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Abstract—With the increasing prevalent of digital devices and
their abuse for digital content creation, forgeries of digital images
and video footage are more rampant than ever. Digital forensics is
challenged into seeking advanced technologies for forgery content
detection and acquisition device identification. Unfortunately,
existing solutions that address image tampering problems fail
to identify the device that produces the images or footage while
techniques that can identify the camera is incapable of locating
the tampered content of its captured images. In this paper, a
new perceptual data-device hash is proposed to locate maliciously
tampered image regions and identify the source camera of the
received image data as a non-repudiable attestation in digital
forensics. The presented image may have been either tampered
or gone through benign content preserving geometric transforms
or image processing operations. The proposed image hash is
generated by projecting the invariant image features into a
physical unclonable function (PUF)-defined Bernoulli random
space. The tamper-resistant random PUF response is unique for
each camera and can only be generated upon triggered by a
challenge, which is provided by the image acquisition timestamp.
The proposed hash is evaluated on the modified CASIA database
and CMOS image sensor based PUF simulated using 180nm
TSMC technology. It achieves a high tamper detection rate
of 95.42% with the regions of tampered content successfully
located, a good authentication performance of above 98.5%
against standard content-preserving manipulations, and 96.25%
and 90.42%, respectively for the more challenging geometric
transformations of rotation (0 ∼ 360◦) and scaling (scale factor
in each dimension: 0.5). It is demonstrated to be able to identify
the source camera with 100% accuracy and is secure against
attacks on PUF.

Index Terms—Camera Identification, Digital Image Forensics,
Perceptual Image Hash, Physical Unclonable Function.

I. INTRODUCTION

THanks to the advent of information technology, digital
images and videos have been increasingly exposed as

important information or art carriers in our daily life. Despite
easy and cheap to acquire, distribute and store, the threats
of abuse are high, which if not carefully solved, will lead to
great loss of property, fame, and even life. Images or videos
can be cloned illegally, imperceptibly modified using image
processing tools or even fabricated with the help of artificial
intelligence (AI) to distort the truth to mislead people or
clinch wrongful convictions in a court of law. In late 2017,
a software called “deep fakes” was anonymously released that
uses deep learning to swap the face of a person to create
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a very realistic fake picture or video. The non-consensual
use of this tool to insert celebrity faces onto pornographic
videos caused the popular online forum Reddit to shut down
its /r/deepfakes subreddit discussion board [1]. This incident
raises a red flag, given the prevalent use of surveillance footage
to aid criminal investigation and civil litigation. As fraudsters
are more adept at using AI, it is imperative to enhance
digital (visual) evidences with technologies that can not only
detect forgeries (image tampering detection) but also identify
the digital device that captures the evidence (source camera
identification) to combat anti-forensics.

For image tampering detection problem, the solutions are
mainly provided by three types of schemes in the literature
[2]: image watermarking [3], [4], digital image forensics
[5]–[8] and perceptual image hashing [9]–[11]. The image
watermarking-based schemes can detect the distortion based
on the assumption that the imperceptibly embedded watermark
will also be distorted. However, such methods have funda-
mental trade-off between perceptual quality degradation and
watermark capacity, which limits their sensitivity and robust-
ness against different optimized attacks with a constrained
attack distortion [12]. Digital image forensic based schemes
aim at blind investigation of malicious tamper with no side
information (e.g., watermark or hash values) provided from
the original images. The method can be broadly categorized
as being visual and statistical. The former is mainly based
on visual clues such as inconsistencies in an image while
the latter focuses on analyzing the pixel values of the image
[13]. However, lacking original data information makes these
methods computationally intensive and very time consuming,
often with low accuracy of detection. Among all, perceptual
image hashing is most effective in tamper detection as it is
very sensitive to content-specific modifications but is otherwise
robust against normal content-preserving processing like noise,
filtering, rotation or scaling. Since such methods depend on a
shared secret key for authentication, the security of the whole
system will collapse if the secret key is compromised, lost or
stolen. It has been demonstrated that storing the secret key in a
non-volatile memory (NVM) is vulnerable to data remanence
and reverse engineering attacks [14]–[16]. Once the key is
cracked, the attacker can easily create a valid hash value for
a tampered image.

Source camera identification is mainly achieved using ma-
chine learning based methods, which basically follow three
steps: image feature extraction, classifier training and image
source class prediction. It is important to select appropriate
features that represent the unique characteristics of the un-
derlying devices. By analysing the structure and processing
stages of digital camera, such features can be algorithmically
extracted based on the knowledge of lens aberration, sensor
imperfection, color filter array interpolation and statistical
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image features [17]. Most existing works focus on imaging
device brand identification [18], [19], which can achieve very
high accuracy but fail to distinguish individual devices from
the same model and the same brand. Identifying individ-
ual camera devices have been increasingly studied in recent
years based on photo response non-uniformity (PRNU) pattern
[20]–[24], but strict conditions in the acquisition process,
the number and content of training images as well as the
geometrical synchronization of testing images have to be met
in order to achieve high reliability and accuracy. Since those
methods require features to be extracted from the images
instead of the device, the device source detection accuracy is
strongly constrained by the image fidelity and quality. As the
image processing methods are transparent, the same approach
can also be used by a malicious user to extract the device
features from publicly available images. A newer and anti-
forensic resistant way of camera device identification uses
physical unclonable function (PUF) to directly extract the
“device signature” from the pixel array [25], [26]. The authors
proposed low-cost CMOS image sensor [26] and dynamic
vision sensor [25] based PUFs, which were designed based on
the fact that modern integrated circuit manufacturing process
will introduce inevitable random variations into individual
active pixel elements of identically designed image sensors.
Both works have been demonstrated to be able to differentiate
every single camera device regardless of model or brand with
high accuracy.

Though being widely researched in both directions indepen-
dently, to our best knowledge, very few works can effectively
detect image tampering while at the same time identifying
source cameras. This attribute is of particular significance in
digital forensics. This concept was proposed in our preliminary
works [27], [28], but there are deficiencies in these works. First
of all, they are not resilient to geometric transformations like
rotation and scaling, which are common content-preserving
manipulations in image processing. The experimental results
of [27] were obtained from a very small and simple database,
which is inadequate to demonstrate its robustness. Moreover,
the method proposed in [27] has little noise tolerance on the
input challenge due to its avalanche effect on PUF response
errors. The extracted features for the authentic regions from
the received image have to be exactly matched with the
enrolled features, which is very difficult to fulfill in practice.
Furthermore, tampered region identification is not considered
at all. In [28], physical layer watermarking is used to hide
the PUF-based data-dependent hash tag. That work focuses
mainly on the robustness of recovering the hidden hash tag
transmitted over additive white Gaussian noise channel instead
of any content-preserving image processing operations applied
directly on the image.

In this work, tamper detection and source camera identifi-
cation are achieved simultaneously by using perceptual image
hashing and PUF in a simple but effective way. The main
contributions can be summarized as follows:

1. The proposed perceptual data-device hash is able to imprint
an indelible birthmark of the camera for forgery detection
of its captured images. A CMOS image sensor based PUF is
utilized to generate a device-specific Bernoulli random ma-
trix for the projection of rotation-/scaling- invariant image
features to obtain the perceptual hash.

2 The proposed hash is time-, data- and device-dependent,

which greatly enhances the system security compared to the
existing perceptual hashing methods that are only dependent
on the data. The unique and innate device characteristics is
directly extracted from the hardware, which greatly sim-
plifies, speeds up and increases the accuracy of individual
source camera identification compared to costly, slower and
less accurate traditional machine learning based methods.

3. The proposed work solves the secure “key” storage and
transmission issues in existing perceptual image hashing
scheme for image forensics. Key leakage and hash forgery
are prevented as the proposed perceptual image hash is
“keyless”. Attestation is non-repudiable as the perceptual
image hash can only be generated by the timestamp of
the image captured through the camera’s tamper-resistant
image sensor PUF. The threat of server spoofing attacks is
eliminated as attestation of tagged image and its origin is
performed directly with the acquisition device without the
need to store the challenge-response pairs (CRPs) of PUF
in trusted server database.

4. An optimal selection of hash dimension and an adaptive
threshold is proposed for effective tampered region detec-
tion. These improvements maximally discriminate the mali-
cious tampering from content-preserving operations, leading
to excellent tamper detection rate and accurate identification
of the tampered regions on the tampered images.
The rest of the paper is organized as follows. Some back-

ground information on robust image features and PUFs are
provided in Section II. The proposed perceptual data-device
hash, its generation and how it is used to achieve image
tamper detection and source camera identification are detailed
in Section III. Section IV presents the experimental setting and
parameter optimization. The system performance and results
are analyzed in Section V. Section VI concludes the paper.

II. PRELIMINARIES

To keep the paper self-contained, this section briefly intro-
duces the basis of some image and device feature extraction
techniques we used for the computation of the proposed
perceptual data-device hash.

A. Speeded-up robust features

The speeded-up robust features (SURF) is a robust local
feature detector built upon the insight gained from the scale-
invariant feature transform (SIFT) descriptor. SURF feature
is highly invariant to scale, translation, lighting, contrast and
rotation [29], and outperforms SIFT and other popular feature
extractors in speed, accuracy, and robustness against different
image transformations.

SURF adopts a detector-descriptor scheme, which relies on
integral images [30] for fast computation. The detection of
scale and orientation invariant interest points is based on the
determinant of Hessian (DoH) matrix. Box filter is utilized
to approximate the Gaussian second order derivatives, with
which the approximated DoH can be calculated as [29]:

det(Happrox) = DxxDyy − (0.9Dxy)2 (1)

where Dxx approximates the convolution of the Gaussian
second order derivative with an image I at point c = (x, y).
Similarly for Dyy and Dxy . The pre-computed integral image
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accelerates the computation of Dxx, Dyy and Dxy by using
only three additions and four memory accesses, independent
of the box filter size. For simplicity, a constant relative weight
of 0.9 is used for the filter response to provide the necessary
energy conservation between the Gaussian and approximated
Gaussian kernels [29].

Such blob responses are calculated at each point of image I
over different scales by convolving the same input image with
larger filters to obtain a series of filter response maps. The
local maxima of the scale-normalized DoH across 3 × 3 × 3
neighborhood with different octaves is found and interpolated
both in scale and image space to compensate for the con-
struction error. After which, a predefined threshold is applied
to select the strongest feature points from this set of local
maxima [31].

The SURF descriptor summarizes pixel information within
a local neighborhood. First, the orientation for each feature
point is determined by convolving pixels in its neighborhood
with the Haar wavelet filter. A square neighborhood centered
around the interest point and along the detected orientation is
then divided into 4×4 sub-regions. The sum of values (

∑
di)

and of magnitudes (
∑
|di|) for both wavelet responses dx and

dy in the horizontal and vertical directions, respectively of
each sub-region are computed as the feature vector entries. By
concatenating the 4D feature vectors vk of all the sub-regions,
the ith interest point can be described as a 64-dimension
descriptor vector:

Di = [v1, v2, · · · , vk, · · · , v16] ∈ R64 (2)

where

vk =
[∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|
]
, k = 1, 2, · · · , 16

(3)
For an image I with m detected interest points, the SURF

feature representation can be denoted as

F = {D1,s1 , · · · , Di,si , · · · , Dm,sm} (4)

si = [σ, sL, O, L, |det(H)|] (5)

where si of the ith feature point contains the scale σ, sign
of Laplacian sL, orientation O, location L and the DoH
magnitude |det(H)|.

Finally, SURF exploits a nearest neighbor strategy to per-
form the image feature matching [32] based on the computed
descriptors. MSAC-based technique (described in Sec. II-B) is
used to check the geometric consistency.

B. M-estimator Sample Consensus
M-estimator SAmple Consensus (MSAC) algorithm is an

improved variant of the random sample consensus (RANSAC)
algorithm for effective transformation estimation. RANSAC
belongs to the framework of iterative hypothesize-and-verify
algorithms, which can be briefly described by the following
procedure [33].

First, a minimal sample set (MSS) containing minimal
sufficient data items for model parameter determination is
randomly selected from the input database. A model is then
hypothesized and the model parameters (the transformation)
are calculated based solely on the elements from MSS. Next,
a consensus set (CS) of inliers is found for this hypoth-
esized model by verifying which elements from the entire

database are consistent with the previously estimated model
parameters. This hypothesize-and-verify procedure is iterated
until the probability of finding a better model falls below a
predefined threshold. The best transformation is then estimated
by choosing the one with the largest CS ranked according to
its cardinality.

rank(CS)
def
= |CS| (6)

Let D = {D1, D2, · · · , DN} denotes a dataset of input
data, θ the estimated transformation and M the model space.
RANSAC identifies inliers and evaluates the quality of CS by
minimizing the loss function

CM (D, θ) =
N∑
i=1

ρ(Di,M(θ)) (7)

Each data point Di is assigned a weight of zero or one by
comparing their error functions against a noise threshold δ:

ρ(Di,M(θ)) =

{
0, |eM (Di, θ)| 6 δ

1, otherwise
(8)

The error function eM (Di, θ) is defined as the distance from
Di to M(θ), i.e.,

eM (Di, θ)
def
= min

D′i∈M(θ)
dist(Di, D

′
i) (9)

where dist(a, b) is an appropriate distance function between
two points, a and b.

To reduce the sensitivity of estimated model parameters to
the choice of noise threshold, MSAC modifies ρ(Di,M(θ))
in Eq. (8) to

ρ(Di,M(θ)) =

{
eM (Di, θ), |eM (Di, θ)| 6 δ

δ, otherwise
(10)

MSAC improves the efficiency of RANSAC by redescend-
ing. It scores the inliers according to their fitness to the model
and assigns the outliers a constant weight. The number of
iterations τstop [33] can be set to:

τstop =

⌈
log ε

log(1− q)

⌉
(11)

where q represents the probability of sampling a MSS from D
that produces an accurate estimation of the model parameters,
and ε is a predefined probability threshold (a.k.a alarm rate)
such that the probability of no unbiased MSS is picked after
τstop iterations is at most ε.

C. Physical Unclonable Function
Physical unclonable function (PUF) [34] is a unique

hardware-oriented security primitive that does not rely on key-
based algorithmic intractability or hard-to-solved mathematical
problems as the basis for trust establishment. PUF harnesses
the subtle mismatches or disorder in electrical properties of
identically designed circuits from inevitable and uncontrollable
physical parameter variations in nano-scale device manufac-
turing process. A PUF can be mathematically modelled as
an irreversible mapping of an input challenge to an output
response. The challenge-response pair (CRP) is unique for
different dies of the same wafer and across wafers, making
PUF an ideal “device fingerprint”. Besides, the response of the
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PUF can only be generated upon request by an input challenge,
which avoids the need to hardcode the device identity or store
the secret key locally on NVM. Because of this, PUF possesses
tamper-aware or tamper-evident property as any modification
to the PUF circuit will change the original CRP mapping and
render a genuine device unable to be authenticated.

In this work, we make use of PUF to generate device-
specific random space for the projection of image features.
Strong PUF [34], such as arbiter PUF, has an exponential
number of challenges relative to its number of bit-slices.
While the practically inexhaustible number of challenges is
good to ensure freshness of CRPs against replay and man-in-
the-middle attacks in device authentication, the responses to
different challenges are not mutually independent as they are
generated based on the linear additive path delay of cascaded
bit-slices. As the number of CRPs are significantly larger than
the unknown device parameters that contribute to the one-
way function, strong PUFs are also potentially vulnerable to
cloning attack by machine learning. Memory-based PUF is a
typical weak PUF of limited number of challenges. As each
response bit is independently generated by a memory cell, its
number of challenges scales linearly instead of exponentially
with the number of addressable bit-cells. Such PUF that can be
intrinsically reused as another functional module in computer
system is particularly desirable to avoid the overhead of a
dedicated chip area reserved for chip-unique random response
generation. The CMOS image sensor used for digital imaging
has a similar array structure of independently accessible pixel
elements. Modern CMOS image sensors have great resolution.
By reusing the integrated CMOS image sensor of an image
acquisition device for PUF response generation, the number of
pixels is more than sufficient to provide the required random
mapping space.

III. PROPOSED PUF-BASED DATA-DEVICE HASH

To detect maliciously tampered, unscrupulously manipu-
lated and fabricated images without restricting benign image
processing and analysis, we proposed to tag the image with
a distinguished provenance to irreversibly and non-repudiable
bind the information integrity, source authenticity and acqui-
sition timestamp. The tag can be generated by integrating the
sensor-level device information with the perceptual invariant
image features at the time of capture. The extraction and
unification of the image features and “device fingerprint” are
detailed in this section.

A. Robust Feature Extraction
Salient features extracted from the captured image for the

generation of the proposed perceptual data-device hash should
satisfy the following requirements. First, distinguishable im-
age features and acquisition device characteristics should be
reliably and independently extracted before their fusion. To
reduce the computational burden and improve the accuracy,
unique device features are to be extracted directly at sensor-
level instead of by statistical processing or learning from
a large pool of images captured by the device. Secondly,
the extracted image features should be invariant to common
image processing operations like rotation, filtering and gamma
correction, and have good tolerance against inevitable noise
contamination during data processing or transmission. Last but

not least, as tampering tends to focus on dominant local instead
of global features, the tampered regions should be identifiable
from the change in dominant block features. To fulfill these
requirements, we extract the image features from rotation-
invariant SURF and adjoint block-based DCT concatenated
features, and the “device fingerprint” from the CMOS image
sensor based PUF.

1) Rotation-Invariant SURF Features: In order to achieve
efficient transmission, only a small constant number of the
strongest SURF features are kept. For images that have feature
points more than a predetermined threshold Tf (Tf = 100
in our experiment), it will be truncated directly from the
(Tf + 1)th feature in descending order of salience. Assuming
t effective feature points are detected in an M × N source
image, the 64-D SURF features are denoted as:

F = {D1,s1 , · · · , Di,si , · · · , Dt,st} ∈ R64×t, t ≤ Tf (12)

where si is the descriptive information for each SURF feature
point as denoted in Eq. (5).

2) Adjoint Block-based DCT Features: Discrete cosine
transform (DCT) (typically DCT-II) is a popular block-based
feature extraction method with strong “energy compaction”
property. It is not only robust against cropping, noising,
filtering and sharpening, but also has good computational effi-
ciency [35]. Adjoint block-based DCT concatenated feature is
proposed in [28] to increase the energy concentration on local
features. It can be easily obtained by concatenating the DCT-
II coefficients of small neighboring sub-blocks. An M × N
image is first divided into non-overlapping 8 × 8 elementary
blocks (eblocks) before applying the DCT-II transform on
each eblock. Since most of the signal information tend to be
concentrated on a few low-frequency components, only the
first 50% of the DCT coefficients are kept and zigzagged to
obtain the eblock feature vector f ∈ R32. The cblock is then
formed by combining four neighboring eblocks, whose feature
vectors are concatenated together to form the cblock feature
F ∈ R128 without compromising the resolution and energy of
localized features.

Fi,j = [f2i−1,2j−1, f2i−1,2j , f2i,2j−1, f2i,2j ] ∈ R128

i ∈ {1, 2, · · ·M/2} , j ∈ {1, 2, · · ·N/2}
(13)

where (i, j) is the row and column indexes of the cblock.
f2i−1,2j−1 denotes the eblock feature vector extracted from
the eblock that resides in the (2i − 1)th row and (2j − 1)th

column of the original image I .
3) CMOS Image Sensor Based PUF: To avoid sophisti-

cated statistical image processing techniques, CMOS image
sensor based PUF [26] uses the innate fixed pattern noise
(FPN) of active pixel sensor array for camera or imaging
device identification. FPN as a whole refers to the random
variations of output pixel voltage values of an image sensor
under uniform illumination or even in complete darkness. This
phenomenon is induced by the small deviations in individual
pixel responsivity of the sensor array contributed by the
transistor size and interconnect mismatches as a consequence
of random lithography variations. In this work, the timestamp
Ct generated at the time of image capture is converted into a
digital word and applied as a challenge to the PUF. As shown
in Fig. 1, Ct is applied as a seed of a linear feedback shift
register (LFSR) to generate the internal challenges C ′t and
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C ′′t at the control of a clock Clk. C ′t and C ′′t are applied to
the CMOS image sensor array to locate a pair of active pixel
sensors. Their corresponding reset voltages PC′t and PC′′t are
read out by disabling the correlation double sampling circuit
and then compared to generate a response bit Ri. Unreliable
response bits with absolute reset voltage difference less than
a given threshold are discarded. An LR-bit response R can
be obtained by clocking the LFSR at least 2LCLR cycles,
where LC is the bit length of challenge. This CRP mapping is
unique to each PUF instance, and its high uniqueness ensures
that individual camera can be distinguished with high accuracy
regardless of model type or brand.

B. Perceptual Data-Device Hash Generation
This section elucidates how the extracted image features

and “device fingerprint” are indivisibly fused into a compact
perceptual data-device hash. Several design objectives are to
be met. First, to prevent the key leakage problem, which is
a major weakness of conventional perceptual image hashing,
the hash should not rely on a persistently stored local secret
key for its generation. Secondly, the integration of both data
and device information should provide an acceptably strong
discriminative power for tamper detection and source camera
identification. Last but not least, the hash should be sufficiently
compact and can be computed efficiently.

To fulfill the above objectives, the proposed data-device
hash is generated by projecting the image features into a
device-unique random space. The latter is defined by the
response of the CMOS image sensor PUF, which can only
be generated when the PUF is stimulated by a timestamped
challenge Ct. Random projection (RP) is a widely used
efficient dimension-reduction technique. The key idea stems
from Johnson-Lindenstrauss (JL) Lemma [36], which can be
stipulated as: Given ε ∈ (0, 1), if m ≥ O(ε−2 logQ), then

every high-dimensional dataset X ∈ Rn of Q points can find
its Lipschitz mapping f : Rn → Rm such that

(1−ε) ‖ u−v ‖2≤‖ f(u)−f(v) ‖2≤ (1+ε) ‖ u−v ‖2 (14)

for any u, v ∈ X .
Three commonly used matrices Φ that have been proven to

be qualified for the implementation of f in Eq. (14) are listed
below [37]:

1. iid samples from N (0, 1/m);
2. independent realizations of ±1 Bernoulli random vari-

ables:

Φi,j =

{
+1√
m
, probability = 0.5

−1√
m
, probability = 0.5

(15)

3. a related distribution that yields the matrix:

Φi,j =


+
√

3
m , probability = 1

6

0, probability = 2
3

−
√

3
m , probability = 1

6

(16)

Since PUF response is ideally a random vector of binary
bits with uniform distribution, we proposed to specify the
projection space by a PUF response driven Bernoulli random
matrix. The entries of Bernoulli random matrix are set to
+1/
√
m or −1/

√
m when the PUF response bit Ri is 0 or 1,

respectively, to produce the device-unique random space P .

Pi =

{
+1√
m
, Ri = 0

−1√
m
, Ri = 1

(17)

To generate an m-dimensional perceptual data-device hash,
a PUF response of length n×m is collected from the CMOS
image sensor, with n being the dimension of the raw image
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feature vector. By projecting the SURF features F of Eq. (12)
and the adjoint DCT features Fi,j of Eq. (13) into this PUF-
specified Bernoulli random matrix, a data-device hash H can
be generated as follows:

H = [HSURF , HaDCT ]

= [PT
f1D1,s1 , · · · , PT

f1Di,si , · · · , PT
f1Dt,st ,

PT
f2F1,1, · · · , PT

f2FM/2,N/2], t ≤ Tf

(18)

where the superscript T is a matrix transpose operator. Pf1
and Pf2 correspond to the random matrix P generated for
SURF and adjoint DCT features, respectively, which may have
different feature dimensions.

Tagging the image with the calculated data-device hash
H directly is vulnerable to lunchtime attack. Due to the
linearity of random projection, a malicious user can invert
the projection by carefully crafting the image features into
a full rank matrix with the hashes collected from temporary
possession of the device. Once the random projection matrices,
Pf1 and Pf2, are recovered, they can be used to generate
valid hashes for other images even without the correct device.
To solve this problem, the hash H is randomly shuffled by a
modified Knuth Shuffle algorithm, which can be realized using
the PUF response as the seed to an unbiased random integer
generator (e.g., LFSR or irand() function in C program), as
shown in Algorithm 1. To ensure that its output is unbiased,
one bit of the seed is flipped in each round of the for loop to
initiate a new random cycle. Additionally, the seed Rs can be
generated by applying a new challenge derived from Ct. The
bit length of Rs has to be sufficiently long, e.g., at least 128
bits, to prevent brute force attack.

Algorithm 1 Knuth Shuffle
Input: PUF response Rs, direct hash H of length l

for i = l downto 2 do
j = (unbiasedRandIntGen(Rs) mod (i− 1)) +1;
swap H(i) and H(j)

end for

The output of Knuth Shuffle is tagged to the image for
transmission and storage. With the correct device held by
a legitimate user, the seed Rs can be regenerated by the
embedded PUF. With the correct seed, the direct hash H can
be recovered for further verification. As the seed is internally
generated by the PUF, it is impossible for the adversary
to recover a valid H for his/her tagged image to pass the
authentication.

C. Image Tampering Detection and Source identification

Fig. 1 shows the framework of the proposed PUF-based
perceptual data-device hash in a digital forensic application
scenario. As shown in Fig. 1, once an image of interest Io
is captured by a camera, its SURF and adjoint DCT features
F will be extracted. At the same time, a timestamp Ct is
generated and applied to the embedded CMOS image sensor
PUF to obtain a response R, which is further processed to
produce the Bernoulli random matrix P . A data-device hash
Ho is then calculated by projecting F into the P space.
A shuffle challenge Cs derived from Ct is then applied to
the PUF to extract a 128-bit Rs as the seed to the Knuth

Shuffle module. Finally, the descriptive information s of
the SURF feature, the shuffled data-device hash ho as well
as the timestamp Ct are tagged on the original image Io.
The proposed system is able to validate the received image
authenticity, locate any small tampering regions and identify
the source device based on the received image Ir, descriptive
information s, hash Ho and timestamp challenge Ct using
the claimed device. The authentication framework comprises
an image registration stage and a hash distance comparison
stage.

1) Image Registration: The received image may have previ-
ously undergone certain geometric deformation like rotation or
scaling that causes its coordinates to deviate from the original
one. Therefore, SURF feature projected hash HSURF is used
for image registration in order to reproduce HaDCT for hash
distance comparison.

To perform authentication, the verifier inputs the dubious
image Ir to the claimed device. The tagged hash ho, the
descriptive information s and the corresponding challenge Ct
are extracted from Ir. Firstly, the extracted challenge Ct will
be fed into a LFSR to generate a new shuffle challenge Cs,
which is applied to the embedded PUF to obtain the 128-
bit Knuth Shuffle seed Rs. With Rs, the verifier is able
to recover the unshuffled hash Ho(=[HSURF

o ,HaDCT
o ]) from

ho. Using the same pre-processing as the original image Io,
the SURF features Fr of Ir are also extracted. Meantime,
the challenge Ct stimulated PUF response R (divided into
Rf1 and Rf2) is applied for Bernoulli random space P
(Pf1 and Pf2, respectively) generation. By calculating PT

f1Fr,
HSURF
r is regenerated. Taking HSURF

r and the original hash
tag HSURF

o as inputs, matched points between the original
image and the received image are found. As it is also possible
that the received image has not undergone any geometric
transformation, to prevent the loss of precision, the presence
of geometric transformation is first ascertained by comparing
the corresponding locations of the matched points of Io and Ir
recovered from HSURF

o and HSURF
r , respectively. They should

be identical ideally if there is no geometric transformation
between Io and Ir. However, standard image processing oper-
ations like denoising or filtering and SURF matching algorithm
accuracy can change the locations of those detected matched
points slightly. In the proposed method, Ir is said to be in the
same coordinate as Io if the matched point pairs with absolute
location deviation of less than 5 occupy more than 50% of the
total matched pairs, i.e.,

LIo = matchedPtsOriginal.Location;

LIr = matchedPtsReceived.Location;

#(abs(LIo − LIr ) ≤ 5)

#(All matchedPtsPairs)
≥ 0.5

(19)

where #(A) is the cardinality of dataset A. In this case, It in
Eq. 20 will be directly assigned Ir.

Once geometric transformation is detected in the received
image Ir, MSAC is performed to find the best affine transfor-
mation that maps the most matched points from Ir to Io. As
a result, the recovered image It can be calculated by:

It = θIr =

a1 a2 b1

a3 a4 b2

0 0 1


xryr

1

 (20)
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where θ denotes the general description of the returned trans-
formation matrix, in which [b1 b2]T represents the translation
vector and the parameters ai(i = 1, 2, 3, 4) defines the trans-
formations like image rotation and scaling.

(a) (b) (c)

Fig. 2. An example of wrong matching: (a) original image Io; (b) received
image Ir ; (c) recovered image It.

There is one exceptional case of image registration failure
due to overtly-tampered, completely different images or the
use of a wrong device (see more details in Sec. V-C). This
situation may lead to limited or even no matched SURF
points found. Under this circumstance, even if the SURF
feature detection and matching are conducted as normal, the
recovered images are probably distorted as shown in Fig. 2.
This abnormality in feature matching can be detected by the
number of absolute black pixels. If the number of absolute
black pixels in It exceeds certain threshold (10% in our
experiments) of the total image pixels, it is deemed as an image
registration failure and the received image will be rejected
immediately.

2) Hash Distance Comparison: Other cases of maliciously
tampered images that pass image registration (usually small
tampering) can be detected in the hash distance comparison
phase. If the image registration is successful, the recovered
image It that has the same coordinate system as Io will be ob-
tained. By applying adjoint DCT feature extraction and PUF-
based random projection (projection space: Pf2), the hashed
adjoint DCT features HaDCT

t are obtained. The Euclidean
distance e between HaDCT

t and HaDCT
o is calculated over

each cblcok and compared with a tamper threshold τe to detect
the tampering:

ei,j =
√

((Ht)aDCTi,j − (Ho)aDCTi,j )2

i ∈ {1, 2, · · ·M/2} , j ∈ {1, 2, · · ·N/2}
(21)

The outcomes of these two stages are shown in Fig. 3.
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Fig. 3. Received image authentication of proposed data-device hashing.

Adaptive threshold: An adaptive threshold is proposed
to increase the robustness of tampered image detection. The
problem with using a fixed threshold for all the images in
conventional perceptual image hashing [10], [28] is the distri-
bution of distance e varies among different original-received
image pairs. To achieve better tamper detection performance,
the threshold τe is made adaptive to the image pair. Taking

into consideration that the Euclidean distance between the
received and original images is larger for the tampered cblocks
than the untampered cblocks, to extract the authentic cblock
information, the median Euclidean distance of the image
pair is calculated and denoted as ẽ(I). For simplicity and
ease of computation, the adaptive tamper threshold τe(I) is
determined by a linearly separable hyperplane by mapping the
median distance ẽ(I) and the maximum Euclidean distance
emax across all cblocks of an image pair I to the same space
for different original-content preserving and original-tampered
image pairs. Thus,

τe(I) = a× ẽ(I) + b (22)

where a and b are the coefficients that can be empirically
determined. The linearity assumption of separable hyperplane
was found to have no significant negative impact from the
results of our experiments. The tampered regions of I can be
more conspicuously identified by the cblocks with this image
pair dependent adaptive threshold τe(I) than a fixed threshold.

IV. EXPERIMENT SETTING AND KEY PARAMETER
OPTIMIZATION

A. Dataset Preparation

Modified CASIA database is used in this work for perfor-
mance testing. The ground truth images are taken from the
CASIA image tampering detection evaluation (ITDE) v1.0
database [38], which contains images from eight categories
(animal, architecture, article, character, nature, plant, scene and
texture) of size 384×256 or 256×384. Instead of directly using
the tampered image set from CASIA ITDE v1.0, the tampered
versions of those authentic images are selected from CASIA
ITDE V2.0, which are more challenging and comprehensive
since it considers post-processing like blurring or filtering
over the tampered regions to make the tampered images
appear realistic to human eyes. For one authentic image, there
may be several tampered versions in the CASIA ITDE v2.0
dataset. To increase the diversity, only one tampered version
is kept for each authentic image. As a result, the modified
CASIA database contains 400 (8 categories × 50 per category)
authentic images and their corresponding tampered versions.

According to CASIA ITDE v2.0, the tampered images
are generated using crop-and-paste operation under Adobe
Photoshop on the authentic images, and the tampered regions
may have random shapes and different sizes, rotations or dis-
tortions. In order to evaluate the proposed system performance
over content-preserving manipulations, we enrich the modified
CASIA dataset by adding content-preserving manipulations
to the authentic images using Matlab and ImageJ. Common
image processing techniques like rotation, scaling, filtering
and JPEG compression, and unavoidable process/transmission
noises like Gaussian, Salt&Pepper and speckle noise are con-
sidered. Furthermore, the abovementioned content-preserving
manipulations are also applied to the tampered dataset to
evaluate if their combination can evade detection. As a result,
the modified CASIA database D contains:

1) Dau: 400 authentic images in 8 categories, each with 50
images;

2) Dtampered: 400 tampered images corresponding to the
authentic ones from Dau;
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3) Dau cp: 3600 (400 × 9) images generated by adding a
single content-preserving manipulation (9 types: Gaus-
sian noise, salt&pepper noise, speckle noise, Gaussian
filter, motion blur, JPEG compression, gamma correction,
rotation and scaling) to every image of Dau;

4) Dtampered cp: 3600 (400×9) tampered images by apply-
ing those 9 content-preserving manipulations listed in 3)
to the images of Dtampered.

Fig. 4 shows Dau, Dtampered and Dau cp with their cor-
responding parameters and tools used. Since the experiment
setting has to be defined before the system is deployed, 160
authentic images and their corresponding manipulations from
Dtampered, Dau cp and Dtampered cp are used as training
dataset Dtrain in this section to extract the optimal param-
eters, while the remaining 240 authentic images and their
corresponding manipulations are used as the testing dataset
Dtest for performance evaluation in Sec. V.

For the authorized cameras used in our experiment, their
CRPs were simulated by eight PUF instances for 128×128
CMOS image sensor array using 180nm TSMC CMOS tech-
nology process design kit in Cadence environment. The design
of CMOS image sensor PUF of [26] is adopted. The PUF
challenge is 16 bits while the response bit length will be deter-
mined after the optimal hash dimension has been determined
in Sec. IV-B. Monte-Carlo simulated results of PUF designed
for 64×64 CMOS image sensor array were first validated
by the real silicon data measured from five 64×64 CMOS
image sensor array PUF chips fabricated also in the 180nm
CMOS technology [26]. More instances of PUF designed for
the larger 128×128 CMOS image sensor array were then
simulated to evaluate the PUF quality. The fractional Hamming
distance distribution from responses generated by 42 simulated
PUF instances is Gaussian distributed with mean and standard
deviation of 0.5002 and 0.0039, respectively. The 20 blocks
of 35k response bits each also passed the NIST randomness
tests. The reliability after discarding 5.5% of total pixel pairs
by thresholding is > 98.17% over a temperature range of −45
to 95◦C and 100% with ±11% supply voltage variations.

B. Hash Dimension Selection

As introduced in Sec. III-B, the hash dimension m is
determined by the PUF-based Bernoulli random matrix P ,
which has a size of n×m, with n being the original feature
dimension. Let n1 and n2 be the dimensions of SURF fea-
ture and adjoint-DCT feature, respectively per adjoint block,
and p be the projection rate (projection rate refers to the
ratio of projected feature dimension to the original feature
dimension), the final hash dimension can be calculated by
m = m1 +m2 = round(p×n1) + round(p×n2). According
to JL Lemma, lower ε means better preservation of Eq. (14),
which can be ensured by increasing m (or equivalently p).
However, increasing m will reduce the hash compactness and
require larger PUF size. Since n1 = 64 and n2 = 128, to avoid
a large random projection matrix (n1 × m1 and n2 × m2),
the upper bound of the projection rate is set to 0.3 to keep
the size of random matrix P below 6080 bits. In order to
select an optimal hash dimension, we tested the maximum
Euclidean distance emax across cblocks for each image pair

in both content-preserving and tampered cases with p of 0.05,
0.1, 0.2 and 0.3.

emax = max
i∈[1,M/2],j∈[1,N/2]

ei,j (23)

To obtain the optimal hash dimension, emax of the original-
received image pairs, Dau-Dau cp and Dau-Dtampered, in
Dtrain are tested. Fig. 5 is the notched boxplot that shows
the emax distribution of 9 content-preserving cases and the
tampered case, where different colors are used to indicate
the different projection ratios of p. Each colored box with
a notch around the central mark represents the interquartile
range (IQR). The notch represents the 95% confidence interval
for the median (the central mark). If the notches between two
random distributions in the boxplot do not overlap, it can be
concluded that, with 95% confidence, their true medians differ.
For a better separability between the content-preserving cases
and the tampered case, p should be optimally selected to en-
sure that there is enough margin to determine a threshold τe(I)
of an original-received image pair to discriminate between
different content-preserving cases and the tampered case. If
emax of an image pair exceeds τe(I), the received image will
be rejected and those cblocks of the received image of I that
have e > τe(I) are identified as the tampered regions. The
discriminability between each content-preserving case and the
tampered case can be observed by comparing the IQRs and
medians of the emax distributions for the original-received
image pairs in different cases. The experimental results in
Fig. 5 show that when p = 0.05 (m1 = 3, m2 = 6),
geometric transformations including scaling (scale factor in
each dimension: 0.5) and rotation (factor: 0 ∼ 360◦) lead to
large emax in content-preserving cases. The IQRs of their
emax distributions even overlap with that of the tampered
case, which leave insufficient margin for thresholding. When
the hash dimension is too small, there are insufficient image
features to substantiate Eq. (14). The emax distributions for
p = 0.1, 0.2 and 0.3 have comparable IQRs and medians in
the tampered case as well as in each of the content-preserving
cases. More importantly, for each of these projection ratios,
there is sufficient gap between the notches of the tempered
distribution and any of the content-preserving distributions. As
the device key length will increase proportionally from 960 to
2048, 4160 and 6080, respectively as p increases from 0.05 to
0.1, 0.2 and 0.3, to keep the hash compact, p = 0.1 is selected.

C. Adaptive Threshold Setting

Once the optimal hash dimension has been set by p = 0.1,
the tamper detection threshold τe can be determined by finding
a linearly separable hyperplane in ẽ(I) and emax of image I
for all cases of original-received image pairs mentioned in
Sec.IV-B. Fig. 6 shows that the emax values of the tampered
case mainly cluster in the top of the inclined plane of those
content-preserving cases. It is evident that any horizontal line
(i.e., a fixed threshold) is incapable of satisfactorily separating
the benign cases from the malicious case. A simple adaptive
threshold can be derived from a linearly separable hyperplane
to distinguish these two classes by any linear classification
method such as Bayesian Linear Classifier (BLC). The green
line y = 3.3 × ẽ(I) + 1030 shown in Fig. 6 denotes the
threshold found using the BLC-based classification method.

win8.1
Typewritten text
 IEEE Transactions on Information Forensics and Security , Volume: 15 , July 2019



Gamma Correction
‘strectchlim’

(Matlab)

Gaussian Filter
σ =0.5

(Matlab)

Gaussian Noise
µ=0, σ=0.1
(Matlab)

JPEG
QF=50

(ImageJ)

Motion Blur
len=5, theta=30

(Matlab)
Rotation (Matlab)

ra: 0-360o 

Salt&Pepper Noise
d=0.05

(Matlab)

Speckle
σ =0.2

(Matlab)

Tampered
(Photoshop)

Genuine Image Scaling
Sx=Sy=0.5
(ImageJ)

Content-preserving Manipulations:

Fig. 4. An example image in the dataset. Genuine image (in blue font) with its 9 content-preserving manipulations (in black font) and 1 tampered version
(in red font). The format of the label: manipulation technique, parameters, and the tool used are annotated in brackets. The notations used for the parameters
are − µ: mean; σ2: variance; d: noise density; ra: rotation angle; QF : quality factor; Sx, Sy : scaling factor in x and y dimensions; ‘stretchlim’: a Matlab
function that can automatically achieve the optimal gamma correction.
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Fig. 5. (a) emax distribution for various cases of manipulations with different projection rates; (b) Enlarged details for the Y axis (emax) range between
0 ∼ 700.

Under rare circumstances where the tampered regions of
the received image are exceptionally large or the received
image is a completely different image of the original, ẽ(I)
can be too large to cause the calculated threshold τe to exceed
emax, resulting in false acceptance as the Euclidean distance
of all cblocks of the malicious image pair will fall below the
threshold. It is observed that ẽ(I) of content-preserving cases
mainly cluster around the range below 500. This problem can
be easily resolved by putting a limit on the adaptive threshold
value once the ẽ(I) exceeds 500. As emax corresponds to the
worst tampered region in the received image, the separation

line y can be moved downwards to detect more tampered
cblocks. Lowering line y too much can also lead to higher false
rejection rate (FRR) of content-preserving cases. A balance is
struck by setting an offset boundary (confined by the magenta
dash lines y1 and y2 in Fig. 6) for the separation line. By
keeping the gradient and varying the intercept of line y with
a step size of 100, the false acceptance rate (FAR) in the
tampered case and the FRR in the content-preserving cases
are measured and presented in Fig. 7. The experimental results
show that the error rates increase rapidly for the tampered
cases but decrease modestly for the geometric transformation
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Fig. 6. Adaptive threshold determination.

Fig. 7. The error rates (FAR in the tampered case and FRR in the content-
preserving cases) with adaptive threshold obtained by varying the intercept of
the BLC separation line.

(rotation and scaling) with the rise of line intercept. The error
rates remain relatively constant for other content-preserving
manipulations. To maximally detect all tampered regions with
minimal negative impact on the error rates in all cases, the
adaptive threshold in Eq. (22) is set to:

τe(I) =

{
3.3× ẽ(I) + 730, ẽ(I) ≤ 500

2380, ẽ(I) > 500
(24)

V. PERFORMANCE AND DISCUSSION

In this section, the proposed system performances are eval-
uated using the testing dataset Dtest.

A. Perceptual Robustness
Perceptual robustness tests the tolerance of the perceptual

image hash to content-preserving manipulations such as nois-
ing, blurring, JPEG compression and so on. The received im-
ages that have undergone those content-preserving operations
listed in Fig. 4 should be classified as authentic. The FRR
of each content-preserving case is measured to evaluate the
perceptual robustness. Lower FRR indicates a better perceptual
robustness. Table I shows that with τe(I) of Eq. (24) for
p = 0.1, the proposed method achieves a very low FRR
of < 1.5% for most of the content-preserving cases except
rotation and scaling, which have slightly higher FRRs of
3.75% and 9.58%, respectively. For the use case of image
forensics, the authentication result can be supplemented by a
score, which could be obtained by relating di,j = |ei,j−τe| to
a pre-defined confidence level table, to indicate the confidence
of the accept or reject decision. For an authentic or a tampered

TABLE I
PERCEPTUAL ROBUSTNESS TEST.

Manipulations Parameters FRR

Gaussian noise µ = 0, σ = 0.1 0.0042
Salt&Pepper noise d = 0.05 0.0083
Speckle noise σ = 0.2 0.0042
Gaussian Filter σ = 0.5 0.0000
Motion Blur len = 5, θ = 30 0.0083
JPEG compression QF = 50 0.0125
Gamma Correction ‘stretchlim’ 0.0083
Rotation ra = 0 ∼ 360◦ 0.0375
Scaling Sx = Sy = 0.5 0.0958

image with the confidence level score lower than an acceptable
threshold, further evidences are needed to support the decision.

B. Tamper Detection and Location
Tamper detection rate (TDR) measures the ability of an

image hash in detecting the malicious manipulations of the
received image. A good perceptual hash should have not
only higher TDR, but also capable of correctly locating the
tampered regions. Since the tampered image may also undergo
normal image processing, such manipulations should have
negligible effect on the TDR. These desirable properties are
evaluated for the proposed perceptual image hash.

TABLE II
TAMPER DETECTION TESTS.

Manipulations Parameters TDR

Tampered only −− 0.9542
+ Gaussian noise µ = 0, σ = 0.1 0.9125
+ Salt&Pepper noise d = 0.05 0.9250
+ Speckle noise σ = 0.2 0.9125
+ Gaussian Filter σ = 0.5 0.9542
+ Motion Blur len = 5, θ = 30 0.9250
+ JPEG compression QF = 50 0.9500
+ Gamma Correction ‘stretchlim’ 0.9542
+ Rotation ra = 0 ∼ 360◦ 0.9250
+ Scaling Sx = Sy = 0.5 0.9042

Table II shows a high TDR of 95.42% over 240 test image
pairs. With content-preserving manipulations on tampered
image, the TDR is still > 90% though slightly lower than
the “tampered only” case. The minor reduction in TDR is
ascribed to the increased difficulty in image registration phase
as these manipulations may introduce more deviations in hash
distance comparison. The examples in Fig. 8 illustrate the lo-
cations of tampered regions in all eight categories of tampered
images with content-preserving manipulations (Dtampered cp).
All tampered regions are correctly located.

C. Source Camera Identification
The proposed method is able to extract the source device

(camera) information from the received hash data, hence the
name “data-device hash”. The receiver is able to validate
that the received image is captured using a trusted device
while detecting possible tampering and locate the modified
content in the tampered image. Three cases are considered
in order to prove the source camera identification capability.
Case 1: for the same device, the distinguishability of the hash
data produced by applying different PUF challenges. Case
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Fig. 8. Examples of tamper detection and location for all manipulations shown in Table II. (a)∼(h): Tampered image + content preserving manipulations
including filtering, JPEG compression, scaling, Gamma correction and noising in all eight categories; (i)∼(l): Tampered image + rotation.

2: for different devices, the distinguishability of hash data
generated by applying the same challenge. These requirements
are expected to be readily fulfilled by the hash generated
through random PUF responses due to the inter-die variations
of nano-scale CMOS device fabrication process. Last but
not least, since the hash is dependent on both device and
data information, it should have good anti-collision capability,
which leads to Case 3: for the same device and same challenge,
the distinguishability of the hash data produced by different
images.

These desiderata are tested using eight CMOS image sensor
based PUF instances and the test database of 240 authentic
images. 10 Challenges are randomly selected and labelled
as c1 ∼ c10, while the eight PUF instances are labelled as
d1 ∼ d8. c1 and d1 are selected as the original challenge and

device, respectively, to calculate the benchmarks hash values
(hash bm) for the authentic images. In Case 1, a different
challenge is applied to the same device to generate a new
hash (hash 1) for the same authentic image; For Case 2, the
responses are collected from a different device using the same
challenge set. The hash value (hash 2) is then generated from
these responses for the same authentic image; For Case 3, the
240 authentic images are re-ordered to make different original-
received image pairs. This way, a different image is applied to
generate a new hash (hash 3) while the challenge and device
remain unchanged. The authentication performance of each
case is analyzed.

Each device and challenge combination is iterated on each
image pair, there are altogether 8 × 10 × 240 = 19200 tests
for each case. Fig. 9(a) shows that changing the device key

win8.1
Typewritten text
 IEEE Transactions on Information Forensics and Security , Volume: 15 , July 2019



Fig. 9. Source camera identification performance.

by either changing the challenge (Case 1) or the device (Case
2) will lead to 0 FAR in all malicious (device, challenge)
pairs. The probability of collision of the hash generated by
the same device key for two different images (Case 3) is
very low, as evinced by the average FAR of only 0.000208
in Fig. 9(b). Though not ideal, the 0.000208 FAR for Case
3 is inconsequential. This is because those falsely accepted
image pairs have irrelevant perceptual content with apparent
semantic gap. For the use case of image forensics, they would
have been rejected by visual inspection before being able
to be presented as an evidence in a court of law. This is
different from the use case of scanning large image databases
for potential manipulations. The results show that the proposed
method has good source camera identification performance for
all three cases. Besides, it is noted that device fingerprint
contributes more to differentiating the hash than the data
(image). Therefore, introducing the device information into
the hash increases the inter-class distance.

D. PUF Reliability Discussion
Albeit highly reliable, 100% correct regeneration of R and

Rs is not guaranteed by the PUF. Since Rs is used as the
seed of Knuth Shuffle algorithm, one bit flip can result in
a completely different shuffle order. Bit errors of Rs can be
corrected by Bose-Chaudhuri-Hocquenghen (BCH) [39] error
correction code, which is highly flexible and hardware effi-
cient. The reliability requirement of the much longer response
R used for the random projection is fortunately not as strict
as the short 128-bit Rs. To analyze the tolerance to bit errors
of R, the unreliable R is created by randomly flipping some
bits in the authentic responses while keeping Rs fully reliable
by BCH error correction. The authentication performance is
evaluated by injecting these unreliable responses into the
proposed system. To minimize bias in the experimental results,
the average acceptance rate is calculated for the unreliable R.
Table III shows that an error rate of R in excess of 20% will
definitely lead to an authentication failure even if a genuine
image is presented. However, if the error rate of R is kept

within 2%, the system can still maintain a very high correct
detection rate of 99.8%. Fortunately, this 2% error rate is well
satisfied by the CMOS image sensor PUF over the industrial
grade of operating temperature variation and typical regulated
supply with no more 10% voltage variation. Moreover, the
reliability of R can also be further enhanced by simpler
majority voting technique.

TABLE III
SYSTEM PERFORMANCE UNDER UNRELIABLE R

error rate f 0.01 0.02 0.03 0.1 0.2 0.3∼1.0

accept rate 0.999 0.998 0.949 0.194 0 0

E. Security Analysis
A typical verification process of the proposed system in-

volves (at least) an image to be validated, (at least) a claimed
device and a verifier. The verifier determines if the image is
captured by the claimed device without any malicious tam-
pering. The trust model and the assumptions of the proposed
system are given as follows:

Image: The received testing image may be either a genuine
or maliciously tampered/replaced/fabricated version. It may
have also gone through normal image processing including
noising, filtering or geometrical transformations like rotation
and scaling.

Device: The device has a monolithically integrated PUF,
and data-device hash tag generation and comparison modules.
It is the claimed source camera of the image in question.
The device may be either a genuine or maliciously tam-
pered/replaced/fabricated version. Noted that any test circuit
that has direct access to the challenge and response ports of
the embedded PUF will be disabled or removed after testing so
that the unobfuscated internal CRPs are inaccessible externally
upon device deployment.

Verifier: The verifier is entrusted to verify the image content
integrity and its claimed acquisition device. The verifier is
assumed to be granted permission to use the device for this
verification.

Attacker: The attacker is assumed to know all about the
system except the CRPs of the trusted device. The adversary
may try to deceive the verifier by sending fake images captured
using an untrusted device or claiming the ownership of a stolen
image. A common assumption is the adversary does not have
the authorized device, and is unable to obtain the temporary
data (such as intermediate results of the computations) stored
in the volatile memory within the device while the latter is
participating in an authentication process. In order to make
the fake image/copyright pass the authentication, the adversary
needs to recover the CRP mapping in order to generate a
valid hash, which may possibly be achieved by device cloning,
probing and random guessing.

Cloning attack refers to the duplication of another device
that shares the same brand/type/function as the authenticated
device in order to generate the device-dependent hash. How-
ever, PUF makes such attack infeasible even if the schematic,
operation and other details of the camera and CMOS image
sensor are made known to the attacker. Due to the uncontrol-
lable manufacturing process variations, every device is unique
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TABLE IV
COMPARISON WITH EXISTING WORKS.

Scheme Perceptual robustness (parameters) Tamper Tamper Device
Rotation Scaling Detection Location Authentication

TIFS2012 [9] 0.9075 (2o ∼ 30o) 0.8818 (0.5 ∼ 1.5) Yes Yes No
TIFS2013 [40] N/S (5o) N/S (0.5, 1.5) Yes Yes No
TIFS2015 [10] 0.8609 (25◦) 0.8477 (0.5) Yes Yes No
TIFS2016 [11] 0.9926 (±1◦ ∼ ±90◦) 1 (0.5 ∼ 2) Yes No No

Springer2016 [2] 0.8002 (6 5◦) 1 (0.5 ∼ 1.5) Yes Yes No
AsianHOST2016 [27] No No Yes No Yes

ISCAS2018 [28] No No Yes Yes Yes
This work 0.9625 (0 ∼ 360◦) 0.9042 (0.5) Yes (0.9542) Yes Yes

Noted that if several algorithms are proposed (e.g. [2], [9]), the one with best performance is chosen for comparison.

and distinguishable even if the same mask set is used to re-
fabricate the image sensor. As only the hash but not the native
response bits are externally accessible, and the number of
challenges is linearly proportional to the number of pixels (that
make up the independent response bit-cells), it is impossible
to machine learn the CRP mapping of the PUF by collecting
the hashes from different input challenges. The PUF response
is well obfuscated by the uniformly random shuffle, making
its recovery from the hash data intractable.

Memory probing is an effective attack on traditional “secret-
dependent” image hashes, where their secret keys are locally
stored in a NVM. If the secret key has been successfully
retrieved, the adversary can easily generate a valid hash for
any image he/she has stolen or forged. Storing secret key in
NVM has been found to be vulnerable to invasive attacks like
reverse-engineering. In our case, the secret used to generate
the hash is not stored but directly built into the device structure
(CMOS image sensor array) as an integral property of the hash
function, and can only be generated upon request when the
device is powered on. Any invasive or semi-invasive attacks
on the CMOS image sensor chip will easily damage the device
structure and erase the secret permanently. Hence, probing
attacks are unlikely to succeed.

Random guessing is another common attack. For an adver-
sary who wants a forged image to be authenticated without
the correct device, he/she may try to create an effective hash
by trial and error. Noted that an effective hash generation
requires both valid random projection response R and shuffle
response Rs, among which Rs is of paramount importance.
After correctly cracking Rs, the attacker may generate a valid
internal hash Ho for the forged image using the same challenge
either by performing the lunch time attack as mentioned in
the last two paragraphs of Sec. III-B or directly guessing R.
However, the probability of successfully cracking a 128-bit
Rs is only 2−128, which can be made even more negligible
by increasing the bit-length of Rs. Without the correct Rs, the
original hash Ho cannot be correctly recovered, which makes
conducting further lunch time attack impossible. As for the
random guessing of R, Table III shows that on the premise
of correctly regenerated Rs, the acceptance rate for a genuine
image is merely 19.4% even if the adversary makes only 10%
of errors in guessing R. Assume that 0 and 1 bits are equally
probable to occur in the PUF response, the probability Pr of
making at most f fraction of bit errors in an N -bit response
by random guessing is given by:

Pr =
N∑

i=dNf ′e

(
N

i

)
(
1

2
)i(

1

2
)N−i = 2−N

N∑
i=dNf ′e

(
N

i

)
(25)

where f ′ = 1 − f . When N = 2048 and f = 0.1, Pr <

2.45 × 10−558. This implies that it is close to impossible for
an adversary to gain even 19.4% authentication accuracy by
random guessing, even with the knowledge of Rs, let alone it
is also nearly impossible to recover Rs.

F. Comparison

In this section, the proposed work is compared with the ex-
isting perceptual image hashing methods in recent years. The
comparison is made from four main perspectives: perceptual
robustness and the capabilities of tamper detection, tamper
region location and device authentication. For perceptual ro-
bustness, different non-uniform content-preserving manipula-
tions as well as their parameters were used in different works,
which make the comparison difficult and possibly unfair. It is
noticed that for content-preserving manipulations like noising,
filtering, JPEG compression and gamma correction, most of
the perceptual hashing methods can achieve good performance
(> 0.95). However, perceptual robustness against geometric
transformations like rotation and scaling is a widely discussed
key challenge in perceptual hashing research. Based on these
observations, only “Rotation” and “Scaling” are listed under
perceptual robustness in Table IV for comparison. Table IV
compares the performance of our proposed work based on
a single manipulation of the operations in Table I against
the state-of-the-art perceptual image hashing methods. The
experiment results show that our proposed work is the only
work that can achieve tamper detection, tamper region location
and device authentication while maintaining a high perceptual
robustness against rotation and scaling. Noted that though the
true positive rates for “Rotation” and “Scaling” are not as
high as those of [11], the proposed method achieves a TDR
of 0.9542 while the TDR of [11] is not given. The trade-off
between perceptual robustness and TDR is inevitable. Since
this work targets digital image forensics, the parameters are
skewed in favor of tamper detection. It is acceptable to have
a small sacrifice on perceptual robustness to trade for better
tamper detection performance.

VI. CONCLUSION

As the first robust rotation-/scaling-invariant PUF-based
perceptual image hash, the proposed data-device hash has
introduced an added attribute of birth certification, which is
essential in digital forensics to prove the authenticity of a
visual evidence conveyed by the image content. This is made
possible using the idea of random projection, i.e., projecting
the content-based image features into a CMOS image sensor
PUF defined Bernoulli random matrix. The proposed hash
carries both time, data and device information. Not only can
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it detect and precisely locate image forgeries, but also identify
the camera of the source image with high accuracy. Besides,
the proposed hash is robust against normal content-preserving
manipulations such as noising, filtering, JPEG compression,
Gamma correction, rotation, scaling, etc. The proposed work
is more secure than existing image hashes that rely on a locally
stored secret key for the generation and validation, as the
random space used for mapping the feature points is generated
only on demand by a tamper-resistant PUF. Invasive or semi-
invasive attacks on the device to recover the CRP mapping will
produce unpredictable fault in the hash generation. Forging a
hash by random guessing of PUF response has been calculated
to be almost impossible.
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