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Abstract—In this paper, we address the problem of video
rain removal by considering rain occlusion regions, i.e. very low
light transmittance for rain streaks. Different from additive rain
streaks, in such occlusion regions, the details of backgrounds are
completely lost. Therefore, we propose a hybrid rain model to
depict both rain streaks and occlusions. Integrating the hybrid
model and useful motion segmentation context information, we
present a Dynamic Routing Residue cRecurrent Network (D3R-
Net). D3R-Net first extracts the spatial features by a residual
network. Then, the spatial features are aggregated by recurrent
units along the temporal axis. In the temporal fusion, the context
information is embedded into the network in a “dynamic routing”
way. A heap of recurrent units takes responsibility for handling
the temporal fusion in given contexts, e.g. rain or non-rain
regions. In the certain forward and backward processes, one
of these recurrent units is mainly activated. Then, a context
selection gate is employed to detect the context and select one
of these temporally fused features generated by these recurrent
units as the final fused feature. Finally, this last feature plays a
role of “residual feature”. It is combined with the spatial feature,
and then used to reconstruct the negative rain streaks. In such
a D3R-Net, we incorporate motion segmentation, which denotes
whether a pixel belongs to fast moving edges or not, and rain
type indicator, indicating whether a pixel belongs to rain streaks,
rain occlusions and non-rain regions, as the context variables.
Extensive experiments on a series of synthetic and real videos
with rain streaks verify not only the superiority of the proposed
method over state-of-the-art but also the effectiveness of our
network design and its each component.

Index Terms—video rain removal, dynamic routing, spatial
temporal residue, recurrent neural network

I. INTRODUCTION

Bad weather conditions cause a series of visibility degrada-
tions and alter the content and color of images. Such signal
distortion and detail loss lead to the failure of many outdoor
computer vision applications, which generally rely on clean
video frames as their input. Rain streaks, as one of the most
common degradations in rain frames, make severe intensity
fluctuations in small regions, and thus obstruct and blur the
scene.

In the past decades, many researchers have been dedicated
to rain image/video restoration. The rain removal from a
single image [19, 24, 31, 37] solves this problem by signal
separation between rain streaks and background images (non-
rain images), based on their texture appearances. Frequen-
cy domain representation [24], sparse representation [31],
Gaussian mixture model [28] and deep networks [13, 48]
are adopted as basic models to differentiate rain streaks and
background images. Furthermore, video-based methods [1–
3, 7, 11, 14, 16, 17, 52] solve the problem based on both

spatial and temporal redundancies. Some works [14, 16, 17]
built on physical models, such as directional and chromatic
properties of rains. Others [6, 7, 23, 27] further utilized
temporal dynamics, including continuity of background mo-
tions, random appearing of streaks among frames, and explicit
motion modeling, to facilitate video rain removal.

These methods achieve good performance in some cases.
However, they still neglect some important issues:

• In real-world scenarios, degradations caused by rain
streaks are more complex. The additive rain model widely
used in previous methods [7, 24] is insufficient to cover
visual effects of some important degradations in practice.
When the light transmittance of rain streaks is low, their
corresponding background regions are totally occluded,
and the whole occlusion regions only present the rain
reliance.

• The spatial and temporal redundancies are considered
separately. These two kinds of information are intrinsical-
ly correlated and complementary. The potential of jointly
exploiting the information is not fully explored. Low
rank based methods [27, 45] have made some attempts.
However, they usually rely on the assumption of a static
background. Therefore, their results may be degraded
when large and violent motions are included.

• Although some previous works [5, 20, 46] try to in-
clude context information, e.g. categories [20] or motion
segmentations [5, 46], a general and easily equipped
framework for that purpose is lacked. These previous
works need deliberate expert efforts to embed the context
information to facilitate rain streak removal. Once the
commonly seen contexts or rain streak statistics change,
the pipeline needs to be rebuilt.

• For learning-based video rain streak removal, training
for recovery purposes remains challenging. The training
relies on the video pairs synthesized from a large-scale
high-quality video dataset with various scenes and object-
s. It is cost-heavy to collect such a dataset to synthesize
rain frames.

Considering these limitations of existing works, our goal is
to build a novel video rain model that can describe various
types of rain in practice, including both rain streaks and rain
occlusions. Then, based on this model, we further develop a
deep learning architecture to solve the corresponding inverse
problem. We aim to develop a systematic approach to train the
network with a rain video dataset synthesized from a medium-
sized high-quality video set.

D3R-Net: Dynamic Routing Residue Recurrent
Network for Video Rain Removal
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To achieve these goals, we explore possible rain models
and deep learning architectures that can effectively restore
clean frames even when rain occlusion regions appear and
are flexible to embed context information. We first develop
a hybrid rain model to depict both rain streaks and occlu-
sions. Then, a Dynamic Routing Residue Recurrent Network
(D3R-Net) is built to seamlessly integrate context variable
estimations, and a rain removal based on both spatial appear-
ance feature and temporal coherence. The rain type indicator
and motion segmentation are embedded into D3R-Net in a
dynamic routing way, flexible to be extended to incorporate
other context information. This paper is an extension of our
previous conference paper [29]. Based on the rain degradation
model in the preliminary work, we choose a parallel technical
route to address the problem of the video rain removal with
dynamically detected video contexts. Novel deep recurrent
networks as well as a more effective basic component –
spatial temporal residue learning – for video modeling are
developed. At the same time, a flexible framework to detect
and incorporate video contexts is built. We add extensive
experimental analysis to evaluate the effectiveness of the
proposed framework on several datasets. Our contributions
are as follows,

• We propose a novel hybrid video rain model that visits
various rain cases including rain occlusions. In rain occlu-
sion regions, the pixels are replaced by rain reliance. This
regional information is then embedded into the proposed
method for video deraining.

• We are the first to solve the problem of video rain removal
with deep recurrent networks. Specifically, a D3R-Net
is proposed. The rain streaks appear randomly among
frames, whereas the motions of backgrounds are tractable.
Considering that, recurrent neural networks (RNN) are
employed to encode the information of adjacent back-
ground frames from their degraded observations, obtain-
ing representative features for deraining. Furthermore,
our D3R-Net utilizes a spatial temporal residue learn-
ing, where the temporally fused feature plays a role of
“residue feature”.

• Based on the proposed refined hybrid rain model, and
further considerations of the commonly seen context
variables that appeared in previous works, D3R-Net is
seamlessly integrated with motion segmentation and rain
type indicator in a “dynamic routing” framework. Its core
idea is that, the network components have several copies.
Each copy is good at handling the rain removal in a given
context. Then, in each training or testing iteration, the
network is constructed dynamically based on the detected
context. This “dynamic routing” framework and the added
contexts lead to a performance gain.

The remainder of this paper is organized as follows: Sec-
tion II gives a brief overview of the related work. In Sec-
tion III, we present our hybrid video rain model and the
related rain removal context. In Section IV, the proposed
dynamic routing residue recurrent neural network is built step
by step and then the context information is embedded into the
network in the “dynamic routing” way. Experimental results

are illustrated in Section V. Finally, concluding remarks are
given in Section VI.

II. RELATED WORK

A. Single Image Rain Removal

Single image deraining is a highly ill-posed problem and is
addressed by a signal separation or texture classification route.
Huang et al. [24] attempted to separate rain streaks from the
high frequency layer by sparse coding. Then, a generalized
low rank model [7] was proposed, where the rain streak layer
is assumed to be low rank. Kim et al. [26] first detected
rain streaks and then removed them with the nonlocal mean
filter. Luo et al. [31] proposed a discriminative sparse coding
method to separate rain streaks from background images.
In [28], Gaussian mixture modsels are exploited to separate
the rain streaks. The presence of deep learning promoted
the development of single image deraining. In [12, 13], deep
networks that take the image detail layer as their inputs and
predict the negative residues are constructed. They have good
capacities to keep texture details. But they cannot handle heavy
rain cases where rain streaks are dense. Yang et al. [48]
proposed a deep joint rain detection and removal method was
proposed to recurrently remove rain streaks and accumula-
tions, obtaining impressive results in heavy rain cases. Zhu et
al. [53] proposed a rain removal method by decomposing the
rain image into a rain-free background layer R and a rain-
streak layer B. The method then removes rain-streak details
from B and removes non-streak details from R alternately.
In [49], a novel density-aware multi-stream densely connected
convolutional neural network is proposed for joint rain density
estimation and rain streak removal. Chang et al. [4] aimed
to address line pattern noise removal, and used an image
decomposition model to map the input image to a domain
where the line pattern appearance has an extremely distinct
low-rank structure. Wang et al. [41] regarded rain removal
as an image-to-image translation problem, and developed a
perceptual generative adversarial network to address it. In this
network, the generative adversarial loss and the perceptual
adversarial loss are integrated, and the sub-modules of the
network are trained alternately. Compared with these works,
which utilize deep networks to address the problem of single
image rain removal, our work explores to remove rains from
videos by jointly modeling intra-frame dependencies and inter-
frame motion dynamics with recurrent neural networks.

B. Video Rain Removal

Garg and Nayar were the first to focus on modeling rains,
i.e. the photometric appearance of rain drops [16] and ad-
dressing rain detection and removal based on dynamic motion
of rain drops and irradiance constraint [14, 17]. In their
subsequent work [15], camera settings are explored to control
the visibility of rain drops. These early attempts heavily rely
on the linear space-time correlation of rain drops, and thus fail
when rain streaks are diversified in scales and densities. Later
works formulate rain streaks with more flexible and intrinsic
models. In [52], the temporal and chromatic properties of
rain are visited to differentiate rain, background and moving
objects. In [30], a theory of chromatic property of rain is

Admin
Typewritten text
IEEE Transactions on Image Processing  Volume: 28 , Issue: 2 , Feb 2019



developed. Barnum et al. [1] utilized the features in Fourier
domain for rain removal. Santhaseelan et al. [34] developed
phase congruency features to detect and remove rain streaks.
Successive works make their efforts in distinguishing fast
moving edges and rain streaks. In [2, 3], the size, shape and
orientation of rain streaks are used as discriminative features.
In [7], the spatio-temporal correlation of local patches are
encoded by a low-rank model to separate rain streaks and
natural frame signals. Jiang et al. [23] further considered
the overall directional tendency of rain streaks, and used
two unidirectional total variation regularizers to constrain
the separation of rain streaks and background. The presence
of learning-based method, with improved modeling capacity,
brings in new opportunities. Chen et al. [6] proposed to embed
motion segmentation by Gaussian mixture model into rain
detection and removal. Tripathi et al. [39, 40] trained Bayes
rain detector based on spatial and temporal features. In [27],
Kim et al. trained an SVM to refine the roughly detected
rain maps. Wei et al. [45] encoded rain streaks as patch-based
mixtures of Gaussian, which is capable of finely adapting a
wider range of rain variations. In [33], a matrix decomposition
model is presented to divide rain streaks or snowflakes into
two categories: sparse and dense ones, for video desnowing
and deraining. Compared with previous methods, our work
is the first one to employ deep networks to handle video
rain removal. Beyond that, instead of hand-crafting pipelines
to model rain context, we provide a flexible and convenient
framework – “dynamic routing” for that purpose to facilitate
video rain removal.

III. HYBRID VIDEO RAIN MODEL AND
RAIN REMOVAL CONTEXT

In this section, we first focus on building a single rain model
that can describe non-rain, rain streak and rain occlusion
regions. Then, we discuss the context of rain removal, i.e.,
the degradation type in this hybrid video rain model, which
can be regarded as side information to benefit rain removal.

A. Additive Rain Model

The widely used rain model [20, 28, 31] is expressed as:

O = B + S, (1)

where B is the background frame without rain streaks, and
S is the rain streak frame. O is the captured image with rain
streaks. Based on Eq. (1), rain removal is regarded as a signal
separation problem [28, 31, 48]. Namely, given the observation
O, removing rain streaks is to estimate the background B and
rain streak S, based on the different characteristics of the rain-
free images and rain streaks.

This single-frame rain synthesis model in Eq. (1) can be
extended to a multi-frame one by adding a time dimension as
follows,

Ot = Bt + St, t = 1, 2, ..., N, (2)

where t and N signify the current time-step and total number
of the frames, respectively. Rain streaks St are assumed to
be independent identically distributed random samples [36].
Their locations across the frames are uncorrelated, as shown
in Fig. 1.

Fig. 1. Left and middle panels: two adjacent rain frames. Right panel: the
rain streaks in these rain frames, denoted in blue and red colors, respectively.
The presented streaks have similar shapes and directions, and however, their
distributions in spatial locations are uncorrelated.

Fig. 2. Examples of rain occlusions in video frames. Compared with additive
rain streaks, the rain occlusions (denoted in red color) contain little structural
details of the background image.

However, in practice, degradations generated by rain streaks
are very complex. For example, when the rain level is moderate
or even heavy, the light transmittance of rain drop becomes
low and the rain region of Ot presents identical intensities,
as shown in Fig. 2. In this case, the signal superposition of
rain frames includes rain streaks and rain occlusions. Based on
Eq. (1), the deduced St = Ot −Bt deviates from its original
distribution and contains more structure details. Rain removal
in rain occlusion regions needs to remove the rain reliance
and fill in the missing details. Thus, it is harder to learn a
mixture mapping that restores signals in all regions without
distinction. It is meaningful to build a unified hybrid model
that describes both two kinds of degradation to guide solving
the task of rain removal.

B. Occlusion-Aware Rain Model

To address this issue, we propose a hybrid rain model that is
adaptive to model rain occlusions. In such a model, all pixels
in rain frames are classified into two groups: 1) the ones
following the additive rain model in Eq. (1); 2) the others
whose pixel values are just equal to the rain reliance. The
formulation of such a hybrid rain model is given as follows,

Ot = (1− αt) (Bt + St) + αtAt, (3)

where At is the rain reliance map and αt is an alpha matting
map defined as follows,

αt (i, j) =

{
1, if (i, j) ∈ ΩS,
0, if (i, j) /∈ ΩS,

(4)

where ΩS is the region where the light transmittance of rain
drop is low, which is defined as rain occlusion region.
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C. Rain Removal Context

Based on Eqs. (3) and (4), the inverse mapping of the rain
streaks and rain occlusions is quite different. Thus, estimating
αt is important for rain removal. Besides, as summarized
in previous works [2, 3, 6], one of the most difficult issues
for video rain removal is the overlapping of fast moving
edges and rain streaks in the feature space. Thus, a preferred
method should first detect these context variables, e.g. rain
type and motion segmentation, and then perform rain removal
accordingly. In our work, the difference of adjacent frames
are used as a standard to classify motion regions. For ground
truth background frames, if the square of the difference of
two adjacent frames is greater than 0.01, the region is denoted
as motion regions. Till now, we regard rain type and motion
segmentation as the context of rain removal. In the next
section, we build a deep network architecture to predict the
context and utilize the information to facilitate rain removal.

IV. DYNAMIC ROUTING RESIDUE RECURRENT NEURAL
NETWORK FOR RAIN REMOVAL

In this section, we first construct a spatial-temporal residue
recurrent neural network step by step for rain removal as
shown in Fig. 3. Then, we extend the network to a dynamic
routing RNN, as shown in Fig. 5. In each recurrence of the
network, there are multiple recurrent unit paths, but only one
path is mainly activated based on the detected context, as
shown in Fig. 4.

A. Spatial-Temporal Residue Recurrent Network

Single frame rain streak removal aims to recover the
rain-free background (target frame) based on a rain image
(input frame). Several popular image processing networks
[10, 44, 47] use a convolutional neural network (CNN) model
to extract features from the input frame and then map it
to the target one. A typical CNN architecture consists of
three convolutional layers as proposed in [10] which jointly
performs sparse coding and reconstruction over the input
frames as shown in Fig. 3(a). However, striving for directly
recovering the complete target frames may make the CNN
models fail to recover some important high frequency details.
In contrast, using deep networks to model the difference
signals [25, 50] as shown in Fig. 3(b), equivalently residue
signals or negative rain streaks, could recover high frequency
details better. The added bypass connection in Fig. 3(c) leads
the network training to converge faster and to a better state.

To utilize temporal redundancies and model motion context
among frames, the recurrent units are used to fuse spatial
features along the temporal axis. The recurrent units can be
convolutional recurrent connections [21] as shown in Fig. 3(d)
or gated ones, i.e. long short-term memory units [38] and gated
recurrent units [8] as shown in Fig. 3(e). They are proven
effective in capturing inter-frame dependencies and inferring
the missing high-frequency details in a series of video restora-
tion tasks, e.g. video super-resolution [21, 38]. However, this
architecture has its drawbacks, especially when its training
usually relies on the pretraining of spatial CNN. First, all the
information that input into the next stage of the network comes
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Fig. 3. Network architectures from a vanilla convolutional neural network (C-
NN) to our proposed spatial-temporal residue recurrent network. (a) vanilla
CNN. (b) CNN with LR bypass connections. (c) CNN has both LR and
feature bypass connections. (ResNet) (d) Multiple ResNets are connected by
convolutional recurrent units to model inter-frame dependencies. (e) Gated
recurrent units (R-Unit) are used to connect different ResNets to model inter-
frame redundancies. (f) Temporal fused features by convolutional recurrent
units are added with the spatial ones and play a role of “residual features”
that are complements to spatial features. (g) Temporal fused features by gated
recurrent unit (R-Unit) are added with the spatial ones and play a role of
“residual features” that are complements to spatial features. (Best viewed in
color.)

from the temporal fusion step only. The training of such a
temporal fusion in the finetuning step may first goes through
a dropped performance. Second, the temporal fusion units, e.g.
convolutional recurrent units or GRUs, are good at modeling
inter-frame dependencies. However, in this fusion step, some
spatial appearance details extracted from single frames may
be lost.

To address these issues, we propose to use residual RNN
architecture to replace the normal RNN, as shown in Figs. 3(f)
and (g). In each recurrence, we do not directly input the
temporally fused features into the next stage of the network.
Instead, we first combine the temporally fused features and
single frame spatial features by summation, where the tem-
porally fused features play a role of residue features. Then,
the aggregated features are forwarded to the next stage of the
network and transformed into the predicted target frame. This
combination is significant, because these combined two paths
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can provide temporal dynamics while preserving the spatial
appearance details, and thus offer better modeling capacities.
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Fig. 4. Network architecture of dynamic routing CNN and RNN. (a) vanilla
CNN. (b) CNN with dynamic routing mechanism. (Dynamic Routing CNN)
The convolutional path is constructed based on the detected rain removal
context. (c) RNN with dynamic routing mechanism. (Dynamic Routing RNN)
The recurrent unit path is built based on the detected rain removal context.
(Best viewed in color.)

B. Dynamic Routing RNN

The generic CNN handles a task with the same components
and parameters for all contexts. The formulation of a convo-
lutional layer as shown in Fig. 4(a) is represented as follows,

H = f (UF + b) , (5)

where F is the layer input, and H is the layer output. f is
usually a nonlinear function, such as ReLU or tanh. U and b
are weight and bias of the convolution. This layer maps the
input feature F to output feature H given any context.

Intuitively, this “one for all” architecture may have limi-
tations when we expect the network can focus on different
mappings in various contexts. For example, in video rain
removal, we expect that foreground textures are preserved in
non-rain regions and the background regions can be smoothed
to remove sparkle noises. Thus, to improve the adaptability
of the generic CNN model, we set a series of network
compositions, and to select some of them to construct a
deep network based on the given context online. As shown
in Fig. 4(b), for some layers, called dynamic convolutions,
there are three convolutions for one convolution layer position.
In each forward or backward process, only one of the three
convolutions is selected and activated. Naturally, this paradigm
can be extended to apply for RNN, as shown in Fig. 4(c).
For dynamic recurrent units (Dynamic R-Unit), there are also
multiple units for each layer position. In each forward or
backward process, a sub-network is constructed with one
activated recurrent unit for each layer position.

However, these hard designs are difficult to be optimized
in an end-to-end manner. Thus, in the following, we propose

an equivalent soft dynamic routing RNN/CNN. We change
the normal convolution operation to a dynamic routing one as
shown in Fig. 4(b) as follows,

H =

∫
σ

f (UF + b|α) g(α), (6)

where α is a context variable, e.g. an indicator that illustrates
whether a pixel belongs to non-rain, rain streak or rain oc-
clusion regions. f (UF + b|α) is the conditional convolution,
given the context variable α. g(α) is a probability density
function of α having ∫

α

g(α) = 1. (7)

Eq. (6) equals to conducting convolution filters with various
α. Then, these filtered results are weighted together based
on appearance probability of α. When α is discrete-valued,
Eq. (6) is derived as

H =
∑
αi

f i (UF + b) g(αi), (8)

where ∑
i

g(αi) = 1,

f i(·) = f(·|α = αi).

Similarly, the recurrent neural network can be extended to
a dynamic routing one. The vanilla recurrent unit works in the
following way,

Ht = f (UFt +WHt−1) , (9)

where Ft is the input at the time step t, and Ht is the hidden
state at the time step t. f is usually a nonlinear function, such
as ReLU or tanh. The hidden state Ht can be regarded as the
memory of the network. Ht captures information about what
happened in all previous time steps. Similar to the change
from (5) to (6), given the context information αt at time-step
t, Eq. (9) is updated as follows,

st =

∫
αt

f (UFt +WHt−1|αt) g(αt), (10)∫
αt

g(αt) = 1. (11)

When αt is discrete-valued, Eq. (10) can be derived as

Ht =
∑
i

f i (UFt +WHt−1) g(αit), (12)

where ∑
i

g(αit) = 1,

f i(·) = f(·|αt = αit).

Similarly, the implications of Eqs. (12)-(13) are quite sim-
ple. To get a meaningful output Ht, we first estimate a multi-
channel map

{
g(αit)

}
showing the appearance probability

of each context. It shows whether a location belongs to a
category, e.g. smooth regions or fast moving edge regions,
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Fig. 5. The framework of Dynamic Routing Recurrent Redidue Network (D3R-Net). We first employ a single frame CNN (SF-CNN) to extract features Ft

of the t-th frame Ot. Then, the subsequent network components predict the clean background frames by two paths: 1) single-frame path (denoted by blue
lines); 2) multi-frame path (denoted by black lines and red lines). The multi-frame path works in a dynamic routing way. (Best viewed in color)

rain regions or non-rain regions et al. Then, based on the
probability map

{
g(αit)

}
, Ht is inferred by weighting the

results obtained from the corresponding mappings
{
f i(·)

}
.

C. Dynamic Routing Residue Recurrent (D3R) Neural Net-
work for Rain Removal

Based on the above-mentioned dynamic routing mech-
anism, we build a Dynamic Routing Recurrent Residual
Network (D3RNet). The whole network architecture is illus-
trated as Fig. 5. Briefly, we first extract the features Ft of each
frame by a residual CNN. Then, the subsequent components
of D3R-Net predict the negative rains by two paths:
• Single-frame path (denoted by blue lines). This path

directly transforms single frame spatial feature Ft into
the negative rains to estimate the clean background frame.
This path forces the extracted Ft meaningful.

• Multi-frame path (denoted by black and red lines). This
path first fuses the spatial features along the temporal
axis in a dynamic routing way. Several recurrent units are
expected to take responsibility for handling the temporal
fusion in given contexts, e.g. rain or non-rain regions,
to generate a series of temporally fusion results

{
Hi,j
t

}
.

In the certain forward and backward processes, one of
these recurrent units is mainly activated in each time-
step. A Context Selection Gate (CS-Gate) is used to
detect the context and select one of these fused features
(e.g. denoted by red lines) as the final fused feature in
the given context, e.g. H1,3

t and H2,2
t in Fig. 5. Then,

the temporally fused feature is combined with the spatial
feature from a skip connection (denoted by green line)
by a summation operation. At last, the combined feature
is projected into the predicted negative rain streaks by a
CNN.

The details and formalized descriptions of D3R-Net are
illustrated in the following.
Single Frame CNN Extractor (SF-CNN). The residual learn-
ing architecture [18, 48] is used for single frame CNN feature

extraction. As shown in Fig. 6, residual blocks are stacked
to build a CNN network. In formulation, let f c

t,k,in denote the
input feature map of the k-th residual block. The output feature
map of the k-th residual block, f c

t,k,out, is progressively updated
as follows:

f c
t,k,out = max

(
0,Wc

t,k,mid ∗ f c
t,k,mid + bc

t,k,mid + f c
t,k,in

)
,

f c
t,k,mid = max

(
0,Wc

t,k,in ∗ f c
t,k,in + bc

t,k,in

)
, (13)

where ∗ signifies the convolution operation. W and b with
subscripts and superscripts denote the weight and bias of
the corresponding convolution layers, respectively. f c

t,k,in =
f c
t,k−1,out is the output features of the (k−1)-th residual block.

There is a by-pass connection here between f c
t,k,in and f c

t,k,out.
This architecture is proven effective in increasing the network
depth and improving network training. The output feature map
is denoted as Ft, where t is the time-step of the frame. Ft
encodes the spatial information of Ot.

Fig. 6. The CNN architecture for single frame CNN feature extraction.
R-Net, C-Net and JRC-Net adopt this network architecture as well.

Recurrent Units. Compared to the single frame rain removal,
video rain removal can make use of temporally sequential
information. To make use of temporal redundancies, we use re-
current units to connect different frames and fuse their features
along the temporal axis. After obtaining the aggregated feature
in the last time-step of the given recurrent layer Hj

t−1 and that
in the last time-step of the previous recurrent layer Hj−1

t−1 , the
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recurrent units are used to fuse them to generate the aggregated
feature of the current time-step in the given recurrent layer Hj

t ,
where j indexes layer number and t indexes the time-step. H0

t

is initialized as Ft. In this fusion process, Gated recurrent units
(GRU) [9] are used. With gate functions, the neuron chooses
to read and reset at a time-step. This architecture updates and
aggregates internal memory progressively, which facilitates its
modeling of long-term temporal dynamics of sequential data.
The formulations are presented as follows,

Hj
t =

(
1− zjt

)
Hj−1
t−1 + zjtH̃

j
t ,

H̃j
t = tanh

(
WhH

j−1
t + Uh

(
rjt �Hj−1

t−1

))
,

zjt = σ
(
WzH

j−1
t + UzH

j−1
t−1

)
, (14)

rjt = ReLU
(
WrH

j−1
t + UrH

j−1
t−1

)
,

where Hj
t is interpreted as the aggregated memory, represent-

ing the accumulated information at the t-th time-step from
adjacent frames. Hj

t is also the output of the unit. rjt is the read
gate, controlling the input information from adjacent frames
to the current one. zjt is the update gate, deciding how much
information of the current frame should be updated to the
hidden state. H̃j

t is the new memory information generated at
the t-th time-step.
Context Selection Gate (CS-Gate). To percept the context
information in modeling temporal dynamics to benefit the joint
spatial and temporal learning, we use a component to detect
the context of rain frames explicitly, which further guides the
successive spatial and temporal feature fusion. CS-Gate takes
Hj−1
t−1 and Hj−1

t as its input, and predicts α̂t as follows,

fj,dt,0 =
[
Hj−1
t ,Hj−1

t−1

]
,

fj,dt,1 = Wd
t,1 ∗ fj,dt,0 + bj,dt,1 ,

fj,dt,2 = Wj,d
t,2 ∗ fj,dt,1 + bdt,2, (15)

α̂t (k) =
exp
(
fdt,2 (k)

)∑
s=1,2,...,St

exp
(
fdt,2 (s)

) ,
where k indexes the feature map channel, which corresponds
to the context variable, and St is the total number of that. In
our implementation, α̂t aims to predict rain type indicator and
motion segmentation as shown in Fig. 5.
Contextualized Fusion. To benefit the joint spatial temporal
feature learning in different contexts, we enable to use several
recurrent units at a given time-step of a recurrent layer. Thus,
the aggregated feature Hj

t is extended to Hj,s
t , where s indexes

the context variable.
Given these features, the output of CS-Gate and the predict-

ed probability of a context variable α̂t, the final fused feature
is calculated as follows,

Hj
t =

S∑
s=1

α̂t (s)Hj,s
t . (16)

Spatial Temporal Residue Fusion. After the last l-th recur-
rent layer , we then combine both temporally fused feature Hl

t

and spatial feature Ft as follows,

Mt = Hl
t + Ft. (17)

Single-Frame Reconstruction (SF-Rect). SF-Rect aims to
separate rain streaks based on only spatial features, which
makes Ft good at distinguishing rain streaks and normal
textures. The estimated negative rain streak layer and clean
background frame are represented as follows,

rst = fsf (Ft) , (18)

B̂s
t = Ôt + rst . (19)

Multi-Frame Reconstruction (MF-Rect). MF-Rect aims to
separate rain streaks or fill in missing rain occlusion regions
based on temporal dynamics, which makes the network ca-
pable of modeling motions and temporal dynamics of back-
ground among frames. The estimated negative rain streak layer
and clean background frame are represented as follows,

rmt = fmf (Mt) , (20)

B̂m
t = Ôt + rmt . (21)

Loss Function. As above-mentioned, let B̂s
t , B̂m

t and α̂t
denote the estimated background frame with only spatial
features, the estimated background frame with both spatial
and temporal features, and context type mask. Let Bt and αt
denote the ground-truth background frame and the degradation
type mask. The loss function of the network includes three
terms: context detection error, background estimation error
based on only spatial features, and that based on both spatial
and temporal features,

lall = λdldetect + λsls-rect + λmlm-rect,

ldetect =
∑
t∈T

log

 ∑
k=1,2,...,St

exp
(
fdt,2 (k)

)− αt
 , (22)

ls-rect =
∥∥∥B̂s

t −Bt

∥∥∥2
2
,

lm-rect =
∥∥∥B̂m

t −Bt

∥∥∥2
2
,

where T is the full set of the time-step that is incorporated
with rain removal context by dynamic routing. λd, λs, and λm
are set to 0.001, 1, and 1, respectively.

Fig. 7. Top left panel: one example of RainSynLight25. Top right panel: one
example of RainSynComplex25. Bottom panel: two examples of RainPracti-
cal10.
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(a) Rain image (b) Ground truth (c) TCLRM (d) DetailNet (e) JORDER (f) FastDeRain (g) LP (h) DSC (i) D3R-Net

Fig. 8. Results of different methods on an example of RainSynLight25. From top to bottom: whole image, local regions of the estimated background layer,
and local regions of the estimated rain streak layer.

(a) Rain image (b) Ground truth (c) TCLRM (d) DetailNet (e) JORDER (f) FastDeRain (g) LP (h) DSC (i) D3R-Net

Fig. 9. Results of different methods on an example of RainSynComplex25. From top to bottom: whole image, local regions of the estimated background
layer, and local regions of the estimated rain streak layer.

V. EXPERIMENTAL RESULTS

We perform extensive experiments to demonstrate the supe-
riority of D3R-Net, as well as effectiveness of its each com-
ponent. Due to the limited space, some results are presented
in the supplementary material.

A. Datasets
We compare D3R-Net with state-of-the-art methods on a

few benchmark datasets:
• RainSynLight25, which is synthesized by non-rain se-

quences with the rain streaks generated by the proba-
bilistic model [16]. Compared with the original procedure
in [16], we use a simplified approach. For a sampled
location, we randomly select one streak from the streak
database [16], transform it with a sampled direction (from
-50◦ to 50◦) and zoom it with a random scale (from 0.2 to
3). The parameters of directions and scales are consistent
but with small-scale variations within a streak map. The
used streaks vary from tiny drizzling to heavy rain storm
and vertical rain to slash line.

• RainSynComplex25, which is synthesized by non-rain se-
quences with the rain streak generated by the probabilistic
model [16], sharp line streaks [48] and sparkle noises.

• RainPractical10, ten rain video sequences we collected
from practical scenes from Youtube website1, GIPHY2

1https://www.youtube.com/
2https://giphy.com/

and movie clips.
Some examples of RainSynLight25, RainSynComplex25,

and RainPractical10 are provided in Fig. 7. Our synthesized
training and testing data is from CIF testing sequences, HDTV
sequences3 and HEVC standard testing sequences4. The aug-
mented video clips are synthesized based on BSD500 [32],
with the artificially simulated motions, including rescaling
and displacement. More information about training data and
training details are provided in the supplementary material.

B. Comparison Methods

We compare D3R-Net with six state-of-the-art methods: dis-
criminative sparse coding (DSC) [31], layer priors (LP) [28],
joint rain detection and removal (JORDER) [48], deep de-
tail network (DetailNet) [13], stochastic encoding (SE) [45],
temporal correlation and low-rank matrix completion (TCLR-
M) [27]. DSC, LP, JORDER and DetailNet are single frame
deraining methods. SE and TCLRM are video derainig meth-
ods. JORDER and DetailNet are deep-learning based methods.

For the experiments on synthesized data, five metrics Peak
Signal-to-Noise Ratio (PSNR) [22], Structure Similarity In-
dex (SSIM) [43], Visual Information Fidelity (VIF) [35],
feature-similarity (FSIM) [51], and Universal image Quality
Index (UQI) [42] are used as comparison criteria. Following

3https://media.xiph.org/video/derf/
4http://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/
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(a) Rain image (b) TCLRM (c) DetailNet (d) JORDER

(e) FastDeRain (f) DSC (g) LP (h) D3R-Net

Fig. 10. Results of different methods on practical images. Their full resolution results are provided in the supplementary material.

(a) Rain image (b) TCLRM (c) DetailNet (d) JORDER

(e) FastDeRain (f) DSC (g) LP (h) D3R-Net

Fig. 11. Results of different methods on practical images. Their full resolution results are provided in the supplementary material.

previous works, we evaluate the results only in the luminance
channel, since human visual system is more sensitive to
luminance than chrominance information.

C. Quantitative Evaluation
Table I shows the results of different methods on Rain-

SynLight25 and RainSynComplex25. As observed, our method
considerably outperforms other methods in terms of both
PSNR and SSIM. The PSNR of D3R-Net is higher than that
of JORDER, the state-of-the-art sinlge image rain removal

method, with margins at more than 2.5dB and 6.5dB on
RainSynLight25 and RainSynComplex25, respectively. D3R-
Net also obtains higher SSIM values than JORDER, with
margins at about 0.0199 and 0.1968 on RainSynLight25 and
RainSynComplex25, respectively. Compared with SE and T-
CLRM, D3R-Net also achieves higher PSNR and SSIM. The
gains of PSNR are more than 5dB and 8dB on RainSynLight25
and RainSynComplex25, respectively. The gains of SSIM are
more than 0.08 and 0.25 on RainSynLight25 and RainSynCom-
plex25, respectively.
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(a) Rain image (b) TCLRM (c) DetailNet (d) JORDER

(e) FastDeRain (f) DSC (g) LP (h) D3R-Net

Fig. 12. Results of different methods on practical images. Their full resolution results are provided in the supplementary material.

(a) Rain image (b) TCLRM (c) DetailNet (d) JORDER

(e) FastDeRain (f) DSC (g) LP (h) D3R-Net

Fig. 13. Results of different methods on practical images. Their full resolution results are provided in the supplementary material.

D. Qualitative Evaluation

Figs. 8-9 show the results of synthetic images. It is clearly
observed that, our D3R-Net produces the cleanest result with
the least texture detail loss (least structure details remaining in
estimated rain streak layers). Figs. 10-14 show the results of
practical images. We here only present the zooming-in local
results. Their corresponding full results are provided in the

supplementary material5. TCLRM and D3R-Net remove the
majority of rain streaks successfully. However, the result of
TCLRM may contain artifacts in the area with large motions,
as denoted by the red arrows. D3R-Net achieves superior per-
formance in both removing rain streaks and avoiding artifacts.

5http://www.icst.pku.edu.cn/struct/Projects/VideoRainRemoval/Supple.mp4
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(a) Rain image (b) TCLRM (c) DetailNet (d) JORDER

(e) FastDeRain (f) DSC (g) LP (h) D3R-Net

Fig. 14. Results of different methods on practical images. Their full resolution results are provided in the supplementary material.

TABLE I
OBJECTIVE RESULTS AMONG DIFFERENT RAIN STREAK REMOVAL METHODS ON RainSynLight25 (DENOTED BY Light) AND RainSynComplex25 (DENOTED

BY Complex).

Methods Rain Images DetailNet TCLRM JORDER
Dataset Light Complex Light Complex Light Complex Light Complex
PSNR 23.69 14.67 25.72 16.50 28.77 17.31 30.37 20.20
SSIM 0.8058 0.4563 0.8572 0.5441 0.8693 0.4956 0.9235 0.6335
VIF 0.4184 0.2001 0.4225 0.2180 0.4714 0.1807 0.5124 0.2460

FSIM 0.8440 0.6450 0.8848 0.7012 0.9216 0.6916 0.9171 0.7419
UQI 0.9845 0.8467 0.9882 0.8695 0.9960 0.8862 0.9932 0.9560

Methods LP DSC FastDeRain D3R-Net
Dataset Light Complex Light Complex Light Complex Light Complex
PSNR 27.09 17.65 25.63 17.33 29.42 19.25 32.96 27.03
SSIM 0.8566 0.5364 0.8328 0.5036 0.8683 0.5385 0.9434 0.8303
VIF 0.5135 0.2478 0.4293 0.2109 0.4995 0.2479 0.6555 0.3822

FSIM 0.8908 0.7030 0.8736 0.6765 0.9129 0.7351 0.9660 0.8891
UQI 0.9922 0.8878 0.9889 0.9058 0.9964 0.9051 0.9985 0.9875

E. Ablation Analysis on Network Architecture

We compare the results with different compositions of the
proposed method. The results with two baseline RNNs are pro-
vided: bidirectional recurrent convolutional network (BRCN)
and GRU. JORDER is the single frame version. B-R denotes
the raw BRCN version without temporal residue learning. B
denotes the BRCN with temporal residue learning. B+R is
the BRCN embedded with rain type in a dynamic routing
way. B+M is a BRCN embedded with motion segmentation
in a dynamic routing way. B+R+M is incorporated with both
rain type and motion segmentation. G-R denotes the raw
GRU without temporal residue learning. G denotes the GRU
network with temporal residue learning. G+R is the GRU
embedded with rain type in a dynamic routing way. G+M
is a GRU embedded with motion segmentation in a dynamic
routing way. G+R+M is incorporated with both rain type and
motion segmentation.

The comparison results are presented in Table II and Ta-

ble III. The comparison between JORDER and B-R, and that
between JORDER and G-R show the importance of joint
modeling spatial and temporal redundancy. From JORDER
to B-R and G-R, the performance is largely improved with
gains of 5.48dB in PSNR, 0.1434 in SSIM and 6.18 dB in
PSNR, 0.1762 in SSIM, respectively. The usage of spatial
temporal residue learning (B and G) leads to higher metric
scores, with gains of 0.20dB in PSNR, 0.0167 in SSIM and
0.32 dB in PSNR, 0.0135 in SSIM, compared with B-R and
G-R respectively. It can be also observed that, embedding
motion segmentation and rain type in the dynamical routing
way can boost the performance and the joint incorporation
provides the best evaluation performance. Note that, for a
fair comparison, we control that the parameter number of raw
BRCN is greater than that of BRCN embedded with rain type
and motion segmentation and that the parameter number of
raw GRU is greater than that of GRU embedded with rain type
and motion segmentation. The channel number of the recurrent
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Fig. 15. Evaluation of optical flow estimation on synthetic rain images and
derained results.

layers of raw BRCN and GRU is 64 and that embedded with
rain type and motion segmentation is 16. The comparison
of B+R+M and G further demonstrates the effectiveness of
the proposed dynamical routing context embedding method.
B+R+M achieves superior performance with less parameters.

TABLE II
OBJECTIVE EVALUATION RESULTS AMONG DIFFERENT VERSIONS OF THE
PROPOSED METHOD WITH BRCN ARCHITECTURE ON RainSynComplex25.
Methods JORDER B-R B B+M B+R B+R+M
PSNR 20.20 25.68 25.88 26.48 26.44 26.77
SSIM 0.6335 0.7769 0.7936 0.8158 0.8140 0.8270
VIF 0.2460 0.3159 0.3312 0.3583 0.3574 0.3780

FSIM 0.7419 0.8589 0.8677 0.8780 0.8768 0.8853
UQI 0.9560 0.9817 0.9827 0.9843 0.9842 0.9846

TABLE III
OBJECTIVE EVALUATION RESULTS AMONG DIFFERENT VERSIONS OF THE
PROPOSED METHOD WITH GRU ARCHITECTURE ON RainSynComplex25.
Methods JORDER G-R G G+M G+R G+R+M
PSNR 20.20 26.38 26.70 26.81 26.85 27.03
SSIM 0.6335 0.8097 0.8232 0.8271 0.8282 0.8303
VIF 0.2460 0.3498 0.3683 0.3798 0.3791 0.3822

FSIM 0.7419 0.8758 0.8829 0.8872 0.8881 0.8891
UQI 0.9560 0.9850 0.9862 0.9865 0.9871 0.9875

F. Computer Vision Applications

Our D3R-Net not only significantly improves the visibility
but also enhances the performance of successive computer
vision system. Fig. 15 presents the optical flow estimation
of synthesized rain frames, non-rain frames and the derained
results of our D3R-Net. It is demonstrated that, the existence
of rain streaks contaminates the optical flow estimation. Com-
paratively, the optical flow estimation of the derained results
by D3R-Net is more accurate, visually similar to that of ground
truth non-rain frames.

G. Running Time Comparison

Table IV compares the running time of several state-of-the-
art methods. All baseline methods are implemented in MAT-
LAB. Our methods are implemented on the Caffe’s Matlab
wrapper. DetailNet, JORDER, FastDeRain and D3R-Net are
implemented on GPU. LP, DSC and TCLRM are implemented
on CPU. We evaluate the running time of all algorithms
with the following machine configuration: Intel Core(TM) i7-
6850K @ 3.60GHz, 64 GB memory and TITAN GeForce
GTX 1080. Our D3R-Net obtains comparable running time to
FastDeRain and JORDER, and runs much faster than TCLRM,
LP and DSC. In general, our methods in GPU are capable of
dealing with a 500× 500 rain image less than 5s.

TABLE IV
THE TIME COMPLEXITY (IN SECONDS) OF D3R-NET COMPARED WITH

STATE-OF-THE-ART METHODS.

Scale – DetailNet TCLRM JORDER
80×80 – 0.05 2.31 0.11

500×500 – 0.93 64.14 1.46
Scale LP DSC FastDeRain D3R-Net

80×80 35.97 14.32 0.09 0.13
500×500 2708.20 611.91 2.71 3.06

H. Performance and Parameter Analysis

We also provide the objective results and parameter numbers
of deep learning-based methods in Table V. It is observed
that, compared with the performance improvement (0.81 dB
and 1.86 dB in PSNR as well as 0.0263 and 0.1023 in
SSIM) from JORDER to DetailNet with a cost of more than
5 times additional parameters, the performance improvement
(2.59 dB and 6.83 dB in PSNR as well as 0.0199 and
0.1968 in SSIM) from JORDER to D3R-Net is quite efficient
and economical. It is showed that, our D3R-Net uses more
parameters, however, significant gains are indeed achieved.
It is worthwhile to introduce more parameters to model the
temporal dependencies between frames and incorporate the
detected video context in D3R-Net.

VI. CONCLUSION

In this paper, we proposed a hybrid rain model to depict both
rain streaks and occlusions. Then, a Dynamic Routing Residue
Recurrent Network (D3R-Net) was built to seamlessly inte-
grate context variable estimations, and a rain removal based
on both spatial appearance feature and temporal coherence.
The rain type indicator and motion segmentation were em-
bedded into D3R-Net in a dynamic routing way, flexible to be
extended to incorporate other context information. Extensive
experiments on a series of synthetic and practical videos with
rain streaks verified the superiority of the proposed method
over previous state-of-the-art methods.
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