral phase
is constructed by encoding the secret message to a set of
two dimensional points with different polarities, while the
continuous phase is constructed from a fingerprint image
synthetically generated. Different fingerprint images can be
generated based on the constructed composite phase, including
the binary fingerprintimage, the thinned fingerprintimage, and
the grayscale fingerprintimage. The experimental results show
that our scheme achieves satisfactory data extraction accuracy
and robustness. In addition, we demonstrate the ineffectiveness
of the existing steganalysis tools on the constructed fingerprint
images.

Our scheme does not put any constraints on the distribution
of the minutiae of the constructed fingerprints, which slightly
differs from the synthetic fingerprints or the original finger-
prints. This leaves traces for designing specific steganalysis

722 tools. A straightforward way is to use the probability density
(d) map of the minutiae to train the classifier. We use the three
Fig. 19. Fingerprint construction based on different settingg..0tnd O,.. fingerprint image databases adopted in Section VII. For each
From left to right: synthetic fingerprint images, the constructed continuoatatabase, half of the images are used for training, while
phase images, and the composite phase images of the constructed fingerpg E§ rest are used for testing. For each fingerprint image, we
The phase images are shown in grayscale for illustration purpose. (a) and . . . . .
Right loop fingerprints constructed with, — 1/6 and f,. — 1/9, O, ofboth  €Xtract a6 x 6 minutiae probability density map by following
fingerprints are computed based on the zero-pole model with a core locathe procedure described in Section VII, which serves as the
?E, gls?r%,cltgg) vili?r?fs d:eltf/gcsrt]ﬁdffﬁi 115/09): (OCZ a;db(gt)l% %fge‘;'ggﬁtrspf;{: feature for training and testing. .The average detectlo_n error is
computed based on the arch orientation model with the arch curvature of 38-25% and 31.20% for detecting the constructed fingerprint
images from the pure synthetic fingerprint images and the
original fingerprint images, respectively. This demonstrates the

distribution of minutiae. Therefore, the statistical distancésefulness of the fingerprint specific features for steganalysis.
among different fingerprints mainly depends on their minutiat? the future, the traces left due to the fingerprint construction
which can be roughly measured using the Kullback Liebl&hould be further studied to improve the performance of
(KL) divergence [52]. In particular, we build three fingerprinfteganalysis. Meanwhile, a better spiral phase construction
databases including 1000 constructed fingerprint images, 1@®pProach should be investigated by putting proper constraints
synthetic fingerprint images, and 800 original fingerprint imn the distribution of the encoded spirals.

ages obtained from FVC2000 DBA [53]. All the images APPENDIX A

are in grayscale with the size of 30300. The number of the
minutiae points of the constructed or synthetic fingerprint is
controlled within the range of 15 to 60, which is similar to that , _ I
of the original fingerprints in FVC2000 DBA. We perform  L€t's denote a candidate point list formed frdp asR =
the fingerprint alignment such that the primary singular poind %> 7i)}i~1- Assume there are at moserrors inR, i.e., at
of each fingerprint image is located at the center with angla2Ste values ofi such that; # o (a;). The decoding relies
of 7/2 [54]. To compute the KL divergence, we partition th" the foIIovymg two '?mmas [45]. :

aligned fingerprint image into 5660 non-overlapping blocks. Lemma 1: There exists non-zero polynomials(x) of de-
Then, we accumulate the number of minutiae points in ea8FF€< € andQ(z) of degree< k +e — 1 such that

block from all the fingerprints in each database. As such, we Qay) =r;E(ey) for all i=1,2,...,n (22)

THE REED-SOLOMON DECODER AND THE DECODING
PROCESSING
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original point can not be detected (i.e., the probability of
Proof: Let Z = {iy,io,...,i,m} be the set of error missed spirals), an empirical estimation of which can be found
positions, i.e.j € Z if r; # pr(«;). Let in Table Il. For each of thex points in the optimal point list,
Bl) = Iz — as) let's consider_ whether it is an error point or_not as an event, so
j=1 X (23) we can get independent events from the list. The number of
Q(x) = pr(z)E(2).

successes of the events (i.e., the number of error points) is a
Thus, E(z) has degreen < e. Since p,(z) has degree< random variable (say) following the binomial distribution.
k — 1, it also follows thatQ(z) has degree< e + k — 1. If ~ Thus, the probability of getting error points is given by
i is not an error position, i.es ¢ Z, thenr; = pr(a;), SO

n e n—e
Q(ay) = pr(i)E(ay) = r;E(v). If i is an error position, €)= (e)ds(l —dg)",

i.e,i€Z, thenE(x;) =0, s0Q(a;) = pr(a;)E(a;) =0 = N ) )
rE(c;). Therefore, Eq. (22) holds for every;. where d, refers to the probability of missed spirals. The
CLemma 2-If E(x,) andQ(z) satisfy Eq. (223 and the num- Probability of successful reconstruction is the probability that

ber of errors is at most = (n—k)/2, thenQ(z) = p(x)E(z). _the optimal point list contains at mogt — k)/2 error points,
Hence, we can compute(z) = Q(z)/E(x). €.,

Proof: Both Q(x) and p(z)E(x) are polynomials of
degree< e + k — 1, so is their differenceD(z) = Q(z) —
p(x)E(x). If ¢ is not an error position, thepy(«;) = r; and
we haveD(z) = 0. Since there are at least— e non-error . ; o

" : processing. Whem = 40 andk = 20, P is 1 — 7.80 x 10
positions, the polynomiab(x) should have at least — e for the binary fingerprint images,, — 5.28 x 10~° for the

distinct roots in the Galois fiel@. According to the theorem _ . . o2 6
of algebra [55], if the number of distinct roots is larger than tht inned _flngerprmt images arid-1.10x 107" for the grayscale
ingerprint images.

degree of the polynomial, the polynomial will be identically It is possible that the Reed-Solomon decoder incorrectly

zero. Therefore, 'h_.e > e.+k_1 (Le.e < (n—k+1)/2), we decodes the polynomial due to the limitation of error cor-
must haveD(z) = 0 identically. Thus, wher < (n — k)2, rection. In general, this can be verified by comparing the
the polynomial can be reconstructed successfully, " CRC bits. However, it may happen that the CRC bits of the

; : RO o in i
G_|ven a candidate pO.Int lisR = {.(O‘“TZ)}I:“ the de extracted message are the same as the lladbits of the
coding starts by assuming the maximum number of errors

ie. ¢ (n — k)/2), which then introduces variables€ssage decoded directly from the polynomial, even though
u' u Y andw ’v v, 10 stand for the coefficients the polynomial is incorrectly decoded. In such a case, we will
O?’Q(lg’c')"én’agé) < 0 Py e Te extract an incorrect message, the probability of which depends

Pr(X = (25)

(n—k)/2

P= z_g Pr(X =e). (26)

According to Table II,P is 1 for the fingerprint without post

on the capability of the decoder and the length of the CRC
Q(x) = it i,

E(z) =5 vz’
For eacha;, we substituter = «; in Q(z) and E(x)

(24)

bits, which can be roughly estimated as

P, = (1 —P)271°, (27)

9VeN cor a binary fingerprint image with = 1 — 7.80 x 109, the

above to evaluate Eq. (22), which results in a system ofValue of P, is 1.2 x 1013,

linear equations. If the equations can not be solveds
reduced by 1 and the above process is repeated until the
equations can be solved eris reduced to 0Lemma 1 and
Lemma 2 guarantee that, when the actual number of errord!
e < (n—k)/2, we can find a non-zero solution of this system
to getQ(z) and E(z) explicitly, and the message polynomial [2]
can be recovered by (z) = Q(x)/E(x) with a reminder of

0. [3]
APPENDIX B [4]
PROBABILITY OF SUCCESSFUL AND INCORRECT DATA
EXTRACTION
(5]

In this appendix, we first empirically estimate the probabil-
ity of successful data extraction, which is a measure of how
likely the secret message can be correctly extracted from [
constructed fingerprint image. It is also a good indicator of
the performance of the data extraction. 7]

Let’s denote the candidate point list with the most originaf
points as the optimal point list. This list contains all the
original points that can be detected. The probability to ge[fs]
an error point in the list equals to the probability that an
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