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Abstract—In conventional wisdom of video modeling, back-
ground is often treated as the primary target and foreground is
derived using the technique of background subtraction. Based on
the observation that foreground and background are two sides
of the same coin, we propose to treat them as peer unknown
variables and formulate a joint estimation problem, called Hi-
erarchical modeling and Alternating Optimization (HMAO). The
motivation behind our hierarchical extensions of background and
foreground models is to better incorporate a priori knowledge
about the disparity between background and foreground. For
background, we decompose it into temporally low-frequency and
high-frequency components for the purpose of better characteriz-
ing the class of video with dynamic background; for foreground,
we construct a Markov random field prior at a spatially low
resolution as the pivot to facilitate noise-resilient refinement at
higher resolutions. Built on hierarchical extensions of both mod-
els, we show how to successively refine their joint estimates under
a unified framework known as alternating direction multipliers
method. Experimental results have shown that our approach
produces more discriminative background and demonstrates
better robustness to noise than other competing methods. When
compared against current state-of-the-art techniques, HMAO
achieves at least comparable and often superior performance
in terms of F-measure scores especially for video containing
dynamic and complex background.

Index Terms—Hierarchical modeling, Dictionary learning,
Joint estimation, Alternating Direction Multipliers Method (AD-
MM).

I. INTRODUCTION

Separating foreground (moving objects) from background
is a fundamental problem in various computer vision and
video processing applications including object tracking [1],
[2], video surveillance [3], [4], behavior recognition [5],
category prediction [6] and so on. Historically, background
(BG) modeling has received more attention than foreground
(FG) modeling partially because it is relatively easier to model
the BG especially in the absence of camera motion. Based
on a good estimation of BG, it is relatively easy to solve
the problem of FG segmentation by subtracting BG from
the videos (e.g., so-called background subtraction [33]). To
enforce the smoothness constraint of object boundaries during
FG segmentation, different models have been constructed
in the literature - e.g., regional continuity [25], [26], total
variation norm [34] and spatio-temporal sparsity [31].
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Fig. 1. The proposed Hierarchical Modeling and Alternating Optimization
(HMAO) framework for FG-BG separation (red color highlights the difference
between ours and previous approaches).

However, such a background subtraction framework can
be challenged from several perspectives. First, a background-
first approach would introduce unnecessary bias in background
model to foreground segmentation. In fact, given the binary
nature of video segmentation, resolving uncertainty with one
immediately resolves the other. During each round of iteration,
background estimate is successively refined by video analysis
as shown by the blue color in Fig. 1, while foreground estimate
is updated by prior constraints without resorting to input video
at all [25], [26], [31], [34]. As highlighted by the red color
in Fig. 1, a more principled way is to segment the foreground
based on both background subtraction and video analysis
results; in other words, BG and FG are treated as peer un-
known variables (both successively refined at each iteration).
Second, even if one acknowledges the priority of BG (e.g., it
usually contain a lot more pixels than FG), the complexity
of accurately modeling BG is high. Irregular motion (e.g.,
rippling water, waving leaves, fluttering flags) and textures
(e.g., meadowland with varying depths and illuminations) in
the physical world are two primary interfering factors, which
make BG modeling a long-standing open problem. In view of
various limitations with BG modeling, obtaining FG by BG
subtraction is arguably ad-hoc and far from being optimized.

In this paper, we propose to take a hierarchical approach
toward modeling BG/FG and formulate FG-BG separation as
a joint optimization problem. In our temporally hierarchical
model, BG consists of two components: averaging and detail
targeting at characterizing low-frequency and high-frequency
components respectively; our two-component model can be
interpreted as the combination of previous work on dynamic
background models [23] and texture background model [35]
in order to more accurately characterize complex BG in the
physical world. As an example, Fig. 2 shows that regularly
changing patterns in the BG (water scene) correspond to
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the averaging component; while irregularly changing patterns
(e.g., intensity variations arising from ripples and reflections)
the detail component. Furthermore, while building a Markov
random field model for the FG, we have taken a spatial-
ly hierarchical approach of starting from a low-resolution
and propagating the class label from low-resolution to high-
resolution in a supervised manner. This way we can improve
the robustness of FG modeling to noise (including the errors
caused by BG estimation). By treating BG and FG as a pair
of peer variables, we formulate a joint optimization problem
and solve it by the Alternating direction multipliers method
(ADMM) [36]. The main contributions of this paper are
summarized as follows:

• Hierarchical modeling of BG. To better characterize dy-
namic structures in natural scenes, we sequentially esti-
mate temporally low-frequency and high-frequency com-
ponents of BG which respectively model the averaging
and detail patterns. We argue that modeling detail patterns
of BG (instead of treating them as outliers) improves
the accuracy especially for the class of video containing
dynamic background and self-repeating textures.

• Hierarchical modeling of FG. To improve robustness to
noise (including potential errors in BG estimate), we
propose to first detect FG at a low resolution (LR) and
hierarchically refine such estimation at spatially higher
resolutions. To propagate label information from LR to
HR, rank-1 constraint of the BG and l1-norm constraint
of the FG are jointly enforced by graph cut techniques.

• Treating FG and BG as peer variables. Despite the
existing joint optimization framework for FG-BG sep-
aration (e.g., DECOLOR [25]), BG is often viewed
as the primary and carries more weight than FG. We
propose to treat FG and BG as peer unknown variables
and update their estimates by alternating optimization.
Unlike conventional approaches, FG is also refined by
exploiting additional information from video (e.g., label
information) at each iteration as highlighted by the red
color in Fig. 1.

Our approach based on Hierarchical Modeling of BG/FG
and Alternating Optimization (HMAO) has been experimental-
ly verified on two popular video datasets for moving object de-
tection: I2R and CDNet 2014. The proposed HMAO has been
compared against seven leading algorithms whose codes are
publicly available. It has been found that HMAO has achieved
at least comparable and often superior performance to other
competing approaches in terms of F-measure performance.
Especially for those video containing dynamic background,
HMAO demonstrates improved robustness to complex back-
ground and accuracy for moving object detection.

The remainder of this paper is organized as follows. Section
II briefly reviews existing works on statistical and sparsity-
based BG models. Section III provides the formulation of
joint optimization problem and the derivation of the solution
algorithm. Section IV reports our experimental results includ-
ing the comparison between this work and other competing
approaches. Finally, Section V provides some concluding
remarks and outlines the direction for future research.

II. RELATED WORKS ON BACKGROUND MODELING

Existing works on modeling/estimating BG from video
can be classified into two categories: statistical models and
sparsity-based models.

A. Statistical models

Statistical background models in the literature often employ
individual pixel values or pixels within a region as input
features. For example, individual pixel values were modeled by
Gaussian distributions in 1997 [11] and by Mixture of Gaus-
sian (MOG) in [7]; in the following years, other Gaussian-
based algorithms [8], [9] have also reported good performance.
Along this line of research, Kernel density estimation (KDE)
was proposed to model the local pixel value variations in
[16]; a uniform kernel with variable size was developed
in [18] and density estimation was combined with support
vector machine (SVM) in [20]. When separating BG from
FG, the codebook of clustered pixel value series robust to
environmental changes was considered in [14]; its multi-
scale and multilayer extensions appeared in [21] and [15]
respectively. In [23], radial basis function neural network was
used to model pixel value series; a universal algorithm named
Visual Background Extractor (ViBe) was proposed in [19]
and later improved in [37]. Similar strategy also appeared in
Pixel-Based Adaptive Segmenter (PBAS) [38]. The consensus
of sample was employed in SAmple CONsensus (SACON)
algorithm in [39], which later became the consensus of word
[17] and the consensus of lightness [40].

Region-based approaches are mostly based on the ob-
servation that neighboring pixels are not independent from
each other in video. Local binary patterns (LBP), which is
insensitive to illumination changes, has been widely used to
capture textured BG [35]; Local difference patterns (LDP)
was later introduced to tackle the characterization of dynamic
background [41]; Markov random field (MRF) was employed
to estimate similarities between regions in [22]. More recently,
Self Organized Maps (SOM) was developed for adapting
dynamic background in [42]; region cues were introduced
into Gaussian Mixture Model (GMM) to produce a regional
spatially-consistent background model in [10]. Last but not
the least, proper combination of different features or statis-
tics often achieves improved performance - e.g., an efficient
background model integrating six kinds of local features
demonstrated superior performance in [43] when compared
with conventional local models.

B. Sparsity-based models

Sparsity-based BF models are often related to the idea of
projecting high-dimensional data onto a lower dimensional
subspace. Among early attempts, Principal component analysis
(PCA) was proposed for modeling the BG in [24]- i.e., keep
only the eigenbackgrounds associated with the few largest
eigenvalues. Later a video frame was decomposed into the
combination of a low-rank matrix and a sparse one in [44];
rank-1 constraint was used to derive an efficient BG estima-
tion algorithm in [26]. More recently, tensor-Based low-rank
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Fig. 2. The framework of the hierarchical background (input: video sequence and detected foreground; output: averaging component and detail component).
Note that regularly changing patterns in BG are modeled by the averaging component; irregularly changing patterns in BG, caused by the variations in the
background, are modeled by the detail component.

framework was analyzed in [29]; the low-rank model was
integrated with sparse subspace clustering in [32] based on
the assumption that BG be spanned across multiple manifolds.
Based on a similar low-rank hypothesis, other researchers have
worked on the constraints for the FG matrix - e.g., Total
Variation (TV) penalty on sparse deviations was employed to
better handle noisy FG data in [45]; this framework was later
improved in [34]. In [25] Markov Random Field (MRF) prior
was introduced for better suppressing noise components and
small background motion; in [28], structured sparsity-inducing
norm was proposed to model the FG component.

In sparsity-based models, robustness is an issue that has
attracted increasingly more attention in recent years. In [46],
the robustness of BG modeling was improved by sparse signal
recovery - i.e., a new frame can be represented by the sparse
linear combination of a few preceding frames plus a sparse
outlier term; in [30], BG was modeled by robust dictionary
learning. This framework was further improved by maintaining
historical pixels in [47] and by incorporating a spatio-temporal
group sparsity constraint in [31]. Besides the above local and
spatial models, other works concentrate on exploring extra
information from video to improve the robustness - e.g., in
[48], superpixel was proposed as the prior information in the
background substraction framework; in [49], extra information
such as the Gaussian and Laplacian images of raw video data
have also proven effective.

III. FORMULATION OF HIERARCHICAL MODELING AND
ALTERNATING OPTIMIZATION MODEL

We introduce some necessary notations first. For a given
video [D1, . . . ,DN ] ∈ RI×J×3×N (N is the number of

frames), background is denoted by [B1, . . . ,BN ] and fore-
ground is denoted by [F1, . . . ,FN ]. The binary FG mask is
Ω : Ω = [Ω1, . . . ,ΩN ] ∈ RI×J×N where Ωi,j,n = 1 if
pixel (i, j, n) is in foreground and Ωi,j,n = 0 if pixel (i, j, n)
is in background. In other words, Ω denotes the support of
FG regions; the complement of Ω (Ω) denotes the support of
BG regions. We assume that video is decomposed of short
group of pictures (GOP) [D(1), . . . ,D(K)] each containing
f frames and K = N/f is the number of GOPs. Since
the operations are identical for all picture groups D(k), we
drop the subscript (k) and use D ∈ RI×J×3×f to denote
an arbitrary D(k) (k = 1, . . . ,K) for notational simplicity;
similarly B represents an arbitrary BG group B(k).

A. Hierarchical Background

We propose a hierarchical representation for the BG (as
shown in Fig. 3) by decomposing it into low-frequency and
high-frequency components - i.e.,

B = Bh +Bl, (1)

where, h, l denote high-frequency and low-frequency respec-
tively. The motivation behind such hierarchical decomposition
of BG is two-fold.

First, low-frequency component (Bl) corresponds to con-
stant or regularly changing patterns in the BG. For pixel
values Bl

i,j,:,n(n = 1, . . . , N)1, we assume that intensity
values are either constant or vary slightly. Throughout this
paper, we name the center of N pixel values as “chief values”
(conceptually similar to “historical pixels” in [47]). As shown

1We use (:) to denote all indexes in this dimension - e.g., (i, j, :, n) means
(i, j, 1 : 3, n) or the RGB value at position (i, j) in the n-th frame.
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Fig. 3. The proposed hierarchical background model. The background of
each frame is composed by one averaging background layer and one detail
background layer.

in Fig. 2, we use the tensor product of chief value tensor (Bl∗)
and changing tendency tensor (T ) to model the low-frequency
component of BG - i.e.,

Bl = Bl∗ ×4 T. (2)

Here, Bl∗ ∈ RI×J×3×1 is a frame decomposed of the chief
values from all locations, T ∈ RN×1 is a first-order matrix
indicating the changing tendency for the entire frame, and
“×4” is the 4−mode product that denotes multiplying a tensor
by a matrix [52] (a brief introduction is given in Appendix).
Note that we require ∥T∥2 = 1 in order to ensure: 1) changing
tendency will not be influenced by averaging pixel values; 2)
BG intensity is only reflected by chief values.

Since the changing tendencies of different pixels are usually
independent in video, the choices of T are not unique. Here,
we assume that the maximum number of different choices for
T is NT and introduce a selecting variable (Ii,j ∈ RNT×1)
for pixel at location (i, j) ( i = 1, . . . , I; j = 1, . . . , J). Then
Eq. (2) can be rewritten pixel-wisely - i.e.,

Bl = Bl∗
i,j,: ×4 (T × Ii,j) = Bl∗

i,j,: ×4 Ii,j ×4 T, (3)

where Ii,j ∈ RNT×1, T = [T1, . . . , Tt] ∈ RN×NT is the
candidate set of changing tendency matrices.

By contrast, long-term changing tendencies are usually
difficult to model. For example, consider a fixed physical
position of a flowing river, running water often makes the
long-term changing tendency irregular due to complicated
interaction between reflection surface and light source. To
alleviate this difficulty, we propose to model each GOP locally
- i.e., 2

Bl = Bl∗
i,j,: ×4 Ii,j ×4 T, ∥T∥2 = 1,

I ∈ RNT×1, T ∈ Rf×NT .
(4)

According to (4), the changing tendency of entire video data
is segmented into pixel-wise and short-term representation. In
Fig. 4, we have shown the estimated latent changing tendency
matrix T for some exemplar video.

For chief value tensor of each GOP (Bl∗), we assume that
the BG should be constant (i.e., the chief values from different

2You should notice that, from here, as is illustrated in the first paragraph of
Sec. III, B is used for representing an arbitrary BG group B(k) and D denotes
an arbitrary picture group D(k). Similarly, here, T refers to the changing
tendency that intended for an arbitrary group TGOP . So, B (Bl,Bh) ∈
RI×J×3×f , D ∈ RI×J×3×f and T ∈ Rf×NT in the rest of the paper.

(a) Canoe (b) ShoppingMall

Fig. 4. The estimated changing tendency matrices (T ) of Canoe (CDnet
dataset) and ShoppingMall (I2R dataset).

GOPs to be the same) except for unexpected illumination
variations. It follows that most illumination changes can be
characterized by the previous changing tendency matrix T .
After vectorizing the chief value tensor (i.e., transforming each
Bl∗ into a vector Bl∗

vec), we conclude that the global chief
value matrix Bl∗

vec is low-rank - i.e., Bl∗
vec satisfies the rank

constraint rank(Bl∗
vec) = 1.3

Second, high-frequency components (Bh) reflect details or
irregularly changing patterns in the BG. In order to model
those irregular patterns, we propose to cluster pixel-wise
residuals of each GOP and use the centroid of each cluster
as the representative codeword. First, we obtain the residual
(Eh) representation by

Eh = B−Bl. (5)

Then we orthogonally project the residuals onto the linear
space spanned by non-FG pixels; or equivalently, we consider
PΩ(E

h) decomposed of detail BG and noise only. Since the
deviation between a FG detection result and the ground truth
is inevitable, detailed features missed by FG detection can still
be counted as leftover noise in the detail BG, which improves
the robustness of BG estimation (as shown in Fig. 2).

It should be noted that we take the principal component
of the residuals as the detail BG instead of treating them
as outliers (unlike those in conventional models). We argue
that most dynamic and self-repeating textures - e.g., rippling
water, waving leaves and fluttering flags - are actually a part
of video background (instead of moving objects in FG). To
model these dynamic textures, we simply cluster short-term
residuals on a pixel-by-pixel basis - i.e., self-repeating texture
leads to periodic residual values; while random noise produces
stochastic residual values. Therefore we can search the most
frequent short-term residuals by

minQ ∥PΩE
h
i,j,:,: − qc∥, s.t. qc ∈ Q. (6)

where Q is the quantization codebook sized by R3×f×C and
C is the size of codebook.

3We adopt the rank-1 constraint for its effectiveness and simplicity. It’s
possible to use a low-rank constraint instead - i.e., the corresponding solution
of Bl∗

vec will take the SVD (rather than average) of the background matrix.
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Fig. 5. Background subtraction results (bottom line) of frames in different resolutions. Here the low resolution frames are obtained by averaging every P -by-P
pixels in the original frames. From left to right: P = 1 (original frames); P = 2; P = 4; P = 8.

Next we quantize high-frequency components (Bh
i,j,:,:) and

represent them using trained codebooks. For non-FG regions
such as shown in Fig. 2, the high-frequency component of
BG is represented by the corresponding center of residual
sequences. However, in FG region where BG is covered by FG
objects, residual representation becomes meaningless (because
its theoretically impossible to recover those missing pixels
in the BG). For simplicity, we empirically choose the most
frequent centroid to replace them (can be interpreted as a
strategy of inpainting). The high-frequency component of BG
is then quantized by

Bh
i,j,:,: =


argminqc ∥E

h
i,j,:,: − qc∥,

if Eh
i,j,:,: ∈ Ω.

argminqc
∑
EΩ

∥(EΩ)
h
i,j,:,: − qc∥,

if Eh
i,j,:,: ∈ Ω.

(7)

where EΩ denotes arbitrary GOP that is in the non-foreground
regions, qc is the assigned centroid recording Bh

i,j,:,: and c is
the number of codebook centroids.

Putting things together, we can rewrite the complete BG
model as follows

Bi,j,:,: = Bl∗
i,j,: ×4 Ii,j ×4 T +Bh

i,j,:,:

s.t. rank(Bl∗
vec) = 1, ∥T∥2 = 1.

(8)

Note that the idea of decomposing video background into
a combination of averaging and detail background can be
extended in a multi-resolution manner. More specifically, by
iteratively clustering the residual, we can build up a multi-layer
decomposition of the BG - i.e., B = Bh+Bl1+Bl2+Bl3+. . ..
This way, the detail in the i-th layer is obtained by clustering

the residual of Bh +Bl1 + . . .+Bli−1 . An example is given
in Fig. 6, where a 6-layer decomposition of detail BG is
presented.

Fig. 6. HMAO with a multi-layer structure (1 averaging layer and 6 detail
layers). Note that the pixel values of all detail layers are enlarged by 5 times
for better visualization.

B. Hierarchical Foreground Detection

Conventional approaches toward FG modeling mostly focus
on the enforcement of spatial continuity constraints [25],
[47], which cannot effectively discover concealed FG regions
misclassified as noise. Since noise can be more salient than
the concealed FG objects in the residual, it is difficult to
overcome this limitation within the conventional framework
of BG subtraction. As illustrated in Fig. 1, a more effective
strategy is to explore the latent supervising information from
raw video and use it to enforce the constraint about FG
regions. To implement this strategy, we advocate a hierarchical
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approach of starting from a down-sampled version of the given
video and propagating the labeling of FG detection from low-
resolution to high-resolution in a supervised manner. There
are three specific issues to be addressed in our hierarchical
approach.

First, we propose to propagate FG label information in a
hierarchical manner to improve the robustness to noise. As
shown in Fig. 5, we obtain a low-resolution (LR) representa-
tion of video by spatial averaging (noise components are less
salient than FG objects after averaging). In most videos with
dynamic BG, noise typically associates with isolated pixels
or small patches, which become gradually less salient as the
resolution decreases; by contrast, FG objects often remain as
continuous and salient regions even at low resolutions. Let
us denote the low-resolution video by Dlr and low-resolution
foreground by Ωlr respectively. To detect the foreground from
a LR video, we set up a model based on rank-1 hypothesis of
BG and the l1-norm constraint of FG as follows

min
Blr,Flr

∥Dlr −Blr − Flr∥2F + µ∥Flr∥1.

s.t. rank(Blr) = 1;
(9)

where the l1-norm constraint can be enforced by a soft-
thresholding operator. Then we can infer the FG region Ωhr

from Ωlr at a high resolution (HR) pixel-wisely.
Meantime, we assume the pursued FG regions should be

similar - i.e.,
minΩ ∥Ω−Ωhr∥. (10)

Note that the hierarchical constraint Ωhr is robust to the noise,
but it might not perform well in identifying the contour of FG.

Since the efficiency of the soft-thresholding operator is
determined by the parameter (µ), we need to carefully select
the parameter µ in Eq. (9) so that the FG regions are detected
with high confidence. Since the extracted non-FG regions
are often error-prone, we propose to refine constraint (10)
by allocating different weights for FG and non-FG regions
respectively - i.e.,

C(Ω) = ∥Ω−Ωhr∥Ωhr=1 + ν∥Ω−Ωhr∥Ωhr=0. (11)

where ν = 1/3 reflects our confidence about the detected FG
regions (it is hand-crafted).

Second, we propose to construct a spatio-temporal Markov
random field (MRF) model as the FG prior. For each pixel,
we consider its eight surrounding neighbors within the same
frame and two adjacent neighbors in the previous/next frames
which should be labeled the same as the current pixel. We have
adopted the following notation for neighboring pixels (G)

G : |i− x|+ |j − y|+ |n− z| ≤ 1, (12)

and the following objective function

min
Ω

∑
G
∥Ωi,j,n −Ωx,y,z∥. (13)

Such spatio-temporal MRF is a good fit for pixels within mov-
ing objects; however, it requires extra attention while dealing
with the boundary of different regions (i.e., discontinuities). To
address this issue, we note that the difference between intensity
values of neighboring pixels is typically large suggesting the

existence of object boundaries. Therefore, one can leverage
the intensity difference into the formulation of a weighted
objective function (similar to the idea of edge-stopping in
classical Perona-Malik diffusion [13])

min
Ω

∑
G
exp(α0 − α(Di,j,:,n −Dx,y,:,z))∥Ωi,j,n −Ωx,y,z∥.

(14)
For notational simplification, we can use f(α) to denote
expα0−α(Di,j,:,n−Dx,y,:,z) and rewrite Eq. (14) into

min
Ω

∑
G
f(α)∥Ωi,j,n −Ωx,y,z∥. (15)

Third, a physical constraint arising from Pauli’s exclusion
principle dictates that BG is often occluded by FG objects -
i.e., D = PΩB+F where B is the extracted hierarchical BG.
Additionally, the size of FG region should also be limited to
a certain range; in other word, the region is constrained by a
l0-norm - i.e.,

min
Ω

∥Ω∥0, s.t.,D = PΩB+ F. (16)

Putting things together, we can rewrite the overall objective
function of FG as follows

min
F,Ω

∑
G
f(α)∥Ωi,j,n −Ωx,y,z∥+ β∥Ω∥0 + γC(Ω)

s.t., D = PΩB+ F.
(17)

C. Formulation and Optimization of HMAO

Based on the above BG and FG models, we propose to for-
mulate FG-BG separation as the following joint optimization
problem:

min
B,F,Ω

{
∑
G
f(α)∥Ωi,j,n −Ωx,y,z∥+ γC(Ω) + β∥Ω∥0

+
∑
i,j

∥Bi,j,:,: −Bl∗
i,j,: ×4 Ii,j ×4 T −Bh

i,j,:,:∥}.

s.t. rank(Bl∗
vec) = 1, ∥T∥2 = 1, D = PΩB+ F.

(18)
In the above framework, the newly employed components

are the changing tendency T , the detail background layer Bh

and the low-resolution foreground priori knowledge C(Ω). To
estimate the contribution of each component, some ablation
tests are shown in Table I.

TABLE I
ABLATION TEST OF EACH COMPONENT IN HMAO ON I2R DATASET.

Video HMAO H-CT H-DB H-CT-DB H-LF
WaterSurface 0.9293 0.8728 0.9257 0.8716 0.9060

Fountain 0.8380 0.8017 0.8343 0.8056 0.7503
Campus 0.8050 0.7770 0.8005 0.7733 0.7372
Curtain 0.8995 0.5751 0.8931 0.6177 0.7480

Hall 0.6830 0.6801 0.6815 0.6260 0.5040
Average 0.8310 0.7413 0.8270 0.7388 0.7291

In the table, H-CT stands for HMAO without changing
tendency (CT) part; H-DB is HMAO without detail back-
ground (DB); H-CT-DB means HMAO without hierarchical
background (CT and DB); H-LF corresponds to HMAO with-
out hierarchical foreground priori (LF). Actually, changing
tendency (CT) is the least effective component. The hierarchi-
cal foreground contributes a little more than the hierarchical
background with regard to the average performance.
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As to Eq. (18), we note that its objective function is non-
convex, which is difficult to solve in general. A more tractable
approach is to alternatively solve the two subproblems of
estimating BG and FG using Alternating direction multipliers
method (ADMM) [36].

1) Estimation of background: Once foreground (F) is avail-
able along with an estimated FG region (Ω), B can be updated
by minimizing the following objective function

min
∑
i,j

∥Bi,j,:,: −Bl∗
i,j,: ×4 Ii,j ×4 T −Bh

i,j,:,:∥

s.t. rank(Bl∗
vec) = 1, ∥T∥2 = 1, D = PΩB+ F.

(19)
or equivalently,

min
∑
i,j

∥PΩ(D− F)i,j,:,: −Bl∗
i,j,: ×4 Ii,j ×4 T −Bh

i,j,:,:∥

s.t. rank(Bl∗
vec) = 1, ∥T∥2 = 1.

(20)
The above problem can be solved in the following three steps:

First, we consider the low-frequency BG as the primary
part of the hierarchical model - i.e.,

min
∑
i,j

∥(D− F)i,j,:,: −Bl∗
i,j,: ×4 Ii,j ×4 T∥ (21)

Recall that low-frequency components are decomposed of
chief values and changing tendencies, which can then be
solved alternatively - i.e., once chief values are estimated,
changing tendencies of the averaging background can be
updated by

min
∑

i,j∈Ω

∥Ti,j − T × Ii,j∥, Ti,j ∈ Rf×1
(22)

where Ti,j = (D−F)i,j,:,:×3(Bi,j,:)
−1 (“×3” is the 3−mode

product). Then the result is projected onto the subspace such
that ∥T∥2 = 1. To solve T , Eq. (22) is a standard dictionary
learning problem and can be solved by heuristic algorithms.
Similarly, solving I is a sparse coding problem with the
constraint ∥Ii,j∥1 = 1.

Second, as to estimate the chief values in low-frequency
components, assuming that Vi,j = T × Ii,j ∈ Rf×1, we have

Bl∗
i,j,: ×4 Ii,j ×4 T

= Bl∗
i,j,: ×4 (T × Ii,j) = Bl∗

i,j,: ×4 Vi,j .
(23)

Then we can obtain chief value matrices for all GOPs by

min
∑

i,j∈Ω

∥(D− F)i,j,:,: −Bl∗
i,j,: ×4 Vi,j∥, (24)

By enforcing the constraint that these matrices should be
similar to each other, we compute the global optimal matrix
by averaging the estimated BG across non-FG regions - i.e.,
for each B (B(k), k = 1, . . . ,K),

Bl∗
i,j,: =

∑
k:i,j,k∈Ω

Bl∗
(k)i,j,:/

∑
k:i,j,k∈Ω

1. (25)

Third, residual of the low-frequency components are cal-
culated by

Eh = D− F−Bl. (26)

Then the detail background can be solved by Equation (7).
2) Estimation of foreground: We first estimate the latent

FG label (Ωhr) by solving Eq. (9), which can also be obtained

by alternatively solving Blr and Flr. More specifically, once
Blr is solved, Flr is given by Flr = Tµ(Dlr

n − Blr
n ) where

Tµ is the soft-thresholding operator. Then the rank-1 BG can
be calculated by Blr∗ =

∑N
n=1(D

lr
n − Flr

n )/N and we set
Blr

n = Blr∗, n = 1, . . . , N . Last, Ωhr can be obtained by
pixel-wise upsampling the FG region of LR video.

When BG (B) and reconstructed FG (Ωhr) are available,
FG detection problem becomes

min
F,Ω

{γC(Ω) + β∥Ω∥0 +
∑
G
f(α)∥Ωi,j,n −Ωx,y,z∥},

s.t. D = PΩB+ F.
(27)

The above problem can be reformulated as

min
F,Ω

{γC(Ω) + β∥Ω∥0 +
∑
G
f(α)∥Ωi,j,n −Ωx,y,z∥

+∥PΩ(D−B)∥}.
⇕
min {const+

∑
i,j,n

(β − ∥(Di,j,:,n −Bi,j,:,n)∥)Ωi,j,n

+γ
∑
i,j,n

C(Ωi,j,n) +
∑
G
f(α)∥Ωi,j,n −Ωx,y,z∥}.

(28)
Now it is easy to find that the objective function is de-

composed of two parts - i.e., the constraints for each point
Ωi,j,n and the constraints for arbitrary pair (Ωi,j,n and Ωx,y,z).
Reformulating this problem as a graph function by regarding
each point as a node, we can obtain an energy function for the
entire FG; accordingly the optimization problem in Eq. (28) is
translated into an energy minimization one and can be solved
by standard graph cut techniques [53].

Algorithm 1: Algorithm for HMAO.
Input: D ∈ RI×J×3×N .
output: B and Ω.
while not converged do (outer loop) :

Background:
1) while not converged do (inner loop 1) :

(1) changing tendency matrix (T ):
solve T by problem (22),
and project it into the subspace ∥T∥2 = 1.

(2) chief value matrix:
solve each Bl∗ by problem (24)
then, by Eq. (25).

end while (inner loop 1);
2) low-frequency background:

Bl
i,j,:,: = Bl∗

i,j,: ×4 Ili,j ×4 T

3) high-frequency background:
build codebook (Q) by Eq. (6), then obtain Bh by Eq. (7).

4) hierarchical background:
B = Bl +Bh.

Foreground:
5) low-resolution foreground

while not converged do (inner loop 2) :
(1) solve low-resolution background by

Blr∗ =
∑N

n=1(D
lr
n − Flr

n )/N ,
and Blr

n = Blr∗, n = 1, . . . , N .
(2) solve low-resolution foreground by:

Flr = Tµ(Dlr
n −Blr

n ).
end while (inner loop 2);

6) Entire foreground:
solving problem (28) by graph cuts.

end while (outer loop).

3) Algorithm: Putting the above two building blocks to-
gether, we obtain a moving object detection algorithm for
video based on alternating the estimations of BG and FG.

win8.1
Typewritten text
IEEE Transactions on Image Processing  Volume: 28, Issue: 4 , Year 2019



Fig. 7. Results of background extraction. From left to right: true background, HMAO, OMoGMF, TVRPCA, GFL, LSD, DECOLOR. From top to bottom:
boats, overpass (overp), canoe, fountain (fount), watersurface (water) and winterDriveway (winter).
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Fig. 8. Effects of the parameters from the Formula (28). (a) α. (b) β. (c) γ.

The complete flow-chart of the proposed HMAO algorithm
(Algorithm 1) is shown below. It should be noted that unlike
existing approaches in the literature, FG estimation is also
refined along with BG estimation by exploiting additional
information from input video at each iteration as highlighted
by the red color in Fig. 1. When both BG and FG are modeled
individual hierarchically, we argue that alternating optimiza-
tion becomes more effective because it has the potential of
jointly and successively refining the spatio-temporal estimation

of BG/FG in a closed loop. In summary, improved capability
of modeling complex video data (e.g., those with dynamic
BG) and robustness to noise interference are the key salient
features of the proposed HMAO approach (Algorithm 1).

The computational bottleneck of Algorithm 1 lies in solving
Eq. (28) by graph cuts. It can be shown that energy mini-
mization via graph cuts has the cost of (5× IJN)(IJN)2 =
O(I3J3N3). As reported by the experimental results of the
next section, the overall running time of Algorithm 1 is com-
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parable to that of LSD [28] (lower than that of GFL [54] but
higher than that of DECOLOR [25]). GPU-based acceleration
techniques might lead to more efficient implementation of
Algorithm 1 but it is outside the scope of this work.

IV. EXPERIMENTAL RESULTS

In this section, we report our experimental results and
compare the proposed algorithm against previous techniques.
In our experiments, the following parameter setting has been
adopted: the size of GOP is f = 4 and P = 4. The benchmark
datasets include I2R dataset [50] and ChangeDetection dataset
2014 (CDnet) [51].

A. Comparison to Model Variants

In order to understand the relative contribution of various
parameters of our model, we have conducted an empirical
study as follows. The exemplar videos are taken from I2R
dataset and CDnet 2014 dataset in our experiment of parameter
tuning.
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Fig. 9. Performances of HMAO with different sizes of dictionary and
codebook. (a) NT . (b) NQ.

First, we target at the process of dictionary learning de-
signed for encoding changing tendencies of different pixels in
the averaging background (as shown in Fig. 4). In practice,
the changing tendencies of different pixels are usually finite.
As manifested in Fig. 9 (a), NT = 15 is enough and a
larger dictionary size may lead to over-fitting, where some
individual changing tendencies are also recorded. Second, the
detail background is modeled by clustering the residuals of
low-frequency background. The performance of HMAO with
different clustering numbers is shown in Fig. 9 (b). The
resulting curves resemble those in Fig. 9 (a) and we have
found NQ = 15 is large enough.

Second, we have empirical tuned the parameters α, β and
γ in formula (28). Specifically, α is the weight for the spatio-
temporal Markov random field (MRF) constraint, β means
the expectation of the sparsity of the foreground regions
and γ reflects the confidence of the obtained low resolution
background. As can be found from Fig. 8, too large or
too small choices will degrade the performance of HMAO
algorithm. Although the optimal values of these parameters
vary from video to video, we manage to approximate nearly
optimized parameters for most videos, which are given by
α = 1.65, β = 0.6 and γ = 1.6.

Third, we have studied multi-layer structure for the detail
background. By iteratively clustering the residuals, we can
solve each Bli, i = 1, 2, 3, . . .. The corresponding results are
given in Fig. 10. Figure (a) represents the magnitude of values
in different layers. It’s obvious that the data in the first layer
are far more notable than those from other layers; the second
layer is still noticeably higher than the rest. In Figure (b),
the best performance is observed for using only 1 detail layer
on 4 videos (highway, diningroom, fountain, office); for two
other videos (watersurface and cubicle) whose background are
dynamic, some information of the background still exist in
the second detail layer. Therefore, we can opt to use at most 2
detail layers (for handling video with dynamic background) in
practical tasks once we have prior knowledge about the video.
In our experiments, the detail layer number is set as 1.
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Fig. 10. Performances of multi-layers structure. (a) the averaging residual
value in each layer. (b) F-measure vs. layer number.

B. Comparison on Background Estimation

In this section, we will report the comparison result of
BG extraction between this work and some recently proposed
methods - i.e., OMoGMF (OMoG) [12], TVRPCA (TVRP)
[34], GFL [54], DECOLOR (DECO) [25] and LSD [28].
The parameters of the benchmark algorithms are the default
values that accompany the release of their source codes. In this
comparative study, we have focused on test videos are those
with dynamic background in CDnet and I2R because they are
more challenging.

It can be seen from Fig. 7 that most algorithms suffer from
the weakness of missing a significant portion of the details
in the extracted background. For example, on ’boats’ and
’canoe’ datasets, the ripples on the water are often treated
as outliers and accordingly misclassified as FG; on ’overpass’
dataset, details of the recovered waving leaves are blurry due
to the limitations of background models. By contrast, HMAO
effectively distinguishes regular or self-repeating details in
the background from noises and therefore produces the most
discriminative backgrounds. The extracted background of H-
MAO is the closest to the ground truth (as shown in the left
column in Fig. 7) because the proposed two-layer hierarchical
modeling of background more faithfully characterizes various
uncertainty sources for video containing dynamic background.
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Fig. 11. Results of background extraction on SBMnet dataset.

TABLE II
RMSE OF THE EXTRACTED BACKGROUNDS SHOWN IN FIG. 7.

Video HMAO OMoG TVRP GFL LSD DECO
boats 0.0515 0.1042 0.0580 0.1196 0.0996 0.0813
canoe 0.0421 0.1228 0.0879 0.1050 0.2568 0.1978
fount 0.0571 0.0438 0.0314 0.0720 0.0202 0.0297
overp 0.0289 0.0591 0.0312 0.0350 0.0591 0.0479
water 0.0265 0.0766 0.0371 0.0419 0.2884 0.2577
winte 0.0416 0.0444 0.0311 0.0344 0.0399 0.0619

Average 0.0413 0.0751 0.0461 0.0680 0.1258 0.1127

To objectively evaluate the accuracy of background extrac-
tion, we have compared the difference between the extracted
background (B) and the groundtruth (B∗) as measured by
Root Mean Square Error (RMSE) - i.e., RMSE = ∥B −
B∗∥F /∥B∗∥F , as shown in Table II. It can be observed that
HMAO achieves the lowest RMSE on the average (four out of
six). Even though the advantages of HMAO are obvious for the
class of video containing dynamic background, HMAO does
still have weakness when dealing with some real datasets - e.g.,
’fountain’ dataset. In HMAO, we model the detail background
by clustering the pixel-wise short-term residuals because we
assume that the textures of the background result in certain
regular residual value series. Unfortunately this assumption
fails to model the pathological case of a fountain which
produces irregular (more like stochastic) residual values.

Additionally, we have conducted the comparison on some
complex scenes under cluttered background- i.e., the clutter
category from the Scene Background Modeling.Net (SBMnet)
dataset4. The results of BG extraction are shown in Fig. 11.
We can find that the problem of BG extraction becomes more
challenging when BG pixels are less visible than FG ones. In

4http://www.scenebackgroundmodeling.net/

some extreme cases, all competing algorithms fail to extract
the background - e.g., the board in the first column and the
car in the forth column. However, we can still observe that,
relatively speaking, HMAO noticeably outperform others on
this difficult dataset- e.g., more revealed areas on the board
in the first column, the disclosure of the car/chair in the
fourth/sixth column.

C. Comparison on Foreground Estimation

In this section, we will show how the supervised information
extracted from low-resolution video helps the robustness to
noise in foreground estimation. In our experiments, by care-
fully choosing parameters, we can obtain the most confident
regions of foreground objects from LR video (Column 4 in
Fig. 12 and Fig. 13), which is fairly robust to the noise.
Direct foreground estimation results (Column 3 in Fig. 12 and
Fig. 13) obtained by background subtraction can find some
part of foreground objects, but a significant portion of noise
components are misclassified as the background. Additionally,
one can observe that some noise components are caused by
the inaccuracy of background models - e.g., the trunk region
of the tree in Fig. 12. Therefore it is natural to improve
the estimation results by combining the strengths of those
two approaches (Column 3+4). In our hierarchical foreground
model, weights for some foreground regions are strengthened
based on the supervised information (passed from LR), while
those for the background are weakened accordingly. Thanks
to the propagation of FG estimation from LR to HR in a
hierarchical fashion, almost all neighboring foreground regions
are successfully detected and noise interference are suppressed
almost completely.
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Fig. 14. Results of foreground detection on I2R dataset. The selected frames (top to bottom) are b02514 (Bootstrap), trees1831 (Campus), Curtain22847
(Curtain), Escalator3585 (Escalator), Fountain1494 (Fountain), airport2180 (Hall), ShoppingMall1606 (ShoppingMall), WaterSurface1577 (WaterSurface) and
SwitchLight2019 (Lobby).

D. Comparisons with other algorithms

In our study, we have compared the proposed HMAO with
seven current state-of-the-art algorithms whose codes have
been made publicly available - i.e., TVRPCA5 [34], GFL6

[54], DECOLOR7 [25], LSD8 [28], PCP [44], OMoGMF9 [12]
and SOIR [26]. The parameter settings of the algorithms are
the default settings or are optimized following the suggestions
discussed in the corresponding papers. Our extensive com-
parison results have been organized into the following five
subsections.

1) Short-term moving object detection: Our comparisons
of short-term moving object detection are conducted on the
I2R dataset, which contains 9 videos. For each video, the
ground-truth (manually-segmented foreground regions) of 20
frames are provided in the dataset. In our experiments, we

5http://yangliang.github.io/code/TVRPCA.rar
6http://idm.pku.edu.cn/staff/wangyizhou/code/code bs cvpr15.rar
7https://fling.seas.upenn.edu/∼xiaowz/dynamic/wordpress/my-uploads/

codes/decolor.zip
8http://www.ee.oulu.fi/∼xliu/research/lsd/LSD.zip
9http://gr.xjtu.edu.cn/c/document library/get file?folderId=2456216&name

=DLFE-97966.zip

have used these 20 frames with ground truth to test the short-
term performance of the proposed moving object detection
algorithm. The sequences and detection results are shown in
Fig. 14. For each video, we have randomly chosen 1 from 20
test frames to compare the detection results of all competing
algorithms. As can be seen from the figure, the difficulties
of foreground detection are mainly caused by the interference
of unwanted noise and the blurring of object contours. It can
be observed that GFL, OMoGMF, LSD and PCP have mis-
classified some noises as FG regions. These four algorithms
can find the approximate outlines of foreground objects but
all miss some salient parts inside the objects. By contrast,
DECOLOR, HMAO, SOIR and TVRPCA have shown better
performances due to their robust and accurate BG models.
However, DECOLOR can not perform well in finding detailed
object contours due to its strong MRF prior for FG; while
TVRPCA tends to break the object boundary (the opposite
to DECOLOR). When compared with the ground truth, only
HMAO produces the most satisfying results combining the
strengths of DECOLOR and TVRPCA.

To quantitatively evaluate the performances of the different
algorithms, we have computed the F-measure, which is derived
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TABLE III
COMPARISON OF THE FOREGROUND DETECTION RESULTS IN TERMS OF THE F-MEASURE ON I2R DATASET.

video
HMAO GFL LSD OMoGMF PCP DECOLOR TVRPCA TLSFSD10 SOIR

R F R F R F R F R F R F R F R F R FP P P P P P P P P

Bootstrap 0.76 0.72 0.81 0.72 0.81 0.65 0.69 0.65 0.65 0.64 0.42 0.58 0.75 0.62 0.45 0.53 0.86 0.630.68 0.65 0.54 0.62 0.63 0.93 0.53 0.67 0.50

Campus 0.75 0.81 0.53 0.62 0.45 0.51 0.54 0.43 0.54 0.44 0.91 0.77 0.91 0.70 0.87 0.79 0.33 0.470.90 0.75 0.58 0.36 0.37 0.68 0.56 0.73 0.84

Curtain 0.87 0.90 0.87 0.59 0.84 0.81 0.85 0.84 0.74 0.69 0.65 0.78 0.85 0.78 0.76 0.83 0.91 0.840.93 0.45 0.79 0.84 0.65 0.98 0.72 0.91 0.78

Escalator 0.58
0.62

0.54 0.63 0.41 0.51 0.62 0.57 0.56 0.57 0.60 0.73 0.82 0.74 0.68 0.71 0.72 0.700.66 0.76 0.66 0.54 0.59 0.93 0.68 0.74 0.67

Fountain 0.79 0.84 0.87 0.74 0.59 0.67 0.85 0.70 0.63 0.68 0.76 0.83 0.87 0.78 0.85 0.84 0.87 0.830.89 0.65 0.77 0.60 0.73 0.92 0.71 0.84 0.79

Hall 0.72 0.68 0.80 0.63 0.70 0.60 0.72 0.67 0.52 0.52 0.56 0.64 0.83 0.61 0.55 0.63 0.77 0.640.63 0.51 0.52 0.63 0.53 0.75 0.49 0.74 0.55

ShopMall 0.66 0.71 0.82 0.71 0.80 0.67 0.76 0.70 0.74 0.69 0.52 0.67 0.73 0.65 0.75 0.74 0.82 0.670.75 0.63 0.58 0.65 0.65 0.94 0.59 0.72 0.57

Watsface 0.94 0.93 0.96 0.85 0.86 0.88 0.98 0.86 0.80 0.78 0.95 0.84 0.93 0.89 0.81 0.89 0.95 0.860.92 0.76 0.89 0.78 0.76 0.76 0.86 0.99 0.79

Lobby 0.72 0.79 0.95 0.56 0.82 0.77 0.79 0.75 0.80 0.65 0.78 0.61 0.89 0.57 0.89 0.90 0.93 0.620.84 0.40 0.72 0.71 0.55 0.51 0.42 0.91 0.47

Average11 0.78 0.67 0.67 0.69 0.62 0.71 0.70 0.76 0.70
10 The results of TLSFSD are from [29].
11 The average of the results in terms of F-measure.

Fig. 12. Foreground estimation results on WaterSurface dataset. From left
to right: input image frame, groundtruth, foreground estimation without
supervised information, detected foreground in low-resolution video, final
results of HMAO.

from the precision and recall and defined by

F-measure =
2× precision× recall

precision+ recall
. (29)

The detection results in terms of Recall (R), Precision (P)
and F-measure (F) are given in Table III. In addition to the
mentioned algorithms, TLSFSD [29] whose F-measure results
are available in the paper is also included here. We can see
from the results that HMAO clearly shows advantages on
some videos, especially those with dynamic backgrounds -
e.g., ’Campus’, ’Curtain’ and ’WaterSurface’. Although the

Fig. 13. Foreground estimation results on Canoe dataset. From left to right:
input image frame, groundtruth, foreground estimation without supervised
information, detected foreground in low-resolution video, final results of
HMAO.

backgrounds of ’Bootstrap’ and ’ShoppingMall’ datasets are
not dynamic, steadily moving pedestrians in the video lead to
irregularly changing illumination in the scene, which make
these video resemble those with dynamic background. Not
surprisingly HMAO also achieves satisfying performances on
these videos. For sequences ’Hall’ and ’Fountain’, HMAO
produces highly comparable performance to the competing
ones.

2) Long-term moving object detection: Our comparisons
of long-term moving object detection are performed on the
6 dynamic background videos from CDnet 2014 dataset. In
this dataset, hand-segmented foreground regions of all video
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Fig. 15. Results of background extraction on CDnet dataset. The selected frames (top to bottom) are in007869 (boats), in000951 (canoe), in002067 (fall),
in001164 (fountain01), in000750 (fountain02), in2371 (overpass).

TABLE IV
COMPARISON OF THE FOREGROUND DETECTION RESULTS IN TERMS OF THE F-MEASURE ON CDNET2014 DATASET.

video
HMAO GFL LSD OMoGMF PCP DECOLOR TVRPCA SOIR

R F R F R F R F R F R F R F R FP P P P P P P P

boats 0.55 0.62 0.34 0.35 0.54 0.60 0.27 0.31 0.29 0.30 0.40 0.35 0.39 0.35 0.53 0.530.72 0.37 0.69 0.36 0.31 0.31 0.31 0.53

canoe 0.81 0.82 0.54 0.44 0.57 0.65 0.81 0.67 0.54 0.33 0.96 0.63 0.55 0.58 0.33 0.450.83 0.38 0.74 0.57 0.24 0.47 0.61 0.68

fall 0.33 0.47 0.61 0.43 0.36 0.46 0.30 0.38 0.37 0.41 0.26 0.41 0.40 0.51 0.28 0.380.80 0.35 0.66 0.53 0.48 0.93 0.72 0.59

fountain01 0.04
0.08

0.05 0.09 0.04 0.08 0.11 0.14 0.03 0.06 0.03 0.05 0.06 0.11 0.08 0.130.71 0.54 0.64 0.19 0.60 0.82 0.58 0.52

fountain02 0.72 0.78 0.67 0.67 0.51 0.62 0.89 0.52 0.51 0.54 0.71 0.73 0.89 0.71 0.73 0.550.86 0.68 0.77 0.37 0.57 0.76 0.58 0.45

overpass 0.96 0.85 0.83 0.75 0.82 0.60 0.51 0.58 0.73 0.69 0.80 0.79 0.86 0.77 0.87 0.690.76 0.69 0.47 0.66 0.66 0.76 0.69 0.57
Average 0.60 0.46 0.50 0.43 0.39 0.49 0.51 0.46

frames are provided. In our experiments, a video sequence
composed of 220 continuous frames are selected for long-
term detection performance evaluation. The sequences and
comparison results are shown in Fig. 15. One can observe
that modeling foreground objects of these videos is much more
challenging. The most difficult task for foreground detection
is ’fountain01’, where the foreground regions are really small
while the area of the fountain is large. For this challenging
sequence, all algorithms fail to return the correct foreground
regions; for other videos, the challenge is less severe and the
foreground objects can be approximately detected by most
algorithms. However, heavy noises in the videos are still
the major difficulties for most algorithms. Overall, HMAO
performs well on most datasets, except misclassifying the
fountain (fountain01) and leaves (fall) as FG objects.

Objective performance evaluation in terms of Recall (R),
Precision (P) and F-measure (F) is given in Table IV. It is
easy to see that the advantage of HMAO is obvious for videos

containing dynamic background - e.g., ’boats’, ’canoe’ and
’overpass’. In those videos, the details of dynamic background
are approximately self-repeating; therefore our hierarchical
background model produces more detail components in BG
extraction and more accurate FG regions accordingly. For
’fountain02’ sequence, the performance of HMAO is at least
comparable to that of other algorithms; while for ’fall’ and
’fountain01’ sequences, HMAO is slightly inferior to TVRP-
CA and OMoGMF. As discussed above, these two sequences
are the cases where our hierarchical model fails (the dynamic
motion in background is less regular). Nevertheless, we note
that the average performance of HMAO is still noticeably
better than all other competing algorithms.

3) Comparison with online algorithms: In this section, we
provide more comparison against online methods such as
GRASTA [55] and incPCP [56]. The suggested frame number
for warm-start of OMoGMF, GRASTA and incPCP are 30,
100 and 1, respectively. Objective comparison results in terms
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TABLE V
COMPARISON OF THE FOREGROUND DETECTION RESULTS IN TERMS OF THE AVERAGE F-MEASURE.

video HMAO OMoGMF GRASTA incPCP
10 30 50 70 70 100 130 160 1 3 10 20

Bootstrap 0.73 0.64 0.65 0.64 0.65 0.81 0.82 0.82 0.82 0.66 0.61 0.53 0.50
Campus 0.82 0.41 0.43 0.43 0.42 0.32 0.30 0.30 0.30 0.43 0.47 0.39 0.37
Curtain 0.89 0.85 0.84 0.82 0.70 0.54 0.68 0.75 0.76 0.74 0.55 0.52 0.43

Escalator 0.67 0.55 0.57 0.57 0.56 0.50 0.55 0.56 0.56 0.61 0.55 0.52 0.48
Fountain 0.83 0.69 0.70 0.69 0.71 0.53 0.68 0.69 0.68 0.71 0.60 0.41 0.30

Hall 0.67 0.67 0.67 0.67 0.67 0.51 0.60 0.61 0.60 0.59 0.53 0.45 0.43
ShopMall 0.75 0.70 0.70 0.70 0.70 0.46 0.66 0.67 0.67 0.75 0.70 0.54 0.38
Watsface 0.93 0.86 0.86 0.86 0.85 0.81 0.82 0.82 0.83 0.79 0.71 0.66 0.60

Lobby 0.80 0.76 0.75 0.73 0.72 0.28 0.50 0.49 0.49 0.85 0.45 0.30 0.29
boats 0.64 0.29 0.31 0.32 0.30 0.23 0.28 0.28 0.28 0.40 0.31 0.21 0.15
canoe 0.85 0.54 0.67 0.60 0.62 0.33 0.39 0.33 0.33 0.55 0.29 0.24 0.21

fall 0.47 0.37 0.38 0.38 0.39 0.28 0.34 0.34 0.34 0.36 0.38 0.35 0.36
fountain01 0.08 0.13 0.14 0.14 0.14 0.08 0.10 0.09 0.09 0.15 0.15 0.11 0.09
fountain02 0.75 0.52 0.52 0.52 0.52 0.33 0.52 0.51 0.50 0.65 0.57 0.47 0.44
overpass 0.85 0.58 0.58 0.56 0.57 0.51 0.66 0.67 0.66 0.65 0.57 0.58 0.55
Average 0.71 0.57 0.58 0.58 0.57 0.43 0.53 0.53 0.53 0.59 0.50 0.42 0.37

of F-measure are shown in Table V.
As is shown in the table, the suggested numbers of frames

for warm-start are usually effective enough. Especially in
incPCP, which only requires 1 frame for warm-start and
related parameters are given accordingly, more frames results
in worse performances. Then, the performances of incPCP
are actually influenced by the selected initialization frame. In
all the employed videos, the first frame usually contains no
foreground object, which just meets the demand of incPCP. In
OMoGMF and GRASTA, the performances of the algorithms
are stable when enough number of frames for warm-start
is arranged. Therefore, although online algorithms are more
time-saving than HMAO, they are less effective than HMAO.

4) Comparisons for Other Categories: Furthermore, we
have conducted the comparisons on all other categories in CD-
net 2014 dataset (the only exclusion is PTZ category because
it’s not our target to model the videos with different kinds of
zooms). Similarly, we still select 220 continuous frames from
each video for evaluation. The average F-measures for each
video and benchmark method are reported in Table VI. As can
be observed from the table, HMAO still outperforms the rest in
most categories - e.g., ’baseline’, ’intermittentObjectMotion’
and ’thermal’. Meanwhile, there are still some cases that
HMAO fail to work effectively. For example, HMAO is not
robust to camera jitter by natural, because no specialized
component is designed for jittering camera motion. Besides,
HMAO perform the worst on ’nightVideos’, which is the
case that our assumption (the principal component of the
residuals as the detail BG) fail to work. Instead, residuals are
mainly composed by the constantly changing illumination and
shadows. Eventually, we can find that, in terms of the overall
average F-measure, HMAO has achieved superior performance
to all the other competing approaches.

5) Running Time Comparison: Finally, we report the run-
ning time comparison for each method, which is shown in

Table VII. Here, the experimental results are obtained by
averaging the running times of all 9 videos in I2R dataset. We
can see that OMoGMF is the fastest and GFL is the slowest; by
contrast, HMAO, TVRPCA and LSD have similar complexity,
which is only slightly higher than that of conventional PCA-
based algorithms (PCP and DECOLOR).

V. CONCLUSIONS

In this paper, we have proposed a joint optimization model
with hierarchical background and hierarchical foreground es-
timation. In the proposed model, hierarchical background and
foreground models are developed targeting at better incorporat-
ing our a priori knowledge about those two layers. Experimen-
tal results have shown that our framework reflects the natural
data organization in video containing dynamic background
and achieves comparable and often superior performances to
current state-of-the-art techniques.

In view of the rapid advances in the field of deep learning
and deep neural networks, one cannot help wondering if data-
driven (learning-based) approaches will outperform model-
based approaches including this work. Deep learning for
FG/BG separation is still at its infancy and there are several
technical challenges (e.g., training data, computational bur-
den and memory requirement) to overcome. Thus, a feasible
approach is to employ some middle ground - i.e., hybrid
approaches of combining both model-based and learning-
based ones, which will be explored as our follow-up work.

Appendix

In this Appendix, we provide some background material
related to the rigorous definition of 4-mode product. More
general definition and details of n-mode product can be
referred to Sec. 2.5 in [52].
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TABLE VI
COMPARISON OF THE FOREGROUND DETECTION RESULTS IN TERMS OF THE AVERAGE F-MEASURE ON CDNET 2014 DATASET.

Category HMAO GFL LSD OMoGMF PCP DECOLOR TVRPCA SOIR
badWeather 0.79 0.74 0.85 0.72 0.68 0.76 0.86 0.80

baseline 0.82 0.75 0.76 0.67 0.64 0.76 0.74 0.69
cameraJitter 0.63 0.75 0.63 0.57 0.65 0.78 0.78 0.56
intermitOM 0.72 0.68 0.67 0.65 0.61 0.67 0.67 0.60

lowFramerate 0.60 0.59 0.57 0.58 0.50 0.47 0.33 0.36
nightVideos 0.36 0.44 0.43 0.42 0.37 0.39 0.44 0.37

shadow 0.86 0.76 0.75 0.70 0.71 0.86 0.75 0.73
thermal 0.84 0.52 0.50 0.75 0.72 0.64 0.79 0.59

turbulence 0.46 0.36 0.29 0.52 0.26 0.44 0.39 0.51
Average 0.68 0.62 0.61 0.62 0.57 0.64 0.64 0.58

TABLE VII
TIME CONSUMPTION OF THE ALGORITHMS (THE UNIT IS SECOND).

HMAO GFL LSD OMoGMF PCP DECOLOR TVRPCA SOIR
6547.0 12289.7 5264.3 19.4 303.4 164.9 1898.4 60.7

The n-mode product of an arbitrary tensor B ∈ RK1×···×KN

with a given matrix T̃ ∈ RJ×Kn is of size K1×· · ·×Kn−1×
J ×Kn+1 × · · · ×KN . Element-wise,

(X×n T̃)k1···kn−1jkn+1···kN
=

Kn∑
kn=1

Xk1···kn−1kn+1···kN
T̃jkn ,

(30)
where kn ∈ [1, · · · ,Kn], j ∈ [1, · · · , J ].

Specifically, we have Bl∗ ∈ RI×J×3×1 and T ∈ RN×1.
Then the 4-mode product of Bl∗ and T is of size I×J×3×N .
Assuming T = [T1,T2, . . . ,TN ], we have

(Bl∗ ×4 T)k1k2k3n = Bl∗
k1k2k3

Tn, (31)

where n ∈ [1, · · · , N ].
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