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Abstract— Monitoring of respiratory rate (RR) is very im-
portant for patient assessment. In fact, it is considered one
of the relevant vital parameters in critical care medicine.
Nowadays, standard monitoring relies on obtrusive and
invasive techniques which require adhesive electrodes or
sensors to be attached to the patient’s body. Unfortunately,
these procedures cause stress, pain and frequently dam-
age the vulnerable skin of preterm infants. The current pa-
per presents a “black-box” algorithm for remote monitoring
of RR in thermal videos. “Black-box” in this context means
that the algorithm does not rely on tracking of specific
anatomic landmarks. Instead, it automatically distinguishes
regions of interest in the video containing the respiratory
signal from those containing only noise. To examine its
performance and robustness during physiological (phase
A) and pathological scenarios (phase B), a study on twelve
healthy volunteers was carried out. After a successful vali-
dation on adults, a clinical study on eight newborn infants
was conducted. A good agreement between estimated RR
and ground truth was achieved. In the study involving
adult volunteers, a mean root-mean-square error (RMSE)
of (0.31 ± 0.09) breaths/min and (3.27 ± 0.72) breaths/min was
obtained for phase A and phase B, respectively. In the
study involving infants, the mean RMSE hovered around
(4.15 ± 1.44) breaths/min. In brief, this paper demonstrates
that infrared thermography might become a clinically rel-
evant alternative for the currently available RR monitoring
modalities in neonatal care.
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I. INTRODUCTION

RESPIRATION is an important physiological process
which ensures oxygen supply to the human body and

removal of carbon dioxide from the circulation. Each respira-
tory cycle consists of two phases: inspiration of oxygen-rich
air necessary for metabolism, and expiration of carbon dioxide
generated during energy-producing reactions [1]. Thus, mon-
itoring of respiratory function, and especially, respiratory rate
(RR) is very important for patient assessment [2]–[4]. Indeed,
RR is considered a crucial vital parameter in critical care
medicine [3], [5].

Respiratory rate, usually measured in breaths per minute
(breaths/min), describes the rate of the respiratory cycles. Nor-
mal values for this vital sign vary according to age. While RR
of adults normally ranges between 12 to 20 breaths/min, RR
of preterm infants may vary between 40 to 60 breaths/min [6].

Diverse diseases contribute to breathing disorders, which
are commonly identified either by abnormal RRs, respira-
tory sounds, or by an atypical waveform (altered breathing
depth and/or rhythm) [7]–[9]. Tachypnea (increased RR),
for example, can be an early indicator for heart and lung
diseases. Bradypnea (decreased RR), in turn, may be caused
by hypothermia, certain medications (e.g. narcotics) or by
diseases affecting the central nervous system [10]. Other
pathological breathing patterns such as Kussmaul’s breathing
or Cheyne-Stokes respiration are commonly associated e.g.
with cerebral ischemia [11], [12] and metabolic disorders [13].
In context with preterm neonates, the continuous surveillance
of the respiratory rate and its variations is mandatory, since
apneas and bradycardia occur frequently. If not detected early,
they may lead to oxygen-depletion in the organs, resulting
e.g. in deficits in their neurodevelopmental outcome [14].
Furthermore, tachypnea is one of the leading clinical signs
for bacterial pulmonary infection [15]. Finally, this vital sign
contributes to an early identification of sudden infant death
syndrome, which is one of the major causes for death in
children younger than one year [16].

However, RR is still one of the most clinically undocu-
mented and underestimated vital signs, mostly due to short-
comings of current clinical monitoring techniques [3], [17].
These modalities rely on the attachment of sensors to the
patients body, which induce stress and discomfort [18]. In
preterm and very low birth weight (VLBW) infants, placement
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and removal of adhesive electrodes frequently lead to epider-
mal stripping and skin disruption because the electrode-dermis
junction is stronger than the bond between the epidermis
and dermis. In fact, removal of adhesive electrodes is the
major cause of skin breakdown in neonatal intensive care units
(NICUs) [19], [20].

In recent years, there has been a great effort to develop
non-contact RR monitoring techniques. Their major aim is
to improve patients quality of life [5]. One of the first
techniques for contactless measurement of vital signs was the
Radar Vital Signs Monitor (RVSM) developed by Greneker
et al. in 1997 [21]. Steffen et al. [22] proposed in 2008 a
multichannel simultaneous magnetic induction measurement
system (MUSIMITOS) capable of monitoring heart and lung
activity unobtrusively. In 2013, Marchionni et al. used a laser
Doppler vibrometer, which measures vibrations of a surface,
for contactless monitoring of respiration and heart rate in
preterm infants [23]. Recently, the focus has broadened to en-
compass imaging technologies: visible and near-infrared [24]–
[26], mid-wave infrared [16] as well as long wave infrared [27]
imaging systems. Infrared thermography (IRT), also known as
thermal imaging, is a very promising approach for unobtrusive
and non-contact monitoring of both heart rate and RR [28]. In
contrast to visible and near-infrared imaging systems, IRT does
not require any active illumination. It is a completely passive
technology which works in total darkness. Therefore, it is well
suited for very sensitive patients such as neonates [29].

Most imaging approaches for RR monitoring [16], [30]
including our previous works [27], [28], [31] are based on the
detection and tracking of certain feature points or anatomic
landmarks such as the nose. Abbas et al. [27] presented in
2011 an algorithm which estimated the RR using a continuous
wavelet transform of the temperature modulation around the
nostrils. The region of interest (ROI) was defined in the first
frame and no tracking algorithm was used. They validated
their approach using video data from seven premature infants.
In 2017, our research group improved this approach by imple-
menting a tracking algorithm. To estimate the instantaneous
respiratory frequencies, three estimators were computed for
each position of the short adaptive analysis window: adaptive
window autocorrelation, adaptive window average magni-
tude difference function, and adaptive maximum amplitude
pairs [32]. To the best of our knowledge, there aren’t any

other approaches in the literature, which use thermal imaging
to monitor RR in infants.Further research groups (such as [16],
[30]) tested their methods in video data from adult volunteers.
Fei and co-authors [16] used a coalitional tracking algorithm
to track motion. Posteriorly, the respiratory temperature wave-
form was normalized and wavelet analysis was applied to the
re-sampled signal. Lewis et al. [30], in turn, tested a tracking
method based on the Piecewise Bezier Volume Deformation
model. The thermal signal, computed from both nostrils, was
dynamically filtered and the breath interval was calculated
using its first derivative.

The former techniques work well when the nose is clearly
visible in the image, however they fail when the nose is
outside the camera’s field of view (patient lying on the side).
In this paper, we present a new “black-box” approach which
does not rely on tracking of anatomic landmarks, but instead
automatically detects respiration in image sequences.

For a proof-of-concept, the approach was firstly validated
in a study involving healthy adult human subjects. Here, its
ability to accurately measure RR during challenging condi-
tions (simulated breathing disorders) was analyzed. A second
study with newborn infants was performed at the division
of Neonatology of the Sophia Children’s Hospital (Erasmus
MC, Rotterdam, The Netherlands); the aim was to evaluate
the outcome of the algorithms in this particular group as well
as in a clinical scenario.

In this paper, Sec. II presents the proposed algorithm.
Section III describes the experimental protocol and setup of
both studies. The results are presented in Sec. IV and discussed
in Sec. V. Finally, Sec. VI concludes the paper and gives future
perspectives.

II. METHODOLOGY

In this paper, a “black-box” or grid-based approach was
used. This means that instead of defining a ROI based on
anatomic landmarks (e.g. the nose [16], [30]), a grid was laid
over the image with each grid cell representing one ROI. The
respiratory signal and RR were extracted for each ROI and
afterwards analyzed with regard to its quality. Finally, suitable
ROIs were automatically selected and information was fused in
order to get robust estimations for RR. The above-mentioned
steps are illustrated in Fig. 1 and are described below in
detail. The algorithm was programed and tested in MATLAB
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Fig. 1. Schematic representation of the major steps used to estimate RR.

sdpro 8.1 64
Typewritten text
IEEE Transactions on Biomedical Engineering ( Volume: 66 , Issue: 4 , April 2019 )



3 15
Frequency (Hz)

0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
|S

(f
)|

 (
no

rm
al

iz
ed

)
Normalized spectrum of a respiration signal

3 15
Frequency (Hz)

0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|S
(f

)|
 (

n
or

m
al

iz
ed

)

Normalized spectrum of noise

Threshold for F2

F1

F3, F4

Fig. 2. Left: normalized spectrum of a representative respiratory signal resulting in a SQI of 0.98. Right: normalized spectrum of noise (SQI = 0.71)
with features for SQI depicted. For better visualization of the LP- and BP-band, the frequency axes have been scaled.

(MATLAB 2017a, The MathWorks Inc., Natick, MA, USA)
using a 64-bit Windows 7 computer with a quad-core Intel®

Core™i5-3450 3.10 GHz processor, 16 GB RAM and a solid-
state drive. Data were analyzed offline.

A. Extraction of respiratory signal and estimation of
signal quality

For the kth ROI, the signal sROIk(t) at timestamp t was
extracted by calculating the 2-dimensional mean value of all
pixels within the ROI according to

sROIk(t) =
1

mn

m−1∑
i=0

n−1∑
j=0

IROIk(i, j, t). (1)

The width and height of ROIk are denoted by m and n, while
IROIk(i, j, t) denotes the intensity at pixel i, j at time stamp
t. For further analysis, a hamming window was applied to the
most recent 15 seconds of sROIk(t), resulting in the analysis
window sw,ROIk(t). As known, a rectangular window applied
to a signal in the time domain can lead to distortions in the
frequency domain. To minimize these distortions, a smoother
window shape (Hamming window) was applied. When used,
this de-emphasizes the edges and reduces their effects [33].
The length of 15s was used because the resulting trade-off
between time- (15s) and frequency resolution (4 breaths/min)
seemed reasonable to track changes in respiratory rate fast
enough while maintaining sufficient accuracy. Posteriorly, the
analysis window was mean centered and transformed into the
frequency domain using a Fourier transform. Each window’s
spectrum Sw,ROIk(f) was normalized to its maximum value.

In subsequent steps, three different frequency bands were
considered:

• Low-Pass (LP): f < 0.1Hz,
• Band-Pass (BP): 0.1Hz ≤ f ≤ 3Hz,
• High-Pass (HP): f > 3Hz.
While the LP-Band contains low-frequency noise (e.g.

baseline drift), the HP-Band contains high-frequency noise

components (e.g. sensor noise or motion artefacts). The BP-
Band is the frequency range of respiration. It ranges between
0.1 and 3 Hz in order to increase the number of applications
of our approach. It can be used not only for monitoring
RR in newborn infants (normal RR ranges between 40 and
60 breaths/min) but also for monitoring RR in adult patients
(normal RR ranges between 12 and 20 breaths/min). Addition-
ally, in the future, we plan to test the capability of the current
approach to detect heart rate. The mean heart rate for adults
ranges from 60 to 100 beats per minute (bpm) and that for
preterm infants ranges from 120 to 170 bpm [6], [34], [35].

In order to determine whether the current analysis window
of a ROI actually contains a respiration-related signal or only
noise, a signal quality index (SQI) was empirically developed:

SQI =

{
1− [ 12 · F3 + 1

4 · (F1 + F2)], if F4 ≥ 2
1− 1

2 · (F1 + F2), otherwise. (2)

It was based on four features (F1 - F4) of the normalized
spectrum, see Fig. 2. The first feature (F1) corresponds to
the maximum within the HP-band. The second feature, F2,
stands for the percentage of values in the HP-band larger than
a given threshold. The third feature, F3, denotes the difference
between maximum in the BP-band and maximum in the LP-
band. The last feature, F4, refers to the ratio between the
maximum in LP-band and maximum in BP-band.

The SQI takes both high frequency noise (features F1 and
F2) as well as low frequency noise (features F3 and F4) into
account. Due to its definition, possible values of the SQI are
limited to [0, 1]. While a SQI of 1 indicates a very good signal
quality, a SQI of 0 points towards a very poor signal quality.

B. Selection of grid cells and estimation of RR using
information fusion

For each ROI’s current analysis window, the RR was
defined as the frequency within the BP-Band with the
maximum amplitude in the normalized spectrum. However,
ROIs with an actual respiratory signal must be distinguished
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from those which do not contain a respiratory signal (e.g.
background noise). This was accomplished by only accepting
ROIs with a SQI higher than a threshold of 0.75, which
was empirically defined. All other ROIs were excluded from
further analysis.

Three different sensor fusion techniques were applied
to the RRs of the ROIs RRROIk , in order to estimate the
instantaneous RR. The following paragraphs describe the
three algorithms in detail.

a) Median: This first approach computes the median fre-
quency of all valid ROIs. The fused RR (RRfus

t ) at time point
t is governed by the following equation:

RRfus
t = 60 · f fus

t , (3)

with

f fus
t = median(f i

t ). (4)

Here, f fus
t stands for the fused frequencies at time point t.

The variable f i
t represents, in turn, the frequency at which

the normalized power spectrum of the ROI k assumes its
maximum:

f i
t = arg max

fmin≤f≤fmax

SROIk,norm(f). (5)

The frequency boundaries fmin and fmax correspond to the
boundary respiratory rates of the HP-band, i.e. 6 breaths/min
and 180 breaths/min, respectively.

b) Best SQI: The second approach consists in selecting
the RR of the ROI with the highest SQI.

c) Bayesian fusion: The Bayesian fusion is based on the
well-known Bayes’ law, which allows the estimation of a
system state variable x (posterior probability distribution) us-
ing observations (measurements) from different sensors (ROIs
in this case) s. In order to apply Bayesian fusion to the
presented algorithm, current observations smt (current analysis
window) needed to be separated from previous observations
smt−1 (previous analysis windows):

p(x|smt ) =
p(smt |x, smt−1) · p(x|smt−1)

p(smt |smt−1)
. (6)

While p(smk |x, smk−1) is the likelihood function, p(x|smk−1)
denotes the prior distribution. The denominator p(smk |smk−1) is
a normalization factor for integrating the probability density
function to one. The m available sensors (ROIs) s1 . . . sm are
denoted by sm. In this work, we considered the sensors to be
independent from each other, therefore

p(smk |x, smk−1) =
m∏
i=1

p(sik|x, sik−1). (7)

Under this assumption, the Bayesian fusion can be calculated
according to

p(x|[s1k . . . smk ]) = p(x|s1k−1 . . . smk−1) ·
m∏
i=1

p(x|sik)

p(x|sik−1)
. (8)

In this work, the system state variable x stands for the RR
and [s1k . . . smk ] represents the RR of each valid ROI. Based
on the probability function after Bayesian fusion, the RR
was defined as the RR with the highest probability within
the frequency boundaries of the BP-band (6 breaths/min and
180 breaths/min):

RRfus = arg max p(x|[s1k . . . smk ]), RRmin ≤ RRfus ≤ RRmax.
(9)

The analysis window was updated in steps of 1 second result-
ing in a temporal resolution of 1 Hz for the RR.

III. EXPERIMENTAL PROTOCOL AND SETUP

The first aim of this work was to validate the feasibility
of the proposed “black-box” algorithm. To achieve this, data
of healthy volunteers collected in a previous study [31] was
used. The second aim was to examine the capability of our
approach to accurately estimate RR in newborn infants. For
that, a second study was carried out with newborns at the
division of Neonatology of the Sophia Children’s Hospital
(Erasmus MC, Rotterdam, Netherlands).

A. Study in Healthy Subjects

Twelve healthy subjects (5 females and 7 males), between
the ages of 21 and 31 (25.25 ± 2.83 years) voluntarily
accepted to participate in the study. During the experiments,
a long-wavelength infrared (LWIR) camera [VarioCAM® HD
head 820S/30 mm (InfraTec GmbH, Dresden, Germany)] was
sat atop a tripod located 2 m away from the subjects and at
their height. The thermal camera has an uncooled infrared
microbolometer focal plane array with a spatial resolution
of 1024 × 768 pixels and detects infrared wavelengths in
the spectral range of 7.5 µm to 14 µm. At 30 ◦C, its thermal
sensitivity is better than 0.05 K. In addition, the thermal videos
were acquired with a frame rate of 30 frames per second (fps).

The study protocol comprised two phases: A and B. In phase
A, a nine minutes recording was carried out; the volunteers
were instructed to sit still and breathe normally. In phase B,
they were advised to simulate in a period of ten minutes
the sequence represented in Fig. 3. It was composed of
normal (eupnea) and diverse altered respiratory patterns (e.g.
tachypnea, apnea, Kussmaul breathing and Cheyne-Stokes
respiration). Thoracic effort (piezoplethysmography) was the
ground truth (GT) used to validate the results. It was measured
simultaneously with the data recording system SOMNOlab 2
(Weinmann GmbH, Hamburg, Germany). In order to simplify
signal synchronization, the volunteers were advise to hold their
breath 15 s before beginning and 15 s after ending of each
phase. The study design and protocol were approved by the
Ethics Committee of RWTH Aachen University Hospital (EK
081/16).
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Fig. 3. Respiratory sequence simulated by the healthy volunteers in
phase B. It consists of normal and altered breathing patterns: tachyp-
nea, apnea, Kussmaul breathing and Cheyne-Stokes respiration.

B. Study in Newborn Infants

To investigate the performance of the algorithms under
real conditions, a feasibility study was carried out at the
division of Neonatology of the Sophia Children’s Hospital,
Erasmus University Medical Center (Erasmus MC). Its design
and protocol were approved by the Ethics Committee of the
Erasmus MC (MEC 2017-042). In order to be eligible to
participate in this study, the subjects must meet all of the
following criteria:

1) admitted to the Sophia Childrens hospital;
2) gestational age between 24 and 42 weeks;
3) be in control of their breathing frequency (either non-

invasive, synchronized, flow, or no respiratory support);
4) stable health condition.

Patients with time-dependent respiratory support were ex-
cluded from participation.

After obtaining informed consent from the
parents/caregivers, two 5-minutes thermal recordings per
patient (one on each side of the incubator/open bed) were
carried out. For each recording of patients lying in incubators,
a different door (left or right) was opened (note that it is
not possible to record through the polycarbonate hood of the
incubator due to its non-transparency for thermal radiation).

Fig. 4. Illustration of the study setup for an open bed.

When the patient was in a open bed, the curtain was slide
aside slightly. The thermal camera [VarioCAM® HD head
820S/30 mm (InfraTec GmbH, Dresden, Germany)] was
sat atop a tripod in front of the open door. As a matter of
fact, patients were not moved for the recording, thus all
sleeping positions were considered. Fig. 4 illustrates the
study setup. In general, the observational study included
eight newborn infants (6 males and 2 females) with the
following characteristics: gestational age (GA) - 32 ± 4
weeks, postnatal age (PA) - 27 ± 19 days. Table I shows
the patient data. To validate the results, the RR derived from
body surface electrocardiography (ECG), measured with the
M540 patient monitor (Dräger AG, Lübeck, Germany), was
used. RR was acquired with a sampling rate of 1 Hz.

IV. RESULTS

This section firstly describes the performance of our ap-
proach in thermal videos of healthy adult subjects (Sec. IV-
A). Section IV-B, in turn, presents the results of the validation
in newborn infants. The whole evaluation was performed in
MATLAB (MATLAB 2017a, The MathWorks Inc., Natick,
MA, USA).

TABLE I
PATIENT DATA

Infant Gender
Gestational age Postnatal age Weight

Sleeping position Respiratory Support Type of bed
[weeks + days] [days] [g]

I1 M 33 3/7 46 1705 Supine O2 therapy Open bed

I2 M 33 3/7 46 1690 Lateral O2 therapy Open bed

I3 F 32 6/7 29 1125 Prone O2 therapy Incubator

I4 M 34 2/7 52 1850 Lateral SIMV and PSV Open bed

I5 M 27 3/7 6 950 Supine CPAP Incubator

I6 M 27 3/7 6 955 Supine CPAP Incubator

I7 F 40 26 3100 Supine SIMV and PSV Incubator

I8 M 30 2/7 3 1570 Lateral CPAP Incubator

SIMV: Synchronous Intermittent Mandatory Ventilation; PSV: Pressure Support Ventilation

CPAP: Continuous positive airway pressure
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A. Study in Healthy Subjects
a) Phase A: Table II shows the performance of the al-

gorithm for phase A. The best results were obtained us-
ing the fusion method median. The root-mean-square er-
ror (RMSE) hovered around (0.31± 0.09) breaths/min. On
average, 97.53 % and 99.55 % of the absolute errors did
not transcend 1 breath/min and 2 breaths/min. By using the
best SQI, similar results were achieved; the RMSE av-
eraged (0.32± 0.15) breaths/min. In addition, 97.82 % and
99.53 % of the absolute errors between both monitoring
technologies (IRT and GT) were smaller than 1 breath/min
and 2 breaths/min. Finally, with Bayesian fusion the RMSE
was (0.51± 0.15) breaths/min. In comparison with the two
previous fusion methods, the percentage of errors smaller
than 1 breath/min and 2 breaths/min decreased to 92.19 % and
99.39 %, respectively. Additionally, the results showed similar
mean correlation coefficients for the three fusion methods:
0.98 for both median and best SQI, and 0.95 for Bayesian
fusion (all p-values were smaller than 0.05). Note, that the
previous values were calculated by averaging the correlations
calculated for each single subject.

TABLE II
PERFORMANCE OF THE APPROACH FOR PHASE A

Subject Gender Age
RMSE [breaths/min]

Median best SQI Bayes

S1 F 24 0.30 0.24 0.35

S2 F 24 0.27 0.24 0.79

S3 M 31 0.40 0.70 0.54

S4 M 27 0.38 0.39 0.34

S5 M 29 0.20 0.21 0.49

S6 M 25 0.22 0.22 0.34

S7 F 22 0.45 0.44 0.47

S8 M 25 0.47 0.47 0.56

S9 F 26 0.26 0.21 0.47

S10 M 26 0.20 0.20 0.56

S11 M 21 0.38 0.33 0.45

S12 F 23 0.24 0.22 0.79

Mean ± SD 0.31 ± 0.09 0.32 ± 0.15 0.51 ± 0.15

Fig. 5 displays a Bland-Altman plot comparing both mea-
surement techniques (IRT and GT). Using median for data
fusion, a mean difference of 0.026 breaths/min was achieved
and the limits of agreements ranged from −0.82 breaths/min
to 0.87 breaths/min.

b) Phase B: Table III shows, in turn, the performance of
the algorithm for phase B. Also here, the best results were
obtained using the fusion method median; the RMSE hov-
ered around (3.27± 0.72) breaths/min. On average, 88.60 %
of the absolute errors between IRT and GT did not ex-
ceed 2 breaths/min (81.09 % were smaller than 1 breath/min).
Using the best SQI, the following results were achieved:
RMSE averaged (3.39± 0.86) breaths/min, and the absolute
errors between both techniques were smaller than 1 breath/min
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Fig. 5. Bland-Altman plot comparing both measurement methods, IRT
(RRIRT , fusion method median) and GT (RRGT ). The bias averages
0.026 breaths/min (solid line) and the 95% limits of agreement vary
between −0.82 breaths/min and 0.87 breaths/min (dashed lines).

and 2 breaths/min in 81.33 % and 88.75 % of the cases.
Lastly, with the third fusion algorithm (Bayesian fusion), a
RMSE of (3.41± 0.63) breaths/min was obtained. In this case,
79.76 % and 88.82 % of the absolute errors did not transcend
1 breath/min and 2 breaths/min. Also in phase B similar mean
correlation coefficients were obtained for the three fusion
methods: 0.95 for median and 0.94 for both best SQI and
Bayesian fusion (all p-values were smaller than 0.05).

TABLE III
PERFORMANCE OF THE APPROACH FOR PHASE B

Subject
RMSE [breaths/min]

Median best SQI Bayes

S1 2.36 2.27 2.70

S2 4.35 4.23 4.41

S3 3.17 3.19 3.26

S4 2.20 2.32 2.60

S5 2.49 2.46 2.75

S6 3.33 3.42 3.32

S7 4.36 5.34 4.18

S8 2.71 3.22 2.80

S9 3.63 3.78 3.67

S10 3.98 3.19 4.26

S11 2.96 3.01 3.04

S12 3.73 4.22 3.87

Mean ± SD 3.27 ± 0.72 3.39 ± 0.86 3.41 ± 0.63

Fig. 6 shows the RR estimated with thermal imaging (solid
blue line) as well as the GT signal (green dashed line). This
illustrative example displays the signals correspond to subject
S5 (phase B). In Fig. 7, a Bland-Altman plot comparing
both monitoring techniques is presented. In this example,
median was the method used for data fusion. In general,
the Bland-Altman demonstrates a bias of 0.78 breaths/min
and limits of agreement range from −6.4 breaths/min to
8.0 breaths/min. Outliers are highlighted by the gray shading
regions (more details in Sec. V - Discussion).
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Fig. 6. Estimated RR correspondent to subject S5 (blue solid - IRT, green dashed line - GT). Median approach was used for data fusion. The gray
shading regions show the transitions between different respiratory patterns.
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Fig. 7. Bland-Altman plot comparing both measurement methods, IRT
(RRIRT , fusion method median) and GT (RRGT ). The bias averages
0.78 breaths/min (solid line) and the 95% limits of agreement vary be-
tween −6.4 breaths/min and 8.0 breaths/min (dashed lines). Outliers are
highlighted by the gray shading regions.

B. Study in Newborn Infants
Table IV demonstrates the performance of the proposed

algorithm for each infant and video sequence (1 and 2). Unfor-
tunately, during the first video recording the infant I3 became
agitated (due to reasons not related with this study). As the sig-
nals only contained movement artifacts, the sequence was not
considered for evaluation. Using the median for signal fusion,
a mean RMSE of (4.15± 1.44) breaths/min was obtained. In
addition, the mean RR error (ε̄) was (3.36± 1.25) breaths/min
and the spread of the error, calculated using the 90th per-
centile of the errors (ε̄90), reached (6.53± 2.39) breaths/min.
On average, the RR of the newborn infants hovered around
(54.19± 6.23) breaths/min. The results showed a mean corre-
lation of 0.79 (all p-values were smaller than 0.05).

TABLE IV
PERFORMANCE OF THE APPROACH ON THERMAL VIDEOS OF NEWBORN INFANTS

Infant Sequence
RRGT RRIRT RMSE ε̄ ε̄90

[breaths/min] [breaths/min] [breaths/min] [breaths/min] [breaths/min]

I1
1 62.05 59.41 4.79 4.17 7.71

2 53.86 51.2 6.11 5.16 8.96

I2
1 46.45 46.88 4.53 3.49 7.69

2 50.24 52.86 6.75 5.14 11.68

I3
1 - - - - -

2 47.49 46.99 4.29 3.43 6.86

I4
1 53.03 52.08 1.95 1.48 2.97

2 55.63 56.07 1.53 1.15 2.97

I5
1 53.35 56.51 3.98 3.29 5.53

2 49.6 47.96 2.86 2.42 4.59

I6
1 69.56 68.17 5.02 4.06 8.62

2 61.84 62.35 5.91 5.31 8.83

I7
1 49.38 51.88 3.56 3.06 5.83

2 49.91 51.34 2.67 2.02 4.58

I8
1 59.50 57.15 4.42 3.76 7.03

2 51.02 50.96 3.86 2.44 4.09

Mean ± SD 54.19 ± 6.23 54.12 ± 5.72 4.15 ± 1.44 3.36 ± 1.25 6.53 ± 2.39
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Fig. 8. Bland-Altman plot comparing both measurement methods, IRT
(RRIRT , fusion method median) and GT (RRGT ). The bias averages
0.24 breaths/min (solid line) and the 95% limits of agreement vary be-
tween −8.1 breaths/min and 8.6 breaths/min (dashed lines).

Fig. 8 depicts a Bland-Altman plot comparing both mea-
surement techniques, IRT and GT. According to the results, the
estimated mean difference was 0.24 breaths/min and the limits
of agreement ranged from −8.1 breaths/min to 8.6 breaths/min.
Lastly, Fig. 9 shows the RR estimated with thermal imaging
(solid line) as well as the GT signal (dashed line). This
illustrative example displays the signals of infant I7 (video
sequence 2).
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Fig. 9. Illustrative example showing estimated RR. Whereas the dashed
line corresponds to the GT, the solid line stands for the RR estimated
with IRT. The signals correspond to subject I7 (video sequence 2).

V. DISCUSSION

Respiratory rate is a primary vital sign in critical care.
However, it is also one of the major undocumented parameters.
This is mainly due to the drawbacks of current monitoring
techniques, which rely on cables as well as on the attachment
of sensors. In neonatal care, cables and electrodes contribute
significantly to stress and discomfort. Especially preterm and
VLBW infants have a very thin and sensitive skin, thus adhe-
sive electrodes often damage their skin when being removed.
To overcome all these issues, scientists seek for new reliable
and unobtrusive monitoring alternatives.

The current paper proposed a novel approach for non-
invasive and passive assessment of RR in newborn infants
using IRT. As a proof-of-concept, its performance was firstly
validated in a study involving twelve healthy adult human

subjects. Here, the robustness of the algorithm under chal-
lenging conditions (e.g. variable RR and simulated respiratory
disorders) was investigated. A second study was carried out
in eight newborn infants hosted in an incubator under real
conditions.

A. Study in Healthy Subjects

The presented approach was firstly validated using thermal
videos of twelve healthy adults. In phase A (subjects were
advised to breath normally), a good agreement between GT
(piezoplethysmography) and thermal imaging was observed.
By using the median for sensor fusion, the best results were
achieved, with a mean RMSE of (0.31± 0.09) breaths/min.
The Bland-Altman plot of Fig. 5 together with the mean
correlation coefficient and the percentage of errors smaller
than 1 and 2 breaths/min (92.19% and 99.39%) corroborate
the good agreement between both monitoring technologies.
To examine clinically relevant scenarios within the study,
a wide range of physiological and pathological respiratory
patterns (including eupnea, tachypnea, apnea, Kussmaul
breathing, and Cheyne-Stokes respiration) were simulated
in phase B. Table III together with the Bland-Altman plot
of Fig. 7 show higher RR errors in Phase B (compare
with Table II and Fig. 5 of phase A). In this phase, abrupt
changes in RR were simulated (e.g. from 0 breaths/min to
30 breaths/min), as illustrated in Fig. 3 and Fig. 6. Therefore,
small delays between GT and IRT in these transitions caused
higher temporal errors, which negatively influenced the
RMSEs displayed in Table III. These errors correspond to the
outliers illustrated by the gray shading regions of Fig. 7. The
great discrepancies occurred in transitions such as eupnea
to tachypnea, tachypnea to eupnea, apnea to tachypnea,
tachypnea to eupnea, etc. The previous statements together
with Fig. 6 prove that the errors between IRT and GT
outside these passages were actually quite small. Indeed, as
described in Sec. IV-A, the percentage of absolute errors
smaller than 1 and 2 breaths/min hovered around 81.09% and
88.60%, respectively. In addition, two techniques based on
different measurement principles were compared, which may
contributed to small lags or different reaction times in the
transitions between distinct respiratory patterns.

In 2017, our group proposed another approach to estimate
RR from thermal videos of adult volunteers [31]. Note that
the video sequences were used in the current paper to test
the feasibility of the “black-box” algorithm. The approach
presented in 2017 used the information of four different ROIs
to compute RR (“multiple regions of interest” approach): nose
(temperature modulation), mouth (temperature modulation),
and shoulders (movement). To measure RR, the ROIs were
automatically identified in the first frame of the video sequence
and, afterwards tracked. In a further step, the four respiratory
waveforms were extracted. Lastly, the RR from the four ROIs
were fused to minimize the detection error probability and
to achieve a higher reliability. Despite of the good results, it
presented a major drawback. For an automatic detection of all
ROIs, the subjects must lay in supine position. To overcome
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this issue, we developed a novel algorithm, presented in
this paper, which does not use any anatomical region to
estimate RR; it regards thermal videos sequences as black-
boxes. In brief, similar results between the two approaches
were obtained. By applying the “black-box” algorithm, a
mean RMSE of 0.31 breaths/min and 3.27 breaths/min was
obtained for phase A and B, respectively. Using the approach
“multiple regions of interest”, the mean RMSEs averaged
0.28 breaths/min and 3.36 breaths/min. In sum, the results
indicate that the proposed approach is capable of accurately
estimating RR in thermal videos even during challenging
conditions.

B. Study in Newborn Infants

After a successful validation on thermal videos of healthy
adults, the performance of the “black-box” algorithm was
examined on data from newborn infants under incubator care.
For the two recordings, the camera was placed first on the left
and then on the right side of the medical device. One aim of
the study was to discover whether the position of the infants
affects the analysis technique. Thus, patients were not moved
for video acquisition.

Table IV and the correlation analysis show the good agree-
ment between the proposed method and reference, with a mean
RMSE of (4.15± 1.44) breaths/min and a mean correlation
coefficient of 0.79. The Bland-Altman plot of Fig. 8 shows a
very good accuracy (ability to measure RR close to its true
value) between thermal imaging and GT as corroborated by
the small bias (0.24 breaths/min). The 95% limits of agreement
(−8.1 breaths/min, 8.6 breaths/min), on the other hand, indicate
a higher spread of the errors. There are some reasons that
justify these higher errors. First, RR derived from ECG is very
prone to motion artifacts, to physiologic events which induce
thoracic movements unrelated to respiration (e.g. crying), and
to poor ECG electrode placement. Second, the monitoring
modalities as well as the algorithms (e.g. filtering, averaging)
used to compute this vital parameter are different. Lastly, the
RR from newborn infants varies constantly and is also char-
acterized by abrupt changes. Therefore, small delays between
thermal imaging and GT may lead to high errors.

In 2011, Abbas et al. [27] evaluated the capability of their
approach to estimate RR in eight preterm neonates. This algo-
rithm tracks a ROI enclosing the nose in order to detect tem-
perature fluctuations during the respiratory cycle. Despite of
the outstanding results, this approach is impracticable during
respiratory support via face masks and it strongly depends on
sleeping position, since the nostrils must be always in the fiel
of view of the thermal camera. In our paper, we demonstrated
that our algorithm is capable of detecting this vital parameter
without being affected by the (1) sleeping position, (2) position
of the head and (3) by the oxygen delivery method (e.g. face
masks, nasal cannulae, nasal prongs).

The major drawback of the proposed algorithm is the
sensitivity to motion artifacts. Therefore, the next aim should
be to integrate a motion analysis algorithm capable of
detecting motion noise inside the incubator, including patient
movement, nursing interventions or maternal touch. In the

clinical study, the recordings were performed with the door
of the incubator opened, since its polycarbonate hood is not
transparent for thermal radiation. In a real setting, the camera
should be integrated inside of the incubator, or the setting
proposed by Villarroel et al. [26] should be adopted, where a
3 cm hole was cut in the top of the incubator canopy.

Thermal imaging is still an expensive technology, especially
when compared with other techniques, such as radar or visible
imaging systems, which are relatively affordable. However,
IRT has peculiar specifications that make it very attractive
for diverse medical applications, especially in neonatology.
First, thermal imaging is a passive technique, i.e. it measures
the radiation emanated by the body. In contrast, radar is an
active system, which irradiates the patient with electromag-
netic radiation. Regarding safety aspects and a future product
approval, such characteristics are particularly valuable, as the
eligibility criteria for neonatal medical equipment are very
rigorous. Secondly, contrary to other technologies, thermal
imaging is also capable of “seeing” in total darkness. Near-
infrared and visible imaging systems, in turn, require at least
a small amount of light to produce an image. Thus, a 24 hours
monitoring would require an active radiation of the patients, at
least during the night. Thirdly, IRT also allows the monitoring
of body temperature and body temperature distribution.

Until a few years ago, thermal cameras were mostly used for
military applications. Nevertheless, in the last decade, thermal
imaging cameras are finding their way in more and more
consumer-oriented applications, like driver vision enhance-
ment and home security, leading to an increase in production
volumes and, consequently, to a decrease in prices. As other
technologies, we believe that IRT systems will become afford-
able, compact and, image quality will even further improve.

The calibration of an uncooled IRT camera is still a very
complex process. Therefore, their use for applications that
require a very accurate temperature measurement might not
be meaningful. In our case, absolute accuracy is not a crucial
parameter, since we do not intend to measure absolute tem-
peratures. Instead of accuracy, a good thermal sensitivity and
resolution is mandatory for RR assessment, since the acquired
videos must have a good contrast.

VI. CONCLUSIONS

Unobtrusive and non-contact monitoring of RR and other
vital signs have become increasingly important during the
last years. Doppler radar, magnetic impedance and camera
technologies (visible, near-infrafred, mid-wave infrared, and
LWIR imaging systems) can be an important contribution to
unobtrusive vital signs monitoring.
In this paper, a novel approach to unobtrusive and non-contact
RR monitoring using a LWIR camera was presented. Instead of
tracking anatomic landmarks, a grid of regions of interest was
laid over the image and an algorithm was developed in order to
automatically select ROIs suitable for detection of respiration.
Such an approach enables to monitor RR independent of the
subject’s position and anatomic landmarks in the camera’s
field of view. In order to further improve accuracy, different
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methods were used to fuse the information available from the
different ROIs.
Initially, the validation of the algorithm demonstrated its high
accuracy compared to a clinical gold standard using data from
a lab experiment. Afterwards, the algorithm was validated
using clinical data recorded during a study with preterm
neonates. Again, the algorithm showed very good results
(mean RMSE of (4.15± 1.44) breaths/min). In conclusion, this
approach was able to robustly extract RR from LWIR video
sequences not only in lab settings, but also under real clinical
conditions. Therefore, IRT may be a very promising and clin-
ically relevant alternative for current monitoring technologies
in neonatal care.
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