
Luca D’Amiano, Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva

Abstract—We propose a new algorithm for the reliable detec-
tion and localization of video copy-move forgeries. Discovering
well crafted video copy-moves may be very difficult, especially
when some uniform background is copied to occlude foreground
objects. To reliably detect both additive and occlusive copy-
moves we use a dense-field approach, with invariant features that
guarantee robustness to several post-processing operations. To
limit complexity, a suitable video-oriented version of PatchMatch
is used, with a multiresolution search strategy, and a focus on
volumes of interest. Performance assessment relies on a new
dataset, designed ad hoc, with realistic copy-moves and a wide
variety of challenging situations. Experimental results show the
proposed method to detect and localize video copy-moves with
good accuracy even in adverse conditions.

Index Terms—Video forensics, copy-move forgery detection, 3D
PatchMatch.

I. INTRODUCTION

Nowadays, anyone can easily modify the appearance and
content of digital images by means of powerful and easy-
to-use editing tools such as Adobe Photoshop, Paintshop Pro
or GIMP. This is becoming increasingly true also for digital
videos. Powerful and widespread tools exist for video editing,
like Adobe After Effects and Premiere Pro, which allow users
to perform a number of video manipulations. Most of the
times, these have the only purpose of improving the quality of
videos or their appeal. Sometimes, however, they are not so
innocent, aiming at falsifying evidence in court, perpetrating
frauds or discrediting people. Therefore, as happened in the
last few years for still images, there is an increasing interest in
the scientific community towards the detection and localization
of video forgeries [1].

These can be divided in whole-frame forgeries and object
forgeries. The first type of attack consists in deleting, inserting
or replicating entire groups of frames. Clearly, this action is
quite simple to perform, but not very flexible, and allows
only for a limited set of manipulations. Methods aimed at
detecting such attacks try to discover anomalies induced in the
temporal structure of the encoded stream [2], or other types
of inconsistency, like artifacts due to double encoding [3], [4],
and irregularities in motion-compensated edges [5] or in the
velocity field [6]. To detect whether a group of frames has
been deleted the use of ad hoc statistical features extracted
from the motion residual has also been proposed [7], [8].

The authors are with the Dipartimento di Ingegneria Elettrica e delle
Tecnologie dell’Informazione – Università Federico II di Napoli – Naples,
ITALY, e-mail: {luca.damiano, davide.cozzolino, poggi, verdoliv}@unina.it.

Copyright c© 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

(a) Original frame (b) Additive forgery

(a) Original frame (b) Occlusive forgery

Fig. 1. Additive (top) and occlusive (bottom) object copy-moves. Cell
counting images, like those shown in the bottom, can be easily manipulated
(https://ori.hhs.gov/) to commit scientific frauds. Detection may be quite
difficult, especially in the occlusive case, due to the lack of salient keypoints.

Object forgeries, instead, concern the insertion or deletion
of compact video objects. For example, one might remove a
person from a surveillance video by replacing it with suitable
material taken from the same or other videos [9]. Object
forgeries are in general more sophisticated than whole-frame
forgeries. They are more difficult to perform, but allow for
more flexible and subtle content modifications. Moreover, if
properly carried out [10], [11], they can be quite challenging
to detect, as they leave no obvious traces in the video temporal
structure.

These attacks can be additive, when a video object of
interest is inserted anew in the target video, or occlusive,
when an object is deleted from the video, typically through
inpainting or by copying background over it. Fig.1 shows
examples of both situations. Attacks can be also classified
based on the object source, which may be the same video
(copy-move), another video (splicing), or computer models
(synthesis).

In recent years, only a few pioneering papers have addressed
the detection of video object forgeries. Coding-based methods
have been proposed in [12], [13], [14], [15] where artifacts
introduced by doubly-compressed MPEG videos are used
as evidence of tampering. An alternative approach relies on
detecting the camera “fingerprint” (camera PRNU pattern) as
already done for images [16], [17]. In [18] the camcorder fin-
gerprint is estimated on the first frames of the video and used

A PatchMatch-based Dense-field Algorithm
for Video Copy-Move Detection and Localization

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

to detect various types of attacks. A similar idea is followed
in [19], [20], [21] where manipulations are discovered by
extracting and analyzing some suitable features from the noise
residues of consecutive frames. In [22], instead, the camera-
dependent photon shot noise is used as an alternative to the
camera fingerprint for static scenes.

Several papers have addressed video copy-move detection
and localization. In [23] the correlation coefficient is used as a
measure of similarity for detecting large copy-moved blocks,
while [24] extends the same method to use spatio-temporal
blocks. However, this approach works well only if the cloned
area is relatively large and has not been subject to subsequent
post-processing. Performance drops in the presence of com-
pression, blurring, geometric transformations and change of
intensity. This is not immaterial, as these operations are often
needed to make the forgery more realistic, and can be even
enacted on purpose by a skilled forger to fool forensic tools.
For what concern localization, [25] addresses only the case of
whole frames inserted in the video. [26], instead, proposes a
method based on HOG features and exhaustive search, which
is more general but so computation-intensive to be inapplicable
in practice.

It should be realized that a carefully crafted copy-move may
be very hard to discover by means of statistical approaches,
because the copied object has the same statistics as the back-
ground, unless it is rotated or resized. In addition, occlusive
copy-moves, based on the copy of background areas, do not
offer visual clues or salient keypoints (see again Fig.1) which
enable their discovery. Finally, a clever attacker may enact
further expedients to confuse matching-based methods, like
playing the video backwards.

In this paper we propose a new technique for the de-
tection and localization of copy-move video forgeries. First,
suitable features are computed, invariant to various spatial,
temporal, and intensity transformations. The features are com-
puted densely on a spatio-temporal grid, rather than at salient
keypoints, which allows us to detect not only additive but
also occlusive forgeries. Afterwards, a nearest-neighbor field
(NNF) is built, connecting each feature with its best-matching.
To this end, we use an ad hoc video-oriented version [27], [28]
of PatchMatch [29], [30], exploiting the inherent coherency of
the NNF to reduce search complexity. Finally, the NNF is post-
processed to single out areas with coherent spatio-temporal
displacement as candidate copy-moves.

This paper extends our conference paper [28], based in turn
on previous work on image copy-move detection [31], [27].
However, with respect to [28] we

1) define a new flip-invariant version of our features;
2) introduce of new criterion in the post-processing to tell

apart copy-moves from false matches;
3) design a fast version of the detector, based on multi-scale

processing and parallel implementation;
4) contribute a new specific dataset with realistic copy-

moves, both additive and occlusive;
5) carry out a thorough performance analysis taking into

account the most challenging situations of interest.
Both the software code and the new dataset are available online
at http://www.grip.unina.it/.

The rest of the paper is organized as follows. Section
2 provides the necessary background information, reviewing
ideas and tools for still-image copy-move detection, with
special focus on our previous work [27] and on the Patch-
Match algorithm. Section 3 describes in detail the proposed
technique. Then, in Section 4 we discuss the results of
a number of experiments carried out to test the proposed
algorithm in various operative conditions. Finally, Section 5
draws conclusions.

II. BACKGROUND

In the last few years, a large number of techniques have
been proposed for the detection and localization of copy-move
forgeries in digital images [32]. Virtually all such techniques
comprise three major steps: i) feature extraction, ii) matching,
and iii) post-processing. In the first step a suitable feature is
associated with each pixel of interest. Based on such features,
each pixel is then linked with its best match over the image,
generating a field of offsets. Finally, this field is processed to
single out regularities which point at possible copy-moves.

Some techniques, e.g., [33], [34], [35], operate only on
a small set of salient keypoints, characterized through well-
known local descriptors, such as SIFT or LBP. This approach
is computationally efficient, but fails completely if no keypoint
is associated with the forgery, as in the common case of
occlusive copy-moves over a smooth background [32], [27].

Techniques based on dense sampling are much more re-
liable. Their main issue is complexity, since all pixels are
involved in the three phases of feature extraction, matching,
and post-processing. To reduce computation, compact features
are extracted, typically through some transforms, like DCT
[36], wavelet [37], PCA [38] or SVD [39]. By so doing, a good
robustness is also obtained with respect to intensity distortions,
originated for example by JPEG compression or blurring.
Instead, to deal with geometric distortions due to rotated or
rescaled copy-moves, specific invariant features are needed.
The Zernike moments and the polar sine and cosine transforms
have been used [40], [41], [42] to obtain rotation invariance,
while for scale-invariance the Fourier-Mellin Transform with
log-polar sampling has been considered [43], [44].

Featuring, however, is only part of the problem. The bulk of
complexity for dense-field techniques resides in the matching
phase. Barring the trivial case of identical copy-moves, where
simple lexicographic sorting can be applied, exhaustive search
of the best matching (nearest neighbor) feature is prohibitively
complex, and faster techniques must be devised to produce the
offset field in a reasonable time. To this end, approximate
search strategies have been used, such as kd-tree search,
in [45], [32], or locality sensitive hashing, in [40], [41].
Nonetheless, computing the nearest-neighbor field keeps being
too slow for the large images generated by today’s cameras.
A much better result can be obtained, however, by exploiting
the strong regularity exhibited by the NNFs of natural images,
where similar offsets are often associated with neighboring
pixels. This is done in [31] and [27], where the offset field
is computed by means of a suitably modified version of
PatchMatch [29], [30], a fast randomized search technique

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

specifically tailored to the properties of images. In the fol-
lowing, we provide first a brief description of PatchMatch and
then of the technique proposed in [27] which is the starting
point for the current video-oriented proposal.

A. PatchMatch

Let I = {I(s) ∈ RK , s ∈ Ω} be an image defined over a
regular rectangular grid Ω. With each pixel s we associate a
feature vector, f(s), which describes the image patch centered
on s. Given a suitable measure of distance between features,
D(f ′, f ′′), we define the nearest neighbor of s as the pixel,
s′ ∈ Ω, which minimizes the feature distance w.r.t. s over the
whole image

NN(s) = arg min
s′∈Ω

D(f(s), f(s′)) (1)

Rather than the nearest-neighbor field (NNF) itself, in the
following we will consider the equivalent offset field, with
the offset defined as δ(s) = NN(s)− s.

PatchMatch is a randomized iterative algorithm for NNF
computation. As all iterative algorithms, convergence to the
desired solution is much faster in the presence of a good
initial guess. With images, however, such a good guess is
easily obtained, because their NNFs are typically constant or
linearly varying over large areas, as a consequence of image
smoothness, and hence highly predictable. Given this core
idea, PatchMatch is easily understood. Following a random
initialization, the two phases of offset prediction and random
search alternate until convergence.

Initialization. The offset field is initialized at random, as
δ(s) = U(s) − s. where U(s) is a bi-dimensional random
variable, uniform over the image support Ω. In copy-move
search, we enforce an additional constraint on matches, which
must be reasonably far from the target, excluding offsets
smaller than a given threshold. Most of the initial offsets are
useless, but a certain number will be optimal or near-optimal.
These are quickly diffused to the rest of the image in the
propagation phase.

Propagation. In this step, the image is raster scanned top-down
and left-to-right (with scanning order reversed at every other
iteration), and for each pixel s the current offset is updated as

δ(s) = arg min
φ∈∆P (s)

D(f(s), f(s+ φ)) (2)

where ∆P (s) = {δ(s), δ(sr), δ(sc)}, and sr and sc are the
pixels preceding s, in the scanning order, along rows and
columns, respectively. Therefore, the algorithm uses the offset
of nearby pixels as alternative estimates of the current offset,
and selects the best one. If a good offset is available for a given
pixel of a region with constant offset, this will very quickly
propagate to the whole region.

Random search. To avoid getting trapped in bad local minima,
after each propagation step a random search step follows,
based on a random sampling of the current offset field. The
candidate offsets δi(s), i = 1, . . . , L are chosen as δi(s) =
δ(s) + Ri where Ri is a bi-dimensional random variable,
uniform over a square grid of radius 2i−1, excluding the origin.

1

����
srr r

c

cc

d

dd

a

aa

Fig. 2. Modified PatchMatch. With rigid copy-moves (left) clones are
connected by a constant offset field. In the presence of rotation and/or resizing
(center) clones are connected by a linearly varying offset field. PatchMatch
(right) uses zero-order predictors of the offset, based on neighboring pixels
(r, c, d, a) on the same row, column, or diagonal as the target (s). The
modified version uses also first-order predictors, involving neighbors farther
apart (rr, cc, dd, aa) so as to follow linear variations.

In practice, most of these new candidates are pretty close
to δ(s), but large differences are also allowed, with small
probability. Given the rare sampling, only a few new can-
didates are eventually selected. The random-search updating
reads therefore as

δ(s) = arg min
φ∈∆R(s)

D(f(s), f(s+ φ)) (3)

where ∆R(s) = {δ(s), δ1(s), . . . , δL(s)}.
Experiments [29] show that typically PatchMatch converges

to a near-optimal NNF in less than 10 iteration.

B. A PatchMatch-based technique for still-image copy-move
detection

In [27] we proposed a new technique for copy-move de-
tection and localization in still images. Thanks to the use of
rotation-invariant and robust features, copy-moves are reliably
detected even in the presence of various forms of intensity
and geometric distortion. Efficiency is ensured by using a
suitably modified version of PatchMatch for the offset field
computation and a fast ad hoc post-processing to remove false
matches.

Let I(ρ, θ) be the input image in polar coordinates, with
ρ ∈ [0,∞] and θ ∈ [0, 2π], and let

Kn,m(ρ, θ) = Rn,m(ρ)
1√
2π
ejmθ (4)

be a kernel function obtained as the product of a radial profile
Rn,m(ρ) and a circular harmonic. By projecting the image
over the kernel we obtain the feature

f(n,m) =

∫ ∞
0

ρR∗n,m(ρ)×
[

1√
2π

∫ 2π

0

I(ρ, θ)e−jmθdθ

]
dρ

(5)
By choosing the Zernike orthonormal radial functions [46]
f(n,m) turns out to be the Zernike moment of order (n,m)
of the image. Note that the integral in square brackets is the
Fourier series of I(ρ, θ) along the angle coordinate, and its
magnitude is invariant to rotations of the image I . Therefore,
by selecting as features the magnitude of Zernike moments we
guarantee rotation invariance. In addition, if only a few low-
order moments are used, a compact feature vector is obtained,
robust to intensity distortions, which are mostly of high-pass
nature.

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

To compute the offset field efficiently we resort to Patch-
Match. However, the basic version of the algorithm is designed
for patchwise constant offset fields, a model appropriate for
rigid copy-moves, as in Fig.2(a), while rotated and resized
copy-moves give rise to linearly varying offsets, as in Fig.2(b).
A generalized version of PatchMatch was proposed in [30]
to deal with this problem. Unfortunately, it works only on
image patches (not compact features) and is significantly more
complex than the basic version. A much simpler modification
was proposed in [31], adding first-order predictors to the zero-
order predictors used in PatchMatch, so as to deal effectively
also with linear offset fields. With reference to Fig.2(c), a zero
order prediction of the offset δ(s) at site s is given by

δ̃0x(s) = δ(x), x ∈ {r, d, c, a} (6)

that is, the offset is predicted as being equal to the offset of the
neighbor on the same row, column, diagonal or antidiagonal.
Adding first-order predictors

δ̃1x(s) = 2δ(x)− δ(xx) (7)

we take into account linear variations of the offset along the
same four directions. Eventually, we obtain the enlarged set
of predicted offsets

∆P (s) = {δ(s), δ̃0r(s), δ̃0d(s), δ̃0c(s), δ̃0a(s),

δ̃1r(s), δ̃1d(s), δ̃1c(s), δ̃1a(s)} (8)

which are used in the propagation phase to perform the search
of equation (2).

Finally, to take full advantage of PatchMatch’s efficiency,
the post-processing phase must be equally fast. With this aim,
an ad hoc post-processing was implemented, called dense
linear fitting (DLF). An affine model is fit locally to each point
of the offset field, with parameters estimated from the data
themselves. The fitting is typically good in correspondence
of a copy-moved regions, where the offset field is either
constant (for plain copy-moves) or linearly varying (in the
presence of rotations or resizing). On the contrary, in pristine
areas of the image, with a more chaotic field, a worse fit is
typically observed. Therefore, by looking for large areas with
low fitting error, copy-moves can be reliably detected. The
fitting procedure is very fast, as it only requires a few linear
filtering and products per pixel.

III. PROPOSED TECHNIQUE

To address the detection and localization of video copy-
moves we extend the technique proposed in [27] for still
images which, thanks to its dense-field approach, is effective
with both additive and occlusive copy-moves. Therefore, our
proposed technique comprises the three usual phases of
• (dense) feature extraction;
• feature matching;
• post-processing of the nearest-neighbor field.

To take advantage of our past experience, we move from
the same basic tools used in [27], namely, Zernike moments,
PatchMatch, and Dense Linear Fitting, respectively. However,
going from still images to videos, a number of new issues

emerge, that must be addressed specifically. Features must be
adapted to ensure the necessary robustness to both temporal
and spatial distortions; PatchMatch itself must be adapted to
deal efficiently with a video source; the post-processing must
be tailored to take care of the large number of false hits arising
naturally in a highly redundant source. Last, but not least,
computational efficiency must be pursued. At standard frame-
rates, a minute of video corresponds to about 1500 frames
and complexity may soon become unmanageable even for
short YouTubeTM videos. All these issues are addressed in
the following subsections.

A. Features

Building upon the still-image copy-move detector of [27] we
begin by associating with each pixel a feature vector composed
by the Zernike moments computed on a polar grid centered
on the target. Dealing with a video source, however, we have
the opportunity to extract features from 3D rather than 2D
patches. With this choice a more expressive feature is obtained,
accounting also for informative temporal changes. On the
down side, 3D patches may be less effective with forgeries
of very short duration or with fast moving objects, because
many 3D patches would include both pristine and copy-moved
regions, making it difficult to find the correct match. Moreover,
they are more fragile with respect to temporal distortions,
such as flipping or temporal down/up-sampling. Since both
solutions (3D-patch or 2D-patch based features) have pros
and cons, we will test them both in the experiments. For the
second case, however, we define a flip-invariant feature so as
to be robust to the simplest form of tampering in the temporal
dimension.

Specifically, let f(s, t, n,m) be a generic feature associated
with the t-th frame of the video, for spatial location s and
Zernike moment (n,m). Then, the 2D-patch feature vectors
used in the algorithm, or 2D features for short, will be defined
as

f2D(s, t) = {f(s, t, n,m), (n,m) ∈ F2D} (9)

where F2D identifies a subset of all Zernike moments. This
subset should be as small as possible to limit complexity and
memory problems in the algorithm, while including sufficient
discriminative information on the patch. Similarly, we could
define 3D-features as

f3D(s, t) = {f(s, t+τ, n,m), |τ | ≤ T, (n,m) ∈ F3D} (10)

where Zernike moments from 2T+1 consecutive frames are
taken, and F3D identifies a new subset of Zernike moments,
smaller than before to limit feature size. This latter feature,
however, is not flip invariant, and would not allow the detec-
tion of clones played backwards in time. Therefore, to improve
robustness to malicious attacks, we modify it as

f3D,FI(s, t) = {g(s, t+τ, n,m), |τ | ≤ T, (n,m) ∈ F3D}
(11)

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

.

1

A A′-�

B - C

1

A - A′

?
A′′�A′′′

6
.

Fig. 3. Left: removing random false matches. The preliminary detection map
MDLF includes two clones, A,A′, and a false match B pointing to region C
not in the map. Since B does not point to a region in the map it is eventually
removed. Right: multiple clones. The four clones, A,A′, A′′, A′′′ all belong
to the preliminary map. Even though no two regions match one another, they
all match regions in the map, so they are all kept.

where, displaying only the dependence on the temporal index,

g(t+τ) =

1√
2
|f(t+τ) + f(t−τ)| τ > 0

|f(t)| τ = 0

1√
2
|f(t+τ)− f(t−τ)| τ < 0

(12)

The even-odd transform of Eq.(12) guarantees the desired flip
invariance. Note that the transform is applied on the Zernike
moments, not their absolute values. By so doing, the f3D,FI

vectors are invariant to spatial rotations of the whole 3D
patch. Taking the absolute value of the moments before the
even-odd transform would enforce invariance with respect to
different rotations for each frame. This is a useless property
for our problem, since temporal and spatial manipulations do
not interfere with one another. We also note explicitly that the
above formulas refer to a 3D patch with an odd number of
frames, similar formulas apply for the even number case.

B. Adapting PatchMatch to video

To take advantage of the features’ invariance to rotations,
we use the modified version of PatchMatch proposed in
[27]. Then, to deal with a video source, we adopt some
further straightforward modifications, originally developed in
[28]. First of all, while keeping the general structure of the
algorithm, we include further predictors to take into account
the temporal direction, and in particular the zero-order and
first-order predictors along frames δ̂0f (s) and δ̂1f (s), defined
like in equations (6) and (7). Using first-order prediction along
time allows one to deal also with subsampling [upsampling]
in the temporal direction, corresponding to a change of speed
in moving objects. In addition, the random search step is also
modified to sample the whole 3D space, testing offsets taken
at random in the whole datacube. Despite the increased size of
the source, with a large number of frames, the same number
of candidates is used as for still images. Since this procedure
is repeated for all pixels in the video, a large number of near-
optimal offsets are sampled anyway, and then propagated to
the whole video.

C. post-processing

The NNF produced by PatchMatch is subsequently pro-
cessed by the Dense Linear Fitting algorithm which singles
out regions with coherent offset field and associates a binary

detection map MDLF with the video. However, since similar
pristine regions abound in images, some false alarms may
also arise at this point. In [27] these were largely eliminated
through morphological filtering. When dealing with videos,
however, this problem becomes much more relevant because
subjects, and especially background areas, appear almost iden-
tical in many subsequent frames, giving rise to a large number
of false alarms. Standard morphological filtering cannot solve
the problem anymore. We therefore add a further control,
working always on the NNF to keep high efficiency.

The inspiring principle is that true clones should match both
ways, that is

(s, t) + δ(s, t) = (s′, t′) ⇔ (s′, t′) + δ(s′, t′) = (s, t) (13)

Points for which this condition does not hold may be random
matches rather than corresponding points of a copy-move.
Actually, this is too strict a condition to enforce, since small
deviations from this rule apply also to actual copy-moves. In
addition, with multiple clones, the very same principle weak-
ens, as points may exhibit a circular matching. Therefore we
use a weaker but still effective constraint, requiring simply that
regions matching through the NNF all belong to preliminary
detection map MDLF. This is rarely the case for false matches,
while it happens with near certainty for actual copy-moves.
Pictorial examples of the application of these rules are shown
in Fig.3 with reference to a 2D geometry.

D. Managing complexity

The overall complexity of the image-based algorithm [27]
is clearly dominated by the matching phase, accounting for
about 75% of the total CPU-time, with the computation of
features taking another 15%, and the post-processing phase
the remaining 10%. In the case of video, these proportions
are not likely to change much. Therefore all efforts should be
devoted to further reduce the cost of computing the NN field.

Using PatchMatch, the complexity of computing the NN
field, measured in number of multiplications, can be approxi-
mated as

C = NitN(CP + CR)F (14)

where Nit is the number of iterations of PatchMatch, N the
number of pixels in the video, CP and CR are the number of
candidate offset tested in the propagation and random search
phases, respectively, and F is the feature length. N in its turn
is the product of frame size and number of frames. Using
typical values, that is, frames of 0.5 Mpixels, 8 iterations of
PatchMatch, with 10 candidates tested in each phase, and
features of length 10, the overall complexity is 8 × 108

multiplications per frame. At 25 frames/second, this represents
a huge computational burden, even for short videos.

The only effective way to reduce significantly this burden
is through subsampling. Indeed, keypoint-based methods use
exactly this strategy, computing matches only for some sparse
keypoints. As we follow a dense-field approach, we perform
instead a regular S × S subsampling (that is, we take one
every S-th pixel along rows and columns). Note that features
are always computed on the original frames before subsam-
pling, therefore they represent patches observed at the native

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

-V
Featuring -F 0

↓ -F 1

↓

?

F 2

?

F 0

PatchMatch

NN2

�↑�NN1
0

??

F 0

CMD�NN1

� M1

↑

?

VoI

↑�NN
0
0

?

CMD� M

full resolution S×S lower resolution S2×S2 lower res.

Fig. 4. Block diagram of the proposed video copy-move detector with multi-resolution processing. The high-resolution field of features F 0 is extracted from
the original video, V . This field is then downsampled twice to obtain fields F 1 and F 2. At level 2 (lowest resolution) PatchMatch works on F 2 and F 0 to
provide the NN field NN2. This is upsampled to become the initial NN field at level 1, NN1

0 . At level 1, the copy-move detector (CMD) works on F 1 and
F 0 to refine NN1

0 to NN1, and to extract the detection map M1 by applying the post-processing. Copy-moved objects are detected in this level, but their
shape can be recovered more precisely at level 0. So M1 is upsampled to define the volume of interest (VoI) and NN1 is upsampled to become the initial
NN field at level 0, NN0

0 . At level 0, the copy-move detector works on F 0, limited only to the VoI, to extract the final output, the detection map M0 = M .

resolution, say level-0, with no loss of information. Also, no
subsampling is performed along the temporal direction.

By working at level-1 resolution (that is, after subsampling)
PatchMatch complexity reduces by a factor S2, approximately,
if all other parameters are kept fixed. Moreover, with a
moderate subsampling step, we expect to keep detecting at
level-1 most, if not all, the copy-moves detectable at level-0.
Of course, there is a loss in spatial accuracy. However, this can
be largely recovered by upsampling the NN field back at level-
0, and running a few iterations of PatchMatch to propagate the
correct offsets. Since detection has been already performed at
level 1, at level 0 PatchMatch is applied only to the volumes of
interest (VoI), namely the frames where copy-moves have been
detected, while the random search phase is skipped altogether.
With these simple modifications, the processing at level 0 does
not impact heavily on the overall cost. In particular, since it
is quite unlikely that a copy-move lasts for more than a few
seconds, the use of VoI alone is already very effective.

Algorithm 1 Multi-resolution Video Copy-Move Detector

Require: V . input video
Ensure: M . output detection map
1: F 0 = FeatureExtract(V) . will work on features from now on
2: F 1 = F 0 ↓ S . S × S downsampling
3: F 2 = F 1 ↓ S . S × S downsampling
4: NN2 = PatchMatch(F 2, F 0) . NN field at level 2
5: NN1

0 = NN2 ↑ S . initial estimate of NN1

6: [M1, NN1] = CMD(F 1, F 0, NN1
0) . CMD at level 1

7: M0
0 = M1 ↑ S . M0

0 gives the VoI
8: NN0

0 = NN1 ↑ S . initial estimate of NN0

9: [M,NN0] = CMD(F 0, NN0
0 , VOI) . CMD at level 0 on VoI

Therefore, the bulk of processing is now at level 1, where
PatchMatch works in its standard configuration. To further

reduce the processing cost we resort again to S × S sub-
sampling, and run PatchMatch at this level-2 resolution. The
retrieved NN field is then upsampled and used to initialize
PatchMatch at level-1 in order to ensure its quick convergence,
thus reducing the number of iterations. Note that subsampling
operates only to reduce the source features to match, while
the target features are not sampled at all, otherwise the correct
offset may not be found. For example, at the lowest resolution,
features drawn from F 2 are matched to features drawn from
F 0. Note that, thanks to the first-order predictors, propagation
keeps working correctly. In Fig.III-A we show a block diagram
of the complete multiresolution scheme, described in detail in
the caption and, more formally, through the pseudo code of
Algorithm 1.

Finally, to gain some more speed, we resorted to parallel
computing. The parallel code works seamlessly for feature
extraction and in the post-processing phase. As for Patch-
Match, each thread operates only on a portion of the source
data (while target data are not partitioned), and the offset
subfields are joined after each iteration. By so doing, however,
propagation of offsets across partition boundaries may be de-
layed significantly. Therefore, we change partitions after each
couple of forward-backward iterations, orienting boundaries
along columns, rows, or frames in round-robin fashion.

IV. EXPERIMENTAL ANALYSIS

The performance of the proposed method was assessed
through a number of experiments under various operative con-
ditions. The software code of the algorithm is available online
at http://www.grip.unina.it/ to ensure reproducibility of results
and support further research in this field. In the following
we will describe the datasets, the performance measures, and
finally the experimental results and comparisons.

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

a) video #1, TV screen: additive, large, static

b) video #2, Fast car: additive, large, fast (low depth)

c) video #5, Falling can: additive, small, fast (low depth)

d) video #6, Walnuts: occlusive, small, saturated area

e) video #11, Student: occlusive

f) video #14, Wall frame: occlusive, small

Fig. 5. Examples from the GRIP dataset. From left to right: original frame,
copy-moved frame, 3D view of the ground truth. In the 3D views, the origin
of the axes is the bottommost point, and the time axis is on bottom-right.

A. Dataset

We prepared a dataset, called the GRIP dataset from now
on, comprising 15 short videos with rigid copy-moves, 10
additive and 5 occlusive. They were carried out by the first
author using After Effects Pro, a tool for video editing. As a
result, there are little or no artifacts which may raise suspects
on the video, just as would happen with a real-world skilled
attacker. Nonetheless, since we consider rather short videos,

video copy-move

name frame size frames add./occ. ρmax dmax rot. flp.

1 TV screen 576×720 141 add 182.7 43 X X

2 Fast Car 370×720 140 add 203.2 9 X

3 Felt-Tip Pen 550×720 100 add 62.3 4 X X

4 Rolling Can 480×660 125 add 229.6 18 X X

5 Falling Can 480×720 174 add 71.3 29

6 Walnuts 480×720 221 occlusive 199.5 102

7 Can 1 520×720 201 add 220.6 28 X

8 Can 2 720×720 210 add 112.1 15 X X

9 Lamp 390×465 455 add 159.9 129 X

10 Tennis Ball 640×360 200 add 195.4 31 X

11 Student 400×380 340 occlusive 176.3 60

12 Cell 1 400×500 92 add 63.7 92 X X

13 Cell 2 512×512 92 occlusive 107.5 92 X X

14 Wall Frame 500×570 200 occlusive 50.6 155 X

15 Statue 590×480 100 occlusive 65.9 61

TABLE I
FEATURES OF THE GRIP DATASET

additive copy-moves may be obvious anyway, since the same
object appears twice in a few seconds. On the contrary, it
seems safe to say that occlusive copy-moves can be hardly
spotted without specific tools. In addition, by using rotation or
temporal flipping, when meaningful, also additive copy-moves
become less visible. All copy-moved videos are available
online at http://www.grip.unina.it/ together with their pristine
versions and the ground truths.

Tab.I shows synthetic statistics of all videos and forgeries.
Moreover, for some selected videos, Fig.5 shows a sample
frame of the original and forged video, together with a 3D view
of the ground truth which provides some immediate insight on
the spatio-temporal structure of the forgery. Large and static
copy-moves, like that of Fig.5(a) will be easily detected in
any condition. On the contrary, small and fast-moving copy-
moves represent a severe challenge. Note that by “fast”, we
mean a copy-move with a rapidly changing mask, maybe
spanning just a few frames at any pixel, like in both Fig.5(b)
and Fig.5(c), while the speed of the physical object inside the
mask is immaterial for our aim. To capture synthetically these
geometric features we use the max-radius and max-depth indi-
cators. The max-radius is defined as ρmax = maxt

√
A(t)/π,

with A(t) being the area of the tampered region in frame
t. Likewise, max-depth is dmax = maxs d(s), with d(s)
the depth of the tampered region for pixel s, possibly much
smaller than the total copy-move duration. In Fig.5(d)-(f) we
show some occlusive forgeries. The first one may be especially
challenging, giving rise to a large number of false alarms due
to the saturated area in the middle.

Besides our own dataset, we also consider the REWIND

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

Basic 2D Basic 3D Fast 2D Fast 3D Bestagini et al.

video det. f.a. F time det. f.a. F time det. f.a. F time det. f.a. F time det. f.a. F time

1 X 0.96 15.42 X 0.95 17.50 X 0.97 2.17 X 0.97 3.25 X – 8.9

2 X 0.88 15.45 X 0.68 17.19 X 0.78 2.77 X 0.67 3.44 X – 7.3

3 X 0.56 16.39 X 0.29 23.24 X 0.60 2.67 X 0.31 3.00 X – 6.7

4 X 0.88 14.92 X 0.79 16.75 X 0.88 2.77 X 0.76 3.32 X – 7.2

5 X 0.84 16.70 X 0.86 20.29 X 0.81 2.07 X 0.86 3.24 X X – 14.9

6 X X 0.72 16.50 X 0.74 18.58 X X 0.73 2.35 X 0.81 3.45 – 11.7

7 X 0.83 18.45 X 0.78 20.25 X 0.90 2.54 X 0.81 3.41 X X – 11.5

8 X 0.87 19.73 X 0.77 24.23 X 0.89 2.20 X 0.76 3.32 X X – 15.2

9 X 0.93 17.80 X 0.92 20.31 X 0.94 2.40 X 0.93 4.02 X X – 14.4

10 X 0.91 15.69 X 0.89 16.67 X 0.94 2.30 X 0.92 3.45 X X – 6.3

11 X X 0.88 14.14 X 0.87 18.00 X X 0.86 3.05 X 0.88 4.15 – 7.7

12 X 0.80 16.23 X 0.77 18.78 X 0.87 1.96 X 0.83 3.81 – 2.6

13 X 0.91 15.43 X 0.90 18.26 X 0.92 2.49 X 0.91 4.02 – 4.4

14 X 0.74 16.66 X 0.71 19.42 X 0.77 2.35 X 0.77 3.39 – 8.8

15 X 0.72 16.05 X X 0.51 20.17 X 0.00 2.26 X X 0.41 3.32 – 3.8

Σ, µ 15 2 0.83 16.37 15 1 0.76 19.31 14 3 0.79 2.42 15 1 0.75 3.51 9 5 8.8

TABLE II
DETECTION, LOCALIZATION AND EFFICIENCY PERFORMANCE FOR PLAIN COPY-MOVES ON THE GRIP DATASET

Fig. 6. Examples of ground truth (GT) and detection map (M). In GT
(left) copy-moved regions, both original and clones, are set to 1 (red). In M
(right), detected copy-moves are set to 1 (green).

dataset, described in [24] and available online1. This dataset,
however, comprises only rigid additive copy-moves and comes
without a ground truth. In addition, some videos (e.g., Duck,
Fast Car) appear to be splicings rather then copy moves
(maybe with material taken from part of the video not available
to the user) or else the copied regions have been subjected
to some unreported processing before pasting them back. For
these reasons, we use REWIND only for some experiments,
turning to the GRIP dataset for a more reliable analysis.

B. Performance evaluation

The performance is measured in terms of detection and
localization accuracy, besides processing time. Detection is

1https://sites.google.com/site/rewindpolimi/downloads/datasets/video-copy-
move-forgeries-dataset

declared if, after the post-processing, which includes the
removal of small regions, a large number of detected pixels
are present in the output map M

|M | > Tdetection (15)

where |x| counts the number of ones in x and the threshold
Tdetection is set for each version of the algorithm by pre-
liminary experiments. When a copy-move is actually present,
this is a correct detection, otherwise it is a false alarm.
Therefore, to quantify false alarms, in the experiments we run
our detectors also to the original videos.

To measure the localization performance we define the sets
• TP (true positive): detected copy-move pixels;
• FP (false positive): detected pristine pixels;
• TN (true negative): undetected pristine pixels;
• FN (false negative): missed copy-move pixels.

(see also Fig.7) from which the F-measure indicator is derived
as

F =
2|TP|

2|TP|+ |FP|+ |FN|
(16)

If detection map and ground truth coincide, then |FP| =
|FN| = 0, and the F-measure reaches its maximum value,
equal to 1. However, as the number of false negative or false
positive pixels increases, the F-measure decreases rapidly. In
particular, the F-measure is more informative than the overall
accuracy when the two classes of interest are very unbalanced,
which is the case of typical forged videos, where only a small
fraction of the data are tampered with.

Finally, we measure efficiency in terms of normalized CPU-
time, s/Mpixel, that is, the time required to process the whole
video divided by its size in Mpixel. CPU-times refer to a

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

Basic 2D Basic 3D Fast 2D Fast 3D Bestagini et al.

dataset case # videos det. f.a. F det. f.a. F det. f.a. F det. f.a. F det. f.a. F

GRIP plain 15 15 2 0.83 15 1 0.76 14 3 0.79 15 1 0.75 9 5 –

GRIP

QF = 10

15

15 1 0.84 15 1 0.77 14 2 0.74 14 1 0.75 9 5 –

QF = 15 15 1 0.76 15 1 0.72 13 2 0.65 15 1 0.70 9 4 –

QF = 20 12 1 0.54 12 1 0.56 13 2 0.53 12 0 0.52 9 5 –

GRIP

θ = 5o

8

8 – 0.81 7 – 0.73 5 – 0.40 7 – 0.68 2 – –

θ = 25o 7 – 0.71 4 – 0.60 3 – 0.25 4 – 0.44 2 – –

θ = 45o 5 – 0.56 4 – 0.43 2 – 0.12 4 – 0.43 2 – –

GRIP flipping 9 8 – 0.81 9 – 0.76 6 – 0.59 7 – 0.59 3 – –

REWIND plain 10 8 4 – 9 4 – 8 4 – 6 1 – 6 3 –

TABLE III
SUMMARY OF DETECTION AND LOCALIZATION PERFORMANCE ON THE WHOLE SET OF EXPERIMENTS

computer with a 2GHz Intel Xeon processor with 16 cores,
64GB RAM and GPU Nvidia GeForce GTX Titan X.

C. Numerical results

In Tab.II we report results for the GRIP dataset in the
presence of plain copy-moves, involving only rigid spatio-
temporal translations, and possibly some local processing at
the boundary of the copied area to reduce artifacts. No rotation
and flipping are allowed, here, and no global post-processing,
such as compression, and noise addition. For each technique
and each video we mark with a X symbol whether the copy
move is detected (det), and whether a false alarm (f.a.) is
declared, namely a copy-move is detected in the pristine
video where there are none. Then we report the F-measure, to
quantify localization accuracy, and the normalized CPU-time.
We use features of the length 12, in the 2D case, and length
18, in the 3D case, the latter obtained by considering 6 Zernike
moments over 3 consecutive frames and computing the even-
odd transform. In the fast versions, a subsampling step S = 4
is used.

To provide some comparison with the state-of-the-art, we
include also the technique proposed by Bestagini et al. [24]
which, however, addresses only the detection task. Unfortu-
nately, other literature techniques like [19] and [26] make
very restrictive hypotheses on the forged videos, hence they
cannot be used on realistic datasets as GRIP or REWIND.
In fact, in [19] only rigid copy-moves between consecutive
frames are considered, while in [26] matching is carried out
through an exhaustive search on dense HOG features, making
the procedure unfeasible even for very short videos. We have
also excluded from comparison the 3D version of PatchMatch
working on RGB values [47], [48], since it can detect only
rigid copy-moves, as also shown in [28], and does not provide
any advantage over the feature-based version.

Performance measures are very good for all variants of
the proposed algorithm. The basic version of the algorithm,
without multi-resolution processing, detects all copy-moves,
both with single-frame 2D features (Basic-2D algorithm, from
now on) and with 3D flip-invariant features (Basic-3D), with

very few false alarms. On the other hand, a few false alarms in
this context are not really critical since they raise attention on
some candidate copy-moves that may be analyzed with much
greater care afterwards. On the contrary, missed detection
cannot be recovered easily. The fast versions of the algorithms
(Fast-2D and Fast-3D) are also quite reliable. Only Fast-2D
misses one copy-move, of the occlusive type, probably because
of the loss of spatial synchronization due to subsampling.
The reference method [24], instead, misses all occlusive copy-
moves and also an additive one, besides originating a slightly
larger number of false alarms.

The localization performance is extremely high in all cases.
Barring video 15, missed by Fast-2D, the only critical case
seems to be video 3, and only for the Basic-3D and Fast-3D
algorithms. This is easily explained by noting that dmax = 4,
for this video, namely, the copy-move is extremely thin in
time, causing inaccuracies at the temporal boundaries when 3D
features are used. Nonetheless, these problems do not prevent
correct detection.

Turning to processing speed, the overall CPU times scale
pretty rigidly with the video size (frame size × number of
frames). In fact, the Basic 2D and 3D algorithms take about
16.4 s/Mpixel and 19.3 s/Mpixel, respectively, with very small
deviations across the videos. The fast versions are indeed much
faster, bringing the average CPU-time down to 2.4 and 3.5
s/Mpixel, respectively, the difference mainly due to the longer
3D features.

Let us now analyze performance in more challenging sit-
uations, namely, in the presence of video compression, and
of copy-move rotation and flipping. Experimental results are
reported in Tab.III, only in synthetic form for the sake of
brevity. In the same table we also report results obtained in
the absence of further processing on the GRIP dataset (GRIP
plain, first line) and on the REWIND dataset (REWIND plain,
last line). Instead, we do not show CPU-times anymore, since
they depend almost exclusively on the video size, and very
little on the level of compression or the type of attack.

Compressed videos are more the norm than the exception,
and studying performance in this situation is of paramount

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

Plain copy-move in video #6 Walnuts Copy-move with compression at QF=20 in video #1 TV screen

Copy-move with flipping in video #2 Fast Car Copy-move with 45o rotation in video #14 Wall Frame

Fig. 7. Sample color-coded detection maps for videos of the GRIP dataset. TN pixels are transparent for correct visualization. The plain (top-left) and flipped
(bottom-left) copy moves are fully detected, with only some inaccuracies at the boundaries. Compression (top-right) impacts on localization performance,
especially on the saturated areas of the video object. Rotation (bottom-right) causes the loss of a copy moved segment, following sudden camera motion.

importance. To this end, we consider MPEG compression
at quality factors QF = 10, 15, and 20, which correspond
roughly to high, medium and low quality sources. Together
with the forged videos, we compress also the pristine ones,
which allows us to compute both detection and false alarm
figures. The basic version of the algorithm keeps providing
an excellent performance with both 2D and 3D flip-invariant
features, although some missed detections are observed in the
most challenging case of QF = 20. A similar behavior is
observed with the fast versions, with just a few further missed
detections. The F-measure remains always quite large (lower
values are mostly due to missed detections), indicating a very
good localization ability. In all cases, a very small number
of false alarms is observed. Note that the reference technique
detects only 9 copy-moved videos, with a larger number of
false alarms and, as already said, does not have localization
ability.

In lines 5-7 of Tab.III we analyze the case of video
objects that are rotated before pasting, which may be due
to composition needs (small angles) or made on purpose to

fool copy-move detectors. The analysis applies only to the 8
videos with rotated copy-moves, while no false alarm analysis
is possible, since objects are not rotated in the original videos.
The basic algorithm keeps working very well at small angles,
while at large angles, 25 or 45 degrees, the version with 3D
features exhibits a large number of missed detections. This is
likely due to temporal boundary discontinuities, quite relevant
for videos with small dmax. On the other hand, 3D features
seem more robust when moving to the fast version, with no
further missed detection, while the Fast-2D algorithm exhibits
a limited reliability. The reference algorithm, instead, looks
definitely unreliable with rotated copy-moves at all angles.

In the presence of flipping, the proposed algorithm works
very well with 3D flip-invariant features, with no missed
detection for the basic version and 2 for the fast version,
slightly better than when 2D features are used. Together with
previous results, this suggests using 3D flip-invariant features
with the fast algorithm, while 2D features seem slightly
preferable with the basic algorithm. However, more data are
necessary to draw solid conclusions.

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

Fig. 8. ROCs for the Basic-2D (left) and Fast-3D (right) algorithms, obtained
by varying the detection threshold. In both cases, the post-processing used in
this work (DUAL, blue line) provides significant improvements with respect
to the simpler post-processing (NO-DUAL, red line) used in [28].

Finally, let us consider the REWIND dataset. In this case,
no algorithm is able to provide perfect detection. The best
result is obtained with Basic-3D, but even in this case there
is one missed detection and 4 false alarms. However, this is
to be ascribed to the video themselves since some forgeries
appear to be splicings rather than copy-moves (notably the
fast car video), which fully justifies the failures. Indeed, the
reference algorithm, tested by the authors on this very same
dataset, provides an even poorer performance.

Finally, in Fig.7 we show some sample detection maps
obtained with the proposed algorithm (basic, 2D features) on
GRIP videos with copy-moves and various operating con-
ditions. The performance is always very good, although a
whole segment is missed in the rotated copy-move, due to
the large rotation angle, highlighting the challenges raised by
post-processing for detection.

All above results have been obtained by selecting the
detection threshold based on preliminary experiments on a few
representative videos. In Fig.8 we show the receiver operating
curves (ROCs) obtained on the whole dataset by varying the
detection threshold of eq.(15) for the Basic-2D (left) and
Fast-3D (right) algorithms. Besides the good performance,
the curves testify to a good robustness to small errors in
the selected threshold. They also highlight the improvements
ensured by new post-processing described in Secion III.C
(DUAL, blue line) over the post-processing adopted in [28]
(NO-DUAL, red line), mostly due to a sharp reduction of false
alarms.

D. Complexity

As already said, a major effort has been devoted in this work
to devise a computationally efficient technique. The bar graphs
of Fig.9 describe the results for the case of 2D features (left)
and 3D flip-invariant features (right) in terms of normalized
CPU times (s/Mpixel) averaged over all experiments, com-
prising a grandtotal of 153 videos. From left to right, the bars
refer to the basic algorithm (1), its multi-resolution version
(2), and the parallel implementation of the latter (3), while
colors identify feature extraction (blue), matching (green) and
post-processing (red). The multi-resolution processing impacts
only on the matching phase, largely reducing its cost and
bringing total CPU-time from 16.85 to 5.99 s/Mpixel with 2D

Fig. 9. Computational cost of feature extraction (blue), matching (green), and
post-processing (red) phases for various versions of the proposed algorithm
using 2D features (left) or 3D flip-invariant features (right). The dominant
source of complexity in the basic algorithm (bar 1) is matching. Multireso-
lution processing (bar 2) reduces sharply this cost. Parallel computing (bar
3) further reduces the cost of all phases. The final speed-up w.r.t. the basic
version is about 7 with 2D features and 6 with 3D flip-invariant features.

features and from 20.06 to 7.42 s/Mpixel with 3D features.
The parallel implementation, instead, reduces the cost of all
phases, although to different degrees, bringing the total CPU-
time to 2.43 and 3.47 s/Mpixel, respectively. Overall, Fast-2D
guarantees a 7× speed-up w.r.t. Basic-2D, and Fast-3D a 6×
speed-up w.r.t. Basic-3D, with differences due mainly to the
longer features used in the second case.

It should be realized that this is a huge time saving with
respect to plain search. Indeed, the complexity of copy-move
detection is inherently quadratic with the length of the video,
since, in principle, all features must be compared with one
another. For the small videos of the GRIP dataset, one should
compute in the order of 107 distances per feature. Thanks to
PatchMatch, our basic algorithms reduce this number to about
102. Then, our fast parallel version is 6-7 times faster than that.
Noteworthy, the method proposed in [24], based on Fourier-
domain analysis, is much slower than Fast-2D and Fast-3D,
and the same applies to a simple 3D version of the keypoint-
based method proposed in [34].

All this said, the proposed algorithms are still computation-
intensive and far from real time: to process a 1-minute video
at 25 frames/s, with 0.5 Mpixel frames, about 30 minutes
of CPU time are currently necessary. Obviously, much faster
methods can be conceived, trading off speed for reliability.
To explore this opportunity, we tested a bare-bone version
of the proposed algorithm where i) the video is subsampled
with step 16 in both spatial directions; ii) simpler non-flip
invariant 2D features are used; and iii) PatchMatch relies only
on vertical and horizontal predictors for propagation. With
these simplifications, a dramatic 40× speed-up is obtained
with respect to Fast-3D, 0.08 s/Mpixel as opposed to 3.47
s/Mpixel. However, the decline in performance is not accept-
able. Restricting attention to plain copy-moves, we observe
a good detection rate, nearly 90%, even in the presence of
compression, but a false alarm rate that grows to 20%, in
the absence of compression, and to 40%, with compression.
Therefore, given 1000 pristine videos, this tool would select
from 200 to 400 of them for further analysis, hardly a saving
of resources. Moreover, for copy-moves with flipping the
detection rate drops to about 50%, and nearly to zero for copy-
moves with rotation, allowing a smart attacker to easily fool

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

the detector through a very small rotation of the copy.
In any case, in many circumstances, reliability is far more

important than speed, especially in forensic applications. In
addition, often one has already selected a fragment of the video
for verification, because of its semantics (see next subsection),
and wants to analyze the rest of the video to locate regions
that match the target fragment. In this modality, the search
complexity reduces from quadratic to linear in the length of
the video, with a major impact on efficiency.

E. A real-world case: the Varoufakis video

We tested our algorithm on a real-world case that recently
made the headlines all over the world, the well-known Varo-
ufakis video. While politicians of the European Union (EU)
were actively addressing the Greek financial crisis, in early
2015, a video was posted on YoutubeTM with the greek min-
ister of economy, Yanis Varoufakis, apparently “sticking the
middle finger” at Germany to underscore his disappointment
about the proposed EU economic recipes. The video become
immediately a diplomatic case. Although minister Varoufakis
quickly denounced the video as a fake, doubts persisted over
its real nature, as it was impossible to discover clear signs
of manipulations. The case became even more complicated
when two more versions of the same video appeared2, one
with the minister’s arm down, and another one with raised
arm but two fingers sticking in a victory sign. Frames extracted
from the three videos are shown in Fig.10. Obviously, at least
two of the videos had been manipulated. We therefore applied
our algorithm to the videos in search of clues of what really
happened. Although the videos were several minutes long, the
sequence with the raised finger, where the videos differ, lasted
just a few seconds, so we could adopt an asymmetric modality
of analysis, focusing only to this section and looking for
possible matching in the rest of the video. This circumstance
made the computational effort fully acceptable.

The proposed algorithm did not discover any copy-moves in
videos #1 (middle-finger) and #3 (victory). Since only one of
them (at most) can be pristine, we are missing a forgery. A first
possible explanation is that the victory video is original, and
the other one is obtained by hiding the index finger through
inpainting, very easy on small areas. However, it is also pos-
sible that the middle-finger video is original, and the victory
sign is obtained by copy-moving the index from somewhere
else. However, for such a small copy-move detection becomes
very unlikely for any algorithm. The proposed algorithm was
instead able to detect a clear forgery in video #2 (arm down),
a copy-move with flipping from a temporally close section of
the same video. Fig.11 shows the relevant frames, with the
matching regions, and the corresponding detection maps. To
obtain a visual confirmation of this finding, we played two
instances of video #2 side by side, one going forward and
the other backward in time. With suitable synchronization,
the copy-move appeared obvious, and could easily pass the
scrutiny of a court of justice. Therefore, the proposed method

2see http://henryjenkins.org/2015/08/f-for-fake-in-the-second-order-yanis-
varoufakis-the-germans-and-the-middle-finger-that-wasnt-there.html for a full
account.

(a) Matching frames

(b) Detection maps

Fig. 11. Findings in the Varoufakis video #2 (arm down). Top, evidence of
copy-move with flipping. Bottom, sample detection maps.

seems to work also outside the laboratory, barring prohibitive
conditions where any algorithm would fail.

V. CONCLUSION

We have proposed a method for the detection and localiza-
tion of video copy-moves. Since keypoint-based approaches
are ineffective with most occlusive forgeries, we focused
on dense-field methods. With this approach, the main issue
is complexity, especially for videos, cursed by their huge
data size. To deal with this problem we resorted to a fast
randomized patch matching algorithm, a hierarchical analysis
strategy, and parallel implementation. Experiments confirm
that the proposed method has an excellent detection and
localization ability, also for occlusive copy-moves, and even
in adverse scenarios including rotated copy-moves and com-
pressed videos. Moreover, the running time is much reduced
w.r.t. linear search, enabling practical video analysis.

Despite all efforts, the proposed method cannot be used
for real-time analysis or mass screening of video repositories.
Therefore, there is much room for future research on tools that
solve these problems, even at the price of reduced reliability.
We ourselves are currently working on the development of
fast keypoint-based methods for video analysis, and on the
integration of PatchMatch with fast nearest neighbor search
algorithms [49].

ACKNOWLEDGMENT

This material is based on research sponsored by the Air
Force Research Laboratory and the Defense Advanced Re-
search Projects Agency under agreement number FA8750-16-
2-0204. The U.S.Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Air Force
Research Laboratory and the Defense Advanced Research
Projects Agency or the U.S. Government.

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

Fig. 10. Frames taken from the three Varoufakis videos. From left to right: #1, sticking middle finger, #2, arm down, #3, victory sign.

REFERENCES

[1] S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva, M. Tagliasacchi,
and S. Tubaro, “An overview on video forensics,” APSIPA Transactions
on Signal and Information Processing, vol. 1, December 2012.

[2] M.C. Stamm, W.S. Lin, and K.J. Ray Liu, “Temporal forensics and
anti-forensics for motion compensated video,” IEEE Transactions on
Information Forensics and Security, vol. 7, no. 4, pp. 1315–1329, August
2012.

[3] W. Wang and H. Farid, “Exposing digital forgeries in video by detecting
double MPEG compression,” in ACM Workshop on Multimedia and
Security, 2006, pp. 37–47.

[4] A. Gironi, M. Fontani, T. Bianchi, A. Piva, and M. Barni, “A video
forensic technique for detection frame deletion and insertion,” in IEEE
International Conference on Acoustics, Speech and Signal Processing,
May 2014, pp. 6226–6230.

[5] Y. Su, J. Zhang, and J. Liu, “Exposing digital video forgery by detecting
motion-compensated edge artifact,” in International Conference on
Computational Intelligence and Software Engineering, 2009, pp. 1–4.

[6] Y. Wu, X. Jiang, T. Sun, and W. Wang, “Exposing video inter-frame
forgery based on velocity field consistency,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, 2014, pp.
2674–2678.

[7] C. Feng, Z. Xu, W. Zhang, and Y. Xu, “Automatic location of frame
deletion point for digital video forensics,” in ACM workshop on
Information hiding and multimedia security, 2014, pp. 171–179.

[8] H. Ravi, A.V. Subramanyam, G. Gupta, and B. Avinash Kumar, “Com-
pression noise based video forgery detection,” in IEEE International
Conference on Image Processing, 2014, pp. 5352–5356.

[9] J. Wickramasuriya, M. Alhazzazi, M. Datt, S. Mehrotra, and N. Venkata-
subramanian, “Privacy-protecting video surveillance,” in SPIE Int.l
Symposium on Electronic Imaging, 2005, pp. 64–75.

[10] M. Granados, J. Tompkin, K. Kim, O. Grau, J. Kautz, and C. Theobalt,
“How not to be seen object removal from videos of crowded scene,”
in Computer Graphics Forum 31, 2012, pp. 219–228.

[11] M. Granados, K. Kim, J. Tompkin, J. Kautz, and C. Theobalt, “Back-
ground inpainting for videos with dynamic objects and a free-moving
camera,” in European Conference on Computer Vision (ECCV), 2012,
pp. 682–695.

[12] W. Wang and H. Farid, “Exposing digital forgeries in video by detecting
double quantization,” in ACM Workshop on Multimedia and Security,
2009, pp. 39–48.

[13] T. Sun, W. Wang, and X. Jiang, “Exposing video forgeries by detecting
MPEG double compression,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2012, pp. 1389–1392.

[14] D. Labartino, T. Bianchi, A. De Rosa, M. Fontani, D. Vazquez-Padin,
A. Piva, and M. Barni, “Localization of forgeries in MPEG-2 video
through GOP size and DQ analysis,” in IEEE International Workshop
on Multimedia Signal Processing, 2013, pp. 494–499.

[15] P. He, X. Jiang, T. Sun, and S. Wang, “Double compression detection
based on local motion vector field analysis in static-background videos,”
Journal of Visual Communication and Image Representation, vol. 35, pp.
55–66, 2016.

[16] M. Chen, J. Fridrich, M. Goljan, and J. Lukás, “Determining image ori-
gin and integrity using sensor noise,” IEEE Transactions on Information
Forensics and Security, vol. 3, no. 1, pp. 74–90, March 2008.

[17] G. Chierchia, G. Poggi, C. Sansone, and L. Verdoliva, “A Bayesian-MRF
approach for PRNU-based image forgery detection,” IEEE Transactions
on Information Forensics and Security, vol. 9, no. 4, pp. 554–567, April
2014.

[18] N. Mondaini, R. Caldelli, A. Piva, M. Barni, and V. Cappellini, “Detec-
tion of malevolent changes in digital video for forensic applications,” in

Proc. of SPIE Conference on Security, Steganography and Watermarking
of Multimedia, 2007, vol. 6505.

[19] C.-C. Hsu, T.-Y. Hung, C.-W. Lin, and C.-T. Hsu, “Video forgery
detection using correlation of noise residue,” in IEEE International
Workshop on Multimedia Signal Processing, 2008, pp. 170–174.

[20] S. Chen, S. Tan, B. Li, and J. Huang, “Automatic detection of object-
based forgery in advanced video,” IEEE Transactions on Circuits and
Systems for Video Technology, in press 2015.

[21] D. D’Avino, D. Cozzolino, G. Poggi, and L. Verdoliva, “Autoencoder
with recurrent neural networks for video forgery detection,” in IS&T
International Symposium on Electronic Imaging: Media Watermarking,
Security, and Forensics, 2017.

[22] M. Kobayashi, T. Okabe, and Y. Sato, “Detecting forgery from static-
scene video based on inconsistency in noise level functions,” IEEE
Transactions on Information Forensics and Security, vol. 5, no. 4, pp.
883–892, December 2010.

[23] W. Wang and H. Farid, “Exposing digital forgeries in video by detecting
duplication,” in ACM Multimedia and Security Workshop, 2007, pp. 35–
42.

[24] P. Bestagini, S. Milani, M. Tagliasacchi, and S. Tubaro, “Local tamper-
ing detection in video sequences,” in IEEE International Workshop on
Multimedia Signal Processing, October 2013, pp. 488–493.

[25] S.-Y. Liao and T.-Q. Huang, “Video copy-move forgery detection and
localization based on Tamura texture features,” in International Congress
on Image and Signal Processing, 2013, pp. 864–868.

[26] A. Subramanyam and S. Emmanuel, “Video forgery detection using
HOG features and compression properties,” in IEEE International
Workshop on Multimedia Signal Processing, 2012, pp. 89–94.

[27] D. Cozzolino, G. Poggi, and L. Verdoliva, “Efficient dense-field copy-
move forgery detection,” IEEE Transactions on Information Forensics
and Security, vol. 10, no. 11, pp. 2284–2297, November 2015.

[28] L. D’Amiano, D. Cozzolino, G.Poggi, and L. Verdoliva, “Video
forgery detection and localization based on 3D PatchMatch,” in IEEE
International Conference on Multimedia and Expo Workshops, 2015, pp.
1–6.

[29] C. Barnes, E. Shechtman, A. Finkelstein, and D.B. Goldman, “Patch-
match: a randomized correspondence algorithm for structural image
editing,” ACM Transactions on Graphics, vol. 28, no. 3, 2009.

[30] C. Barnes, E. Shechtman, D.B. Goldman, and A. Finkelstein, “The
generalized patchmatch correspondence algorithm,” in European Conf.
on Computer Vision, 2010, vol. 6313, pp. 29–43.

[31] D. Cozzolino, G. Poggi, and L. Verdoliva, “Copy-move forgery
detection based on PatchMatch,” in IEEE International Conf. on Image
Processing, 2014, pp. 5312–5316.

[32] V. Christlein, C. Riess, J. Jordan, and E. Angelopoulou, “An evaluation
of popular copy-move forgery detection approaches,” IEEE Transactions
on Information Forensics and Security, vol. 7, no. 6, pp. 1841–1854,
2012.

[33] X. Pan and S. Lyu, “Region duplication detection using image feature
matching,” IEEE Transactions on Information Forensics and Security,
vol. 5, no. 4, pp. 857–867, December 2010.

[34] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra, “A SIFT-
based forensic method for copymove attack detection and transformation
recovery,” IEEE Transactions on Information Forensics and Security,
vol. 6, no. 3, pp. 1099–1110, 2011.

[35] J. Zhao and W. Zha, “Passive forensics for region duplication image
forgery based on Harris feature points and local binary patterns,” in
Mathematical Problems in Engineering, 2013, pp. 1–12.

[36] J. Fridrich, D. Soukal, and J. Lukás, “Detection of copy-move forgery in
digital images,” in proc. of Digital Forensic Research Workshop, 2003.

[37] G. Muhammada, M. Hussain, and G. Bebis, “Passive copy move image
forgery detection using undecimated dyadic wavelet transform,” Digital
Investigation, vol. 9, pp. 49–57, 2012.

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

[38] B. Mahdian and S. Saic, “Detection of copymove forgery using a method
based on blur moment invariants,” Forensic Science International, vol.
171, pp. 180–189, 2007.

[39] J. Zhao and J. Guo, “Passive forensics for copy-move image forgery us-
ing a method based on DCT and SVD,” Forensic Science International,
vol. 233, pp. 158–166, 2013.

[40] S.-J. Ryu, M. Kirchner, M.-J. Lee, and H.-K. Lee, “Rotation invariant
localization of duplicated image regions based on Zernike moments,”
IEEE Transactions on Information Forensics and Security, vol. 8, no. 8,
pp. 1355–1370, August 2013.

[41] Y. Li, “Image copy-move forgery detection based on polar cosine trans-
form and approximate nearest neighbor searching,” Forensic Science
International, vol. 224, pp. 59–67, 2013.

[42] L. Li, S. Li, H. Zhu, and X. Wub, “Detecting copy-move forgery
under affine transforms for image forensics,” Computers and Electrical
Engineering, vol. in press, 2014.

[43] S. Bayram, H. Sencar, and N. Memon, “An efficient and robust method
for detecting copy-move forgery,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, April 2009, pp. 1053–1056.

[44] Q. Wu, S. Wang, and X. Zhang, “Log-polar based scheme for revealing
duplicated regions in digital images,” IEEE Signal Processing Letters,
vol. 18, no. 10, pp. 559–652, 2011.

[45] A. Langille and M. Gong, “An efficient match-based duplication
detection algorithm,” in Canadian Conf. on Computer and Robot Vision,
2006.

[46] M.R. Teague, “Image analysis via the general theory of moments,” Opt.
Soc. Amer., vol. 70, no. 8, pp. 920–930, 1980.

[47] M. Bleyer, C. Rhemann, and C. Rother, “PatchMatch stereo - stereo
matching with slanted support windows,” in British Machine Vision
Conference, 2011, pp. 1–11.

[48] A. Newson, A. Almansa, M. Fradet, Y. Gousseau, and P. Perez, “Towards
fast, generic video inpainting,” in Proceedings of the 10th European
Conference on Visual Media Production, 2013.

[49] L. Verdoliva, D. Cozzolino, and G. Poggi, “A reliable order-statistics-
based approximate nearest neighbor search algorithm,” IEEE Transac-
tions on Image Processing, vol. 26, no. 1, pp. 237–250, January 2017.

Luca D’Amiano received the Laurea degree in
Telecommunications Engineering and the Ph.D. de-
gree in Information Engineering from the University
of Naples Federico II, Naples, Italy, in 2014 and
2018, respectively. He is currently a System Engi-
neer at Leonardo s.p.a., Rome, Italy, working in the
Land and Naval Defence Electronics division. His
main research interests are in multimedia forensics,
especially image forgery detection and localization.

Davide Cozzolino received the Laurea degree in
Computer Engineering and the Ph.D. degree in Infor-
mation Engineering from the University Federico II
of Naples, Naples, Italy, in December 2011 and April
2015, respectively. He is currently a Post Doc at the
same University. His study and research interests
include image processing and deep learning, with
applications to remote sensing (image analysis and
restoration) and multimedia forensics (image forgery
detection and localization). Dr. Cozzolino serves as a
Reviewer for the IEEE Transactions on Information

Forensics and Security, IEEE Geoscience and Remote Sensing Letters, MDPI
Remote Sensing.

Giovanni Poggi is Full Professor of Telecommu-
nications and vice Director of the Department of
Electrical Engineering and Information Technology
of the University of Naples Federico II, Naples,
Italy. His research interests are in statistical im-
age processing, including compression, restoration,
segmentation, and classification, with application to
remote-sensing (both optical and SAR images), dig-
ital forensics, and biometry. Prof. Poggi is Associate
Editor for MDPI Remote Sensing and has been
Associate Editor for IEEE Transactions on Image

Processing and Elsevier Signal Processing.

Luisa Verdoliva (M14-SM17) received the Laurea
degree in Telecommunications engineering and the
Ph.D. degree in Information Engineering from the
University of Naples Federico II, Naples, Italy, in
1998 and 2002, respectively. She is Assistant Profes-
sor of Telecommunications with the Department of
Electrical Engineering and Information Technology
of the University of Naples Federico II, Naples, Italy.
Her research is on image processing, in particu-
lar restoration, fusion and classification of remote-
sensing images and multimedia forensics. Dr. Verdo-

liva has been elected member of the IEEE Information Forensics and Security
Technical Committee for the 2016-2018 period and she is an Associate Editor
of IEEE Transactions on Information Forensics and Security.

Admin
Typewritten text
IEEE Transactions on Circuits and Systems for Video Technology Volume: 29 , Issue: 3 , March 2019

