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Abstract— Body joints, directly obtained from a pose esti-
mation model, have proven effective for action recognition.
Existing works focus on analyzing the dynamics of human
joints. However, except joints, humans also explore motions
of limbs for understanding actions. Given this observation, we
investigate the dynamics of human limbs for skeleton-based
action recognition. Specifically, we represent an edge in a graph
of a human skeleton by integrating its spatial neighboring edges
(for encoding the cooperation between different limbs) and its
temporal neighboring edges (for achieving the consistency of
movements in an action). Based on this new edge representation,
we devise a graph edge convolutional neural network (CNN).
Considering the complementarity between graph node convo-
lution and edge convolution, we further construct two hybrid
networks by introducing different shared intermediate layers
to integrate graph node and edge CNNs. Our contributions
are twofold, graph edge convolution and hybrid networks for
integrating the proposed edge convolution and the conventional
node convolution. Experimental results on the Kinetics and NTU-
RGB+D data sets demonstrate that our graph edge convolution
is effective at capturing the characteristics of actions and that
our graph edge CNN significantly outperforms the existing state-
of-the-art skeleton-based action recognition methods.

Index Terms— Action recognition, graph convolutional neural
networks (CNNs), skeletal data.

I. INTRODUCTION

HUMAN behavior analysis is a crucial and challenging
problem in computer vision. Recently, there emerge

different tasks to tackle this problem from distinct aspects,
including human pose estimation to detect and localize major
joints of the human body [1], [2], gait recognition to identify
people’s walking pattern [3]–[6], and human action recogni-
tion to classify human actions [7]–[9]. We focus on human
action recognition considering its wide applications in video
surveillance, virtual reality, human–computer interaction, and
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robotics. Classical monocular RGB video-based action recog-
nition often has difficulties in comprehensively representing
actions in the 3-D space [10], [11]. Given the fast development
of low-cost devices to capture 3-D data (e.g., camera arrays
and Kinect), an increasing number of studies are actively being
conducted on 3-D action recognition [12]–[14].

Skeletons generated from depth maps are often invariant to
viewpoint or appearance. Moreover, as a high-level abstraction
of human actions, skeletal data greatly simplify the difficulty
in representing and understanding different action categories.
Recently, different technologies have been developed to esti-
mate the temporal motion of a skeleton by tracking and
analyzing the motion of human joints. One of the most
straightforward approaches is to concatenate coordinates of
joints into a long feature vector at each time step and then
input it into temporal analysis models [15], [16]. However,
the spatial relationship between the joints, as an indispensable
part of a human skeleton, has been neglected. To exploit
the connections between the joints, [17] used a covariance
matrix for skeleton joint locations over time as a discriminative
descriptor, and [15] proposed representing an action by a
weighted summation of actionlets. Most recently, many deep
neural network-based solutions are developed. For example,
[18] used multiple recurrent neural networks (RNNs) in a
tree-like hierarchy to categorize action classes. Zhang et al.
[19] designed a view adaptive RNN with long short term
memory (LSTM) architecture that can adapt to most suitable
observation viewpoints from end to end. Yan et al. [20]
developed the spatial–temporal graph convolutional networks
to process human skeleton in both the spatial and temporal
domains. Lee et al. [21] proposed the ensemble temporal
sliding LSTM networks composed of short-, medium-, and
long-term TS-LSTM to capture various temporal features.
Li et al. [22] introduced a two-stream convolutional neural
network (CNN) to process both raw coordinates and motion
data obtained by subtracting joint coordinates in the consec-
utive frames. Ke et al. [23] transformed a skeleton sequence
into three clips corresponding to three cylindrical coordinates
of the skeleton sequence before applying deep CNN.

Taking human joints as graph nodes, skeleton data can be
naturally handled by graph CNNs [12], [20]. Recently, there
is increasing interest in extending deep learning for graph
data. In general, existing graph CNNs can be divided into two
categories: spatial graph convolutional network (GCN) [24],
[25] and spectral GCN [26], [27]. GCNs designed in the spa-
tial domain mimic the image-based convolution and perform
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Fig. 1. Illustration of the edge convolution operation. In the left and middle
graphs, the light yellow zones denote the receptive fields, and the red bold
edge is the center edge in the receptive field. Other colored bold edges in
addition to the center red edge are neighboring edges, and their differences
in color indicate the different weights assigned to them.

convolution by integrating all neighboring nodes at each
position. Spectral GCNs first transform graphs into their spec-
trum and then conduct convolution with convolutional kernel
designed in the spectral domain according to the convolution
theorem. These existing works often interpret the graph from
the perspective of graph node, while neglecting the importance
of graph edges, especially when graph edge possess notable
physical meanings in some real-world scenario, e.g., limbs in
the human skeleton.

Considering the task of skeleton-based action recognition,
these methods have yielded impressive performance improve-
ments on real-world action recognition data sets. They mostly
focus on human joints, which are directly obtained from a
pose estimation algorithm. However, besides joints, humans
also explore the motions of limbs for understanding actions.
Therefore, it is also instructive to pay attention to the dynamics
of human limbs (corresponding to the edges in a skeleton
graph) for skeleton-based action recognition.

Based on this observation, in this article, we propose a
novel graph edge convolution operation to leverage the dynam-
ics of human limbs. Considering a graph edge convolution
operation in a single graph, an edge is represented by a
weighted integration of its neighboring edges (see Fig. 1). For
skeletal data in which each example is a temporal sequence
consisting of multiple skeleton graphs, we extend our graph
edge convolution to represent each edge by integrating both
the spatial and temporal neighboring edges. Based on this,
we develop an edge convolutional network to extract features
from the graph edge perspective. Different from conventional
graph convolutional models concentrating on graph nodes
[20], [28], [29], we focus on invaluable information car-
ried by graph edges, with graph nodes indicating only the
connections between the edges. In this way, we are able
to capture the relationship and dependences between human
limbs, which correspond to edges in human skeleton graphs.
In addition, considering the complementarity between the
graph node and edge convolution, we further design two
hybrid networks with different shared intermediate layers
to integrate graph node- and edge-convolutional networks:
one is with an extra shared fully connected layer directly
merging the features from two networks by linear combi-
nation, while the other is equipped with two extra shared
convolutional layers that include both nodes and edges in
each convolution. We choose skeleton-based human action
recognition as our task to demonstrate the effectiveness
of our models, as human skeleton data are naturally in
the form of graphs. We conduct experiments on two data

sets: Kinetics and NTU-RGB+D, revealing the advantages
of the proposed graph edge convolution over the existing
state-of-the-art techniques. Further performance improvement
can be derived by simultaneously exploiting graph edge and
node convolutions.

The organization of this article is as follows. In Section II,
we review some related works. In Section III, we introduce
our graph edge CNNs (GECNNs) as well as two hybrid
models integrating node and edge convolutions. Experimental
results are presented in Section IV. Finally, we draw some
conclusions in Section V.

II. RELATED WORK

In this section, we briefly review the related works on
human action recognition and graph CNNs.

A. Graph Convolutional Networks

Generalizing convolutional networks from images to graph-
structured data has attracted the attention of the research
community [22], [26], [27], [30]. These works mainly fall into
two categories as follows.

1) Spectral Perspective: Graph data are converted into its
spectrum, and CNNs are applied to the spectral domain.
For example, [26] defined a spectral convolutional layer
to apply filters in the frequency domain. Henaff et al.
[27] extended spectral networks to incorporate a graph
estimation procedure. However, there is an limitation
shared by these spectral methods. The spectral con-
struction is in a single domain, as the spectral filter
coefficients are basis-dependent. If we learn a filter with
respect to a certain set of bases, this filter cannot be
applied to another domain with another set of bases.
This problem can be solved if we construct compatible
orthogonal bases across different domains. However,
such construction requires the knowledge of some cor-
respondence between the domains, which is extremely
difficult to obtain in most cases.

2) Spatial Perspective: Works in this stream directly design
convolution operation based on the spatial domain,
which greatly resembles the convolution on images [24],
[31]. For example, [25] utilized the polynomials of func-
tions of a graph adjacency matrix as filters to conduct
graph convolution and then applied the convolution to
image classification and 3-D mesh classification. Refer-
ence [32] designed depthwise separable graph convolu-
tion and applied it to perform image classification on the
CIFAR data sets and [30] formulated a convolution-like
operation for graph signals that can be performed in the
spatial domain, where filter weights are conditioned on
edge labels and dynamically generated for each specific
input sample.

B. Human Action Recognition

Traditional methods directly investigate RGB videos to cap-
ture the dynamics of human actions [9], [11], [33], [34]. Klaser
et al. [35] developed a local descriptor based on histograms
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of oriented 3-D spatial–temporal gradients. Wang et al. [36]
proposed to describe videos by dense trajectories, which sam-
ples dense points from each frame and tracks them based on
displacement information from a dense optical flow. Donahue
et al. [37] developed a recurrent convolutional architecture, in
which features of the video are first extracted by CNN along
the temporal dimension and then fed into recurrent sequence
models. Wang et al. [38] proposed the temporal segmentation
network, which combines a sparse temporal sampling strategy
and video-level supervision to enable efficient and effective
learning using the whole action video. Zhou [8] proposed a
mixed convolutional tube that integrates 2-D and 3-D CNNs
to generate deeper and more informative feature maps. With
the fast development of depth sensors, RGB-D video-based
action recognition is attracting increasingly more interest.
Wang et al. [39] proposed the extraction and use of scene
flow for action recognition from the RGB-D data. Shi and
Kim [40] proposed to learn an RNN driven by privileged
knowledge that is only available during training. Rahmani
and Bennamoun [41] first combined view-invariant body-part
representations obtained from the skeletal and depth images
and then learned temporal structures as well as relations
among body parts and environment objects. Hu et al. [13]
proposed a bilinear block consisting of two linear pooling
layers to pool input tensor along the modality and temporal
directions separately.

The development of highly accurate depth sensors and pose
estimation algorithms [42], [43] makes it easy to obtain the
skeletal data related to human action (see Fig. 2), and skeleton-
based human action recognition is attracting more and more
interest. The work on this topic mainly follows two streams.

1) Handcrafted Features: Work belonging to this stream
leverages the dynamics of joint motion by handcrafted fea-
tures. For example, [17] used a covariance matrix for skeleton
joint locations over time as a discriminative descriptor for a
sequence and used multiple covariance matrices to encode the
temporal dependence of joint locations. Wang et al. [15] used
an actionlet ensemble obtained by data mining to represent
action and designed an local occupancy pattern (LOP) feature
to overcome intraclass variance caused by the imperfectness of
raw data. Xia et al. [44] utilized the histograms of 3-D joint
locations (HOJ3D) as a compact representation of postures
and then reprojected the HOJ3D using the linear discriminant
analysis (LDA) and clustered it into k posture visual words.
Vemulapalli et al. [45] proposed explicitly modeling the 3-
D geometric relationships between various body parts using
rotations and translations in the 3-D space to represent a
human skeleton and then modeled human actions as curves in
a Lie group and [46] described a new 3-D saliency prediction
model, in which salient 3-D space–time regions in a video
are detected and segmented and, then, the saliency strength of
each segment is calculated using different attributes, including
motion, disparity, texture, and the predicted degree of visual
discomfort experienced.

2) Deep-Learning Approaches: These process skeletal data
using deep-learning methods. Du et al. [47] divided the human
skeleton into five parts and input them into five RNN networks.
Shahroudy et al. [48] proposed using a new RNN structure to

Fig. 2. Transformation from raw video clips into human skeleton graphs.
Left: Raw video clip. Right: frames of the skeleton graph obtained by the pose
estimation algorithm. Yellow edges in the right represent the edges (limbs),
while red dots represent the joints.

model the long-term temporal correlation of the features for
each body part. Liu et al. [49] extended the RNN to spatio-
temporal domains to analyze the hidden sources of action-
related information within the input data over both domains
concurrently. Zhu et al. [50] proposed a fully connected
deep LSTM for skeleton-based recognition. Zhang et al. [51]
selected a set of geometric features to describe joint relations
and then applied LSTM. In addition to the RNN and LSTM,
CNN has also been explored to recognize human action; [22]
proposed a two-stream CNN in which one stream’s input is
the raw coordinates and the other stream’s input is motion
data obtained by subtracting the joint coordinates in every two
consecutive frames. Ke et al. [23] first transformed a skeleton
sequence into three clips corresponding to three cylindrical
coordinates of the skeleton sequence and then applied a deep
CNN to them. Kim and Reiter [28] proposed using temporal
CNNs to explicitly learn readily interpretable spatio-temporal
representations for 3-D human action recognition. Si et al.
[52] captured a high-level spatial structural information in
each frame by a residual graph neural network and modeled
the temporal dynamics with a composition of multiple skip-
clip LSTMs. Yan et al. [20] first constructed a spatio-temporal
human skeleton graph and then applied CNN networks. Our
model is also a CNN-based model that utilizes the skeletal
data. However, unlike the existing models, our convolution is
performed on the edges instead of nodes.

III. GRAPH EDGE CONVOLUTIONAL NEURAL NETWORKS

In this section, we first review the classical convolution
operation conducted on the images. Then, we move to our
graph edge convolution and GECNNs as well as their appli-
cation to skeleton-based action recognition. Finally, two hybrid
models integrating edge and node convolutional networks
are introduced.

A. Classical Image Convolution

To make our graph edge convolution more understandable
and exhibit its connection to image convolution, we first
present a reformulation of classical convolutions on image
pixels. Given a grayscale image, we center the convolution
kernel at pixel xi j , where i and j denote the row index and
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column index, respectively. The convolution output can be
derived as follows:

xout
i j =

∑
xmn∈N(xij)

xmnw(l(xmn)) (1)

where xout
i j is the output of this convolution operation, N(xi j )

represents the set of neighboring pixels of xi j , and xmn denotes
the pixels in N(xi j ). In practice, for a grayscale image, N(xi j )
is composed of eight neighboring pixels xi j as well as xi j

itself, which is the actual receptive field of this convolution.
l is a labeling function to assign an order to each individual
element in N(xi j ). For example, given a 3 × 3 convolutional
kernel on a grayscale image, l(·) will assign {1, 2, · · · , 9}
to nine pixels in N(·) from left to right and top to bottom.
The weight function w will give each pixel a weight w(l(·))
according to its order. Pixels are then multiplied by their
corresponding weight and get summed to be the convolution
output at the center pixel. A similar convolution operation
can be applied for RGB color images. Since there are three
different channels in an RGB image, the value of each pixel is
a 3-D feature vector, and its corresponding weight becomes a
3-D weight vector as well. The multiplication between pixels
and weights is extended to the inner product.

CNNs have achieved impressive performances in various
scenarios, e.g., image classification and object detection. How-
ever, it is not straightforward to apply a pixel convolution to
graph data, because graph data do not have the gridded array
structure that images, video, and signal data do. Each pixel in
gridded images will have the same number of neighbors and
the same relationships with respect to a neighbor in a given
direction. Non-gridded graphs do not have these limitations.
A non-gridded graph can vary in the number of neighbors
from node (edge) to node (edge), and there is not necessarily
a geometrical interpretation for any given connection between
two nodes (edges).

B. Graph Edge Convolution

We represent a graph by G = (V, E), in which V =
{vi|i = 1, . . . , N} is a node set with N elements and E =
{ei j |vi , v j are connected } is an edge set containing all edges
of G. Several concepts have to be introduced to facilitate the
explanation of graph convolution.

1) Path Between Two Edges: A path is a set of distinct
nodes and edges connecting two edges in a graph [see
Fig. 3(a)]. More than one path may exist between
two edges.

2) Length of Path Between Two Edges: Given a pair of
edges, different paths contain different numbers of nodes
and edges may exist. For a certain path, the number
of contained nodes is defined as its length. Paths with
different lengths are shown in Fig. 3(b).

3) Shortest Path Between Two Edges: Given a pair of edges,
among all paths connecting the two edges, the path
with the smallest length is defined as the shortest path
between the two edges. An illustration of the shortest
path is given in Fig. 3(b).

Fig. 3. (a) Blue parts (nodes a–d and edges eab , ebc , and ecd ) form a path
between eae and edg with a length of 4. (b) Parts in blue, green, and mauve
depict three different paths between eae and edg . Node e and g have two
colors as they are shared by two paths. The lengths of the blue, green, and
mauve path are 4, 3, and 5, respectively. The green path is the shortest path
between eae and edg . Thus, the length of the green path, which is 3, is the
distance between eae and edg .

Fig. 4. (a) 1-hop neighbors of the edge ekf . (b) Both 1- and 2-hop neighbors
of edge ekf . In (a) and (b), the root edge is ek f , and the neighboring edges are
colored blue or green. Blue edges in (a) are neighboring edges when R = 1.
The blue and green edges in (b) are neighboring edges when R = 2, while
the green ones are edges with distances of 2 from root edge ek f .

4) Distance Between Two Edges: Given a pair of edges,
the length of the shortest path is defined as the distance
between the two edges, denoted as D(·, ·). An illustration
of the distance between a specific pair of edges is given
in Fig. 3(b).

To conduct convolution, we need a receptive field, which
is also called a neighborhood in the following. Here, we
define the neighborhood of a certain edge epq as N(epq) =
{ekl | ekl ∈ E and D(epq , ekl) �R}, where D(epq , ekl) is
the distance between root edge epq and edge ekl and R is
an integer denoting the maximal distance between the root
edge and neighboring edges. Thus, we can also express the
neighborhood of a root edge as edges within a certain distance
R from the root edge. In our convolution, we set R as 1 [see
Fig. 4(a)], and the resulting neighborhood contains only the
edges that are directly connected to the root edge by one node,
i.e., the neighborhood of an edge epq is N(epq ) = {ekl | ekl

∈ E and D(epq , ekl) � 1}.
The convolution at a certain edge epq is a weighted sum-

mation on all the neighboring edges. Formally, the output of
convolution at edge epq can be written as (see Fig. 1)

eout
pq =

∑
ekl ∈N(epq)

ekl · w(l(ekl )) (2)
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where eout
pq is the output of the convolution at edge epq , ekl

represents all neighboring edges being summed, and w(l(ekl ))
are the corresponding weights.

Neighboring edges in a graph do not have an implicit
spatial order, such as pixels in an image. Thus, to assign
weights to neighboring edges, we have to first sort them
and then match each edge with a corresponding weight in
order and use labeling function l to achieve this. For each
edge ekl in the neighborhood, l will assign a labeling value
l(ekl ) to it, denoting its order, and a weight will be assigned
according to l(ekl ). Unlike in images, we cannot prepare a
fixed number of weights for edges in a graph, as the number
of neighboring edges may vary. Therefore, instead of giving
each neighboring edge a unique labeling value, function l will
map neighboring edges to a fixed number of subsets, and edges
in the same subset will have the same labeling value, i.e., l:
N(epq) → {1, . . . , K }. Every edge in the neighborhood will
be labeled with an integer ranging from 1 to K as its order.
Thus, we see that even if the number of neighboring edges
is not fixed, we can always assign K weight values to them.
Actually, w in (2) is a weight function that assigns weights
according to the labeling values. After multiplied by the
weights, the summation is conducted for all the neighboring
edges, after which the convolution operation terminates.

Similar to the image convolution mentioned earlier, by
replacing the edge feature and weight with the edge feature
vector and weight vector, we can easily extend our model to
graphs with multiple channels.

To balance the contribution of edges with different weights,
we add a normalizing term to (2)

epq =
∑

ekl ∈N(epq)

1

Z pq(ekl)
ekl · w(l(ekl )). (3)

Z pq(ekl) is the number of neighboring edges with the same
labeling value as ekl in edge epq’s neighborhood, that is

Z pq(ekl) = |{emn|emn ∈ N(epq) and l(emn) = l(ekl)}. (4)

Thus, we can see that when the neighboring edges are not
divided evenly into K subsets, (1/Z pq(ekl)) is the term
used to balance the contribution of neighboring edges with
different labeling values. Now, the convolution operation of
edges has been elucidated, and we can use it to build our
GECNNs (see Fig. 5).

C. Graph Edge Convolutional Neural Networks

Our edge convolution can be directly conducted on a single
skeleton graph, while skeletal data are stored as sequences of
skeleton graphs. Skeleton graphs in different frames have to
be processed concurrently to capture the temporal dynamics.
Thus, we have to redefine the neighborhood of an edge to
incorporate edges in different frames to perform our convolu-
tion in both the spatial and temporal domains.

We denote a certain edge epq in frame τ1 as eτ1
pq , and

the neighboring edges of eτ1
pq are defined from two aspects:

1) in frame τ1, edges connected to eτ1
pq via only one node

are its spatial neighbors, which is just the definition of a
neighborhood mentioned earlier and 2) in another frame τ2, if

τ2 is within a certain distance from τ1, i.e., |τ2 - τ1| < Kt ,
then the spatial neighbors of eτ2

pq are also regarded as neighbors
of eτ1

pq and are called temporal neighbors of eτ1
pq , that is

N
(
eτ1

pq)={
eτ2

kl |eτ2
kl ∈ E, |τ2 − τ1| � Kt and D

(
eτ2

kl , eτ2
pq

)
�1

}
.

Here, τ1 and τ2 denote two different frames. Kt is an
integer called the temporal kernel size, which is used to restrict
the temporal neighbors of eτ1

pq such that they cannot be more
than Kt frames away. The constraint D(eτ2

kl , eτ2
pq) � 1 is used

to define spatial neighbors.
The labeling function defined in Section III-B is applicable

to spatial neighbors in a single frame. Considering the tempo-
ral neighbors, the labeling function is rewritten as

l ′
(
eτ2

kl

) = l
(
eτ2

kl

) + (τ2 − τ1 + Kt ) × K (5)

where l ′ is the rewritten labeling function, l is the labeling
function in a single frame for spatial neighbors, Kt is the
temporal kernel size, and K is the number of subsets divided
by the labeling function l mentioned earlier. Moreover, Kt

is added to τ1 − τ2 to ensure that (τ2 − τ1 + Kt ) is non-
negative, and K is multiplied at the end to ensure that the
labeling values for temporal neighbors are not the same as
those for spatial neighbors.

As our model aims to convolve edges instead of nodes and
the original skeletal data are the coordinates of joints (nodes),
we have to transform the skeletal data from the node form
into edge form. The data of each limb (edge) are calculated
from the coordinates of the two joints on the limb’s end. For
each limb, we first obtain the coordinates of the limb’s center
by averaging the coordinates of the joints on both ends and
then subtract one joint’s coordinates from those of the other to
obtain an orientation vector representing the length and orien-
tation of the limb between the two joints. Denoting the limb
(edge) as epq and the joints (nodes) on its two ends as n p and
nq , we can formulate the center coordinates of epq as follows:

xc(epq) = 1

2
× (x(n p) + x(nq)) (6)

yc(epq) = 1

2
× (y(n p) + y(nq)) (7)

zc(epq) = 1

2
× (z(n p) + z(nq)) (8)

where xc(epq), yc(epq), and zc(epq) denote the 3-D
coordinates of the center of limb epq and x(n p), y(n p),
and z(n p) are the coordinates of node n p; a similar format
applies to node nq . The orientation vector, whose length and
orientation represent the length and orientation of limb epq ,
can be formulated as

Ori(epq)=(
x(n p)−x(nq), y(n p)−y(nq), z(n p) − z(nq)

)
.

(9)

Motions of human body parts can be roughly categorized
as concentric and eccentric. Thus, we choose labeling func-
tion l for spatial neighbors as spatial configuration labeling.
Specifically, for convolution at edge epq , this labeling function
divides neighboring edges into three subsets: 1) edges that are
closer to the center of gravity than epq ; 2) edges that have the
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Fig. 5. Illustration of the edge convolution system. Middle: process of edge convolution. The edges to be convolved are colored, and different colors indicate
different labeling values.

same distance from the center of gravity as epq , and 3) edges
that are farther away from the center of gravity than epq , that is

l(ekl ) =

⎧⎪⎨
⎪⎩

0, if d(ekl , Gc) = d(epq , Gc)

1, if d(ekl , Gc) < d(epq , Gc)

2, if d(ekl , Gc) > d(epq , Gc).

(10)

In (10), Gc is the center of gravity of the human body,
calculated by averaging the coordinates of all body parts,
and d(ekl , Gc) denotes the distance from edge ekl to Gc.
Having the labeling function l for spatial neighbors, the
labeling function for temporal neighbors can be formulated
according to (5).

D. Combining Graph Edge and Node Convolutions

The node and edge convolutional networks are used to
extract features from different perspectives. Both edge con-
volution and node convolution have their unique advantages
and thus are complementary to each other. As we mentioned
earlier, an edge convolutional network leverages the dynamics
of limbs, while a node convolutional network leverages the
dynamics of joints.

Thus, we consider to design hybrid models integrating both
two networks to utilize the advantages of both edge and
node convolution. Specifically, we have two hybrid networks,
including one using a shared fully connected layer and one
equipped with two shared convolutional layers.

1) Sequence-Level Hybrid Model: Either edge- or node-
convolutional network extracts one set of features for each
input sequence, which is used for classification. As this is a
representation for an entire sequence, we call it sequence-level
features. Our first hybrid model directly integrates the two sets
of sequence-level features from edge- and node-convolutional
networks with a shared fully connected layer. Given the input
sequence sin, the output of the convolutional layer in the edge
convolution stream can be formulated as

he
seq = f e

conv(sin) (11)

in which f e
conv represents the layers of edge convolution and

he
seq is the output from the last layer of the edge convolution

stream. Similarly, the output of the final layer in the node
convolution stream can be formulated as

hn
seq = f n

conv(sin). (12)

We obtain two sets of features he
seq and hn

seq from edge
and node convolution streams. They are separately processed
first by a global pooling to obtain a representation for the
whole sequence and then fed into fully connected layers for
two sets of class scores. We then concatenate them into a single
tensor to obtain the input for the last fully connected layer,
that is

I f c
seq = fpool

(
he

seq

) ⊕ fpool
(
hn

seq

)
(13)

in which I f c
seq denotes the input to the fully connected layer in

the sequence-level hybrid model (SLHM), fpool is the global
pooling layer, and ⊕ is a concatenation operator. The final
output of the whole model is

Oseq = f f c
(
I f c
seq

)
(14)

in which f f c denotes the fully connected layer and Oseq is
the final output of the SLHM.

By concatenating the outputs from the edge and node
convolution streams, the features extracted from both the
edge and node convolutional networks contribute to the final
classification result, i.e., the dynamics of both joints and limbs
are leveraged in our classification.

In this model, the input to the shared layer is the features of
the whole skeleton sequence, so we call the first hybrid model
an SLHM.

2) Body-Part-Level Hybrid Model: In the SLHM, two
sets of sequence-level features get linearly combined by a
shared fully connected layer after being separately extracted
by node- and edge-convolutional networks. Features directly
extracted by the edge (node) convolutional layers are not
sequence-level, but they are attached to each edge (node),
and the sequence-level features are obtained by applying
pooling layers to them. As the nodes and edges correspond
to human body parts (joints and limbs), we call these body-
part-level features. Besides directly merging the sequence-
level features, we also want to merge the features in the
body-part level to get the node- and edge-convolution sup-
plement each other in a subtler way. Thus, we design another
hybrid model, with the most distinctive part being the shared
convolutional layer.

In a shared convolutional layer, our convolution operation is
neither an edge convolution nor a node convolution but rather
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Fig. 6. Illustration of the convolution in the shared convolutional layer.
A convolution at edge eab and a convolution at node i are shown. For the
convolution at eab (with the light-yellow background), nodes a and b and
edge eab are involved, and their weight summation is assigned to the kernel
center eab in the next layer. For the convolution at node i (with the light-
green background), edges eei , ei j , and eik and node i are involved, and their
weight summation is assigned to the kernel center node i in the next layer.
In both convolutions, the center of the convolution kernel is colored red, just
like eab and node i , while the other parts involved are colored purple.

a combination of both. As mentioned earlier, we conduct con-
volution on a human skeleton graph. When we perform edge
convolution, the data are information regarding the limbs and
attached to the edges, and when we perform node convolution,
the data are information regarding the joints and attached
to the nodes. However, in a shared convolutional layer, both
nodes and edges have information attached to them. Thus,
when conducting convolution, the information of the edges
can be passed to the nodes, and vice versa. By this kind of
convolution, the dynamics of limbs and joints can supplement
each other at the body-part level in the shared convolutional
layer. An illustration of the convolution operation in the
shared convolutional layer can be found in Fig. 6.

Similar to the SLHM, the first part of the body-part-
level hybrid model (BPLHM) involves two separated streams,
including an edge and a node convolutional network, and the
outputs are two sets of features denoted as he

body and hn
body,

which can be formulated as follows:

he
body = f e

conv(sin) (15)

hn
body = f n

conv(sin) (16)

in which f n
conv, f e

conv, and sin have exactly the same meanings
as for the SLHM. Different from the SLHM, the subscripts
are changed from seq to body to indicate that they are parts
of the BPLHM. More specifically, the feature set extracted
by the edge convolutional network contains feature vectors
for each limb in each frame, and the feature set extracted by
the node convolutional network contains feature vectors for
each joint in each frame. After obtaining these two feature
sets, we construct a new human skeleton graph and then
fill in each edge and node with the corresponding feature
vectors. In this new skeleton graph, both edges and nodes
are filled with feature vectors, which are the high-level

features of limbs and joints containing the dynamic infor-
mation extracted by the two separate convolutional networks.
Then, the shared convolutional layer is applied. The input can
be formulated as

I s−conv
body = he

body ⊕ hn
body (17)

in which I shared−conv
body denotes the input to the shared con-

volutional layer in the BPLHM. In the shared convolutional
layer, the high-level features of limbs and joints communicate
with each other and are furnished by each other. The output
of the shared convolutional layer is also the feature vectors
of the limbs and joints, just like the output that we obtain
from the two separate streams. The difference is that in the
two separate streams, the features of joints and limbs are
separately extracted, while in our shared convolutional layer,
each time we perform the convolution operation on the human
body graph, the information of the joints has the potential to
flow to the neighboring limbs. Thus, the features of limbs are
informed and are trimmed by the dynamics of joints, and vice
versa, making the final features more representative. We can
formally write this as

hs−conv
body = fs−conv

(
I s−conv
body

)
(18)

in which hs−conv
body represents the output from a shared convo-

lutional layer in the body-part-level hybrid model and fs−conv

denotes the shared convolutional layer. After utilizing the two
layers of shared convolution, we apply a global pooling layer
and a fully connected layer to obtain the final classification
result as in the SLHM

hpool
body = fpool

(
I s−conv
body

)
(19)

I f c
body = hpool

body (20)

where hpool
body is the output from the global pooling layer and

I f c
body is the input to the final fully connected layer. The final

output from the fully connected layer can be formulated as

Obody = f f c
(
hpool

body

)
(21)

in which Obody is the output of the whole body-part-level
hybrid model and f f c denotes the fully connected layer.

Overall, the main difference between our SLHM and
BPLHM is the final part that integrates node- and edge-
convolutional networks. SLHM utilizes a fully connected
layer to merge two streams, while BPLHM is more complex
and requires two extra shared convolutional layers. SLHM
integrates two flows in a rather straightforward way, but
it runs faster as well. In contrast, BPLHM is more com-
plex and can extract higher level features based on features
already extracted by edge- and node-convolutional networks.
Accordingly, higher complexity makes BPLHM cost more
computational time compared to SLHM.

In our hybrid models, the high-level features extracted
from both edge convolution and node convolution can cor-
roborate each other. As we mentioned earlier, in several
situations, the movements of joints are too subtle to cap-
ture, but the movements of limbs are always obvious. In
these cases, the hybrid models can utilize the power of
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edge convolution to classify human actions. However, among
some classes of human action, the movements of limbs
may be too similar to distinguish from each other. In these
cases, the dynamics of joints may help the hybrid model to
perform classification, that is, the dynamics of both joints
and limbs are leveraged and fused together to recognize
human action. Thus, the skeletal data are fully utilized in our
hybrid models.

In our second hybrid model, the features that are fed into
the shared layers are the features of each specific joint and
limb, which are body-part-level features. Thus, we name this
model the body-part-level hybrid model.

E. Complexity Analysis

The adjacency matrix of a skeleton graph with V nodes and
M edges is of size V ×V for nodes and M ×M for edges. The
graph convolution on sequence is implemented both in the spa-
tial and temporal dimensions (see Section IV-C). The spatial
graph convolution is conducted by multiplying edge feature
vectors with a trainable matrix of shape M × M masked by
the adjacency matrix. The trainable matrix is dismantled into
K matrices to model different dependences on K neighboring
edge subsets. Thus, the number of trainable parameters for
spatial graph convolution is K ×M2. The temporal convolution
is implemented by a standard 2-D convolution with the kernel
size of 1×Kt . Suppose that the input tensor is of Cin channels
and the output tensor is of Cout channels, and then, the number
of trainable parameters included in a temporal convolution is
Kt × Cin × Cout. Thus, the number of trainable parameters
contained in an edge convolutional layer is

Kt × Cin × Cout + K × M2. (22)

Denoting the length of a skeleton sequence as T , the com-
putational complexity of spatial graph convolution measured
in flops can be formulated as follows:

M2 × Cin × T + M × Cin × T × (M − 1) (23)

where M2 × Cin × T and M × Cin × T × (M − 1) denote
the number of multiplications and additions in spatial graph
convolution, and the computational complexity for temporal
convolution can be written as

M × Cout × T × (2 × Kt × Cin − 1) (24)

where M×Cout×T ×Kt ×Cin is the number of multiplications
and M × Cout × T × (Kt × Cin − 1) is the number of
multiplication and additions for temporal convolution.

Node convolution differs from edge convolution in which
elements participating in the convolution are V joints instead
of M edges. Thus, (22)–(24) can be rewritten by replacing
M with V to represent the complexity for a node convolu-
tional layer. In our skeleton graph (a tree in graph theory),
M = V − 1 holds, and thus, our edge convolutional network
is more efficient than node convolutional network in terms of
both parameter and computational complexity.

Extra computational costs are brought about by integration
layers in hybrid models. For the SLHM with a fully connected
integration layer, suppose that the final output tensor is of O

channels and number of classes is Nc, and then, the number
of trainable parameters of the fully connected layer can be
formulated as Nc×O. For the shared convolutional layer in the
BPLHM, the elements participating in the shared convolution
are M + V , and thus, the number of parameters in a single
shared convolutional layer to train is Kt × Cin × Cout + K ×
(V + M)2. Besides, the computational complexity of the extra
fully layer can be formulated as

Nc × M × O + Nc × M × (O − 1) (25)

where Nc × M × O and Nc × M × (O − 1) are the number of
multiplications and additive operations required by the fully
connected layers, respectively, and the flops for the shared
convolutional layer can be obtained by simply replacing M in
(23) and (24) with V + M . The additional complexity brought
about by hybrid models will not cause many difficulties
during training. As shown in Section IV-E, the convergence
performances of hybrid models are actually better than the
node convolutional model.

IV. EXPERIMENTS

First, we explore the influence of temporal kernel size
on action recognition on the Kinetics data set and choose a
proper temporal kernel size. Then, we evaluate our model’s
performance on two data sets: the Kinetics human action data
set (Kinetics) [53], which is currently the largest unconstrained
action recognition data set, and the NTU-RGB+D data set
[48], the largest in-house captured human action recognition
data set. Then, we compare our performance with that of
the previous state-of-the-art algorithms. On Kinetics, we
compare our results with the feature encoding approach [16],
Deep LSTM [48], Temporal ConvNet [28], and ST-GCN
[20]. On NTU-RGB+D, we make a comparison with the
Lie group model [45], H-RNN [47], Deep LSTM [48],
PA-LSTM [48], ST-LSTM + TS [49], Temporal Conv [28],
C-CNN + MTLN [23], and ST-GCN [20]. To further analyze
the improvement brought by our edge convolution, we
visualize the classification accuracies for each class on the
NTU-RGB+D data set and compare the accuracy between
the node convolution model and the edge convolution model
on some representative classes.

A. Data Sets and Settings

1) Kinetics: Kinetics contains about 300 000 videos
retrieved from YouTube, with all samples falling into 400
classes. To obtain the skeletal data, [20] used the OpenPose
toolbox [43] to extract 2-D coordinates of joints in a video.
Each located joint has the form X, Y , and C , which are 2-D
coordinates and confidence score, and each body is represented
by 18 joints (see Fig. 7).

In Kinetics, each limb is represented by five values, includ-
ing 2-D coordinates, confidence score, and an orientation
vector. The 2-D coordinates and confidence score are obtained
by averaging the corresponding values of the joints on the
limb’s two ends, and the orientation vector is obtained by
subtracting the coordinates of the joints on the limb’s ends
to denote the length and orientation of the limb.

win8.1
Typewritten text
IEEE Transactions on Neural Networks and Learning Systems , Early Access , September 2019



Fig. 7. Illustration of the human skeleton graphs in two data sets.
Left: skeleton graph of the Kinetics data set. Right: skeleton graph of the
NTU-RGB+D data set.

The whole skeletal data set retrieved from Kinetics contains
266 440 samples, with 246 534 samples for training and 19 906
samples for testing. On Kinetics, we report both the top-1 and
top-5 accuracies.

2) NTU-RGB+D: NTU-RGB+D is the largest data set with
3-D joint annotations captured in [48] using three Microsoft
Kinetic v.2 cameras concurrently. It contains 56 880 action
samples in the form of RGB videos, depth map sequences,
3-D skeletal data, and infrared videos. All samples in this data
set fall into 60 action classes. Among the multiple modalities,
we only use the skeletal version, in which each human body
is represented by 3-D coordinates of 25 joints (see Fig. 7).

Similar to Kinetics, each limb in this data set is represented
by a 6-D vector containing 3-D coordinates of its center and
an orientation vector.

The author of this data set recommends dividing the data in
two ways, including cross-subject (X-sub) and cross-view (X-
view). X-sub splits the data set into 40 320 training samples
performed by one group of actors and 16 560 testing samples
performed by the other group of actors, while X-sub 37 920
samples captured by one set of cameras set for training and
18 960 samples captured by the other camera set for testing. On
the NTU-RGB+D data set, we report only the top-1 accuracy.

B. Pipeline

1) Graph Edge Convolutional Neural Network: Data input
to our model are first normalized by a batch normalization
layer. Next, center coordinates and orientations of limbs are
calculated. Then, the data are fed into a nine-layer GECNN.
The first three layers have 64 channels for output, the next
three layers have 128 channels for output, and the last three
layers have 256 channels for output. In the fourth and seventh
layers, the stride is set to 2 for pooling. The final output
tensor from convolutional layers is then fed into a global
pooling layer. The global pooling layer is used to obtain a
256-D feature vector for each video sequence. After the global

Fig. 8. Network structure of the SLHM. A single skeletal sequence is
first input into two separated flows. Then, the output of the two flows is
concatenated, and the two flows become one.

pooling layer, the output tensor is fed into a fully connected
layer to obtain the class scores for each video sequence.

2) Sequence-Level Hybrid Model: As mentioned earlier,
the first part of the SLHM involves two separated streams,
including an edge convolutional stream and a node con-
volutional stream. The edge convolutional stream includes
a normalization layer, followed by nine edge convolutional
layers and a global pooling layer. The node convolution stream
has the same structure, including a normalization layer, nine
node convolutional layers, and a global pooling layer.

After the global pooling layer in the first part, each sequence
is represented as a 256-D feature vector. In the second part
of the SLHM, we concatenate the two 256-D output tensors
from the global pooling layer into a single tensor and then
input it into a fully connected layer to obtain the final classi-
fication result, which is the class scores for each sequence,
indicating the probabilities of classifying a sequence into
each class (see Fig. 8).

3) Body-Part-Level Hybrid Model: Body-part-level hybrid
model is also divided into two parts. The first part is the
same as the first part of the SLHM, except that the global
pooling layer is removed. The second part of the body-part-
level hybrid model includes four layers. In the second part, the
output tensors of the two former streams are first input into
two layers of shared convolutional layers. Then, global pooling
is conducted on the output tensors of the shared convolutional
network. Finally, we feed the result into a fully connected
layer to obtain the final classification result (see Fig. 9).

C. Implementation of Edge Convolution

The implementing of edge convolution actually consists of
two stages, including a temporal convolution and a spatial
convolution. Each input sequence can be represented as a
tensor of the form (C , E , and T ), in which C denotes the
multiple channels of the feature vector, E is the number of
edges, and T is the length of the sequence. We first perform
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Fig. 9. Network structure of the body-part-level hybrid model.

TABLE I

ABLATION STUDY ON THE KINETICS DATA SETS. BOTH TOP-1
AND TOP-5 ACCURACIES ARE REPORTED

traditional 2-D convolution with a kernel size of 1 × Kt on
the third dimension to conduct temporal convolution. Then,
we multiply the resulting tensor by the adjacency matrix of
the human skeleton graph to conduct spatial convolution. The
operation of conducting spatial convolution by multiplying the
tensor by the adjacency matrix is inspired by [54], in which
the concept of graph shift corresponds to spatial convolution
on the graphs.

D. Hyperparameter Analysis

To determine to what extent incorporating temporal neigh-
bors will improve the performance of action recognition, we
choose six different temporal sizes for our edge convolution
model and compare the results on the Kinetics data set.

From Table I, we see that when the temporal kernel size
rises from 3 to 9, the top-1 accuracy increases significantly,
while further enlargement to 11 and 13 does not yield much
improvement. This demonstrates the necessity to incorporate a
sufficient number of consecutive frames in a sequence to cap-
ture motion when conducting a convolution. However, incor-
porating too many frames is not promising and will require
more computational resources. Thus, based on the comparison,
we set the temporal kernel size to 9 to achieve both satisfying
accuracy and a lower computational resource cost.

Fig. 10. Loss decreasing curves of edge- and node-convolutional networks
over 60 epochs on the Kinetics data set.

E. Training Performance

In this section, we show the convergence performance of our
models and node convolutional model. As shown in Fig. 10,
our edge convolutional model converges a little faster than
the node convolutional model and achieves a lower training
loss eventually. There are two abrupt drops of loss in the
curve, which is where we shrink the learning rate. We also
compare the training performance of our hybrid models with
that of node convolutional model. In Fig. 10, we can see that
although our hybrid models need to train more parameters,
they still converge faster than the sole node convolutional
model. In the experiment, we do not use pre-trained edge-
or node-convolutional networks but train the entire hybrid
network concurrently.

Similar results on training performance can also be found on
the NTU-RGB+D data set with both cross-subject and cross-
view protocols.

F. Experiment Results

1) Kinetics: We compare our GECNN model, SLHM, and
BPLHM with four other characteristic skeleton-based models:
feature encoding approach [16], Deep LSTM [48], Temporal
ConvNet [28], and ST-GCN [20]. In Table II, we see that our
model achieves superior performance compared to that of the
other approaches.

On this data set, our edge convolution network achieves
superior classification accuracy over the previous state-of-the-
art models by 0.7% in top-1 accuracy and 1.1% in top-5
accuracy. Our SLHM further improves the performance by
0.4% in top-1 accuracy and 0.3% in top-5 accuracy. The body-
part-level hybrid model performs the best, with 2.7% higher
top-1 accuracy and 3.4% higher top-5 accuracy.

2) NTU-RGB+D: On this data set, we compare our
edge convolution model with eight other state-of-the-art
models: Lie group [45], H-RNN [47], Deep LSTM [48],
PA-LSTM [48], ST-LSTM + TS [49], Temporal Conv [28],
GCA-LSTM [55], D-Pose T-Conv [12], C-CNN + MTLN
[23], Zolfaghari et al. [56], ST-GCN [20], Pose-attention [57],
and Deep Bilinear [13]. In Table III, we can see the result and
the great improvement compared with the other models. On
this data set, only the top-1 accuracy is reported.
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TABLE II

COMPARISON BETWEEN DIFFERENT MODELS ON THE KINETIC DATA
SETS. BOTH TOP-1 AND TOP-5 ACCURACIES ARE REPORTED

TABLE III

COMPARISON BETWEEN DIFFERENT MODELS ON THE NTU-RGB+D
DATA SET. TOP-1 ACCURACY IS REPORTED ON TWO SEPARATE

PARTS OF THE DATA SET

With the X-sub protocol on NTU-RGB+D, our edge convo-
lution model outperforms the previous state-of-the-art model
by 2.5%. Moreover, our SLHM and BPLHM further improve
the accuracy by 0.7% and 1.4%, respectively. Overall, the
BPLHM performs the best, achieving 3.9% higher accuracy
than that of the previous state-of-the-art model.

With the X-View protocol, our edge convolution network
outperforms the previous state-of-the-art model by 1.1%.
Moreover, our SLHM and BPLHM further improve the accu-
racy by 0.3% and 1.7%, respectively. The BPLHM still per-
forms the best, with a 2.8% higher accuracy than the previous
state-of-the-art model.

Overall, on all data sets and in all different settings, our
GECNN model outperforms the previous state-of-the-art mod-
els. This result preliminarily corroborates our conjecture that
the movements of human limbs indeed deserve our attention,
and on average, recognizing human action by analyzing bone
dynamics is more efficient than analyzing the joints. Our
hybrid models further improve upon the performance of the
graph edge convolutional network model, which means that
combining edge and node convolution does help to improve the
performance. The fact that the body-part-level hybrid model
performs better than the SLHM validates our assumption that
instead of simply combining the sequence-level features, merg-
ing the body-part-level features enables the two models to help
each other in a subtler way, resulting in higher performance.
To further validate our analysis, we analyze the classification
accuracies on each class of the NTU-RGB+D data set.

a) Advantages of GECNN on certain classes: In Fig. 11,
we reported the classification accuracy for each class. Looking
into certain classes in which the edge convolution model
greatly outperforms the node convolution model, we can
obtain more interesting findings, leading us to realize more
advantages of recognizing human action from the dynamics
of limbs. For example, in classes 3, 10, 44, 47, and 53, the
edge convolution model significantly outperforms the node
convolution model. We can see that in these action classes,
joints’ movements may be too subtle to capture, e.g., in classes
3 (brushing teeth) and 47 (neckache), the hand movements are
nearly invisible (see Fig. 12).

In these cases, although dynamics of some joints are difficult
to capture, the limb movements are always easier to observe.
For example, in the second row of Fig. 12, we visualize
several frames of a certain sample in class “brushing teeth.”
As we see, the hand joints and head joint are nearly stable,
causing difficulty in capturing their dynamics and recogniz-
ing the corresponding action class. In contrast, the location
changes of upper arms and forearms are more significant or
at least visible.

In the previous paragraph, we analyzed the advantages of
the edge convolution model by determining in which classes it
outperforms other models significantly and then analyzed the
characteristics of these classes. A similar analysis can also be
conducted in other classes to find other advantages of different
models, but we are not going to discuss this matter further,
as this kind of analysis is not very rigorous and requires
further validation to be fully convincing. Our discussion in the
previous paragraph simply provides a possible way to analyze
the characteristics of different models; more detailed validation
is left for future work.

b) Model comparison on class accuracies: Besides the
accuracies reported in Table III, we can also compare the
performances of the four models from another point of view.
In Fig. 11, we see that in 25 classes, our body-part-level hybrid
model outperforms the other three models; in 18 classes, the
SLHM performs the best; in 15 classes, the edge convolution
model achieves the highest accuracies; and in only 8 classes,
the node convolution model obtains better results than those
of the other three models. (In some classes, two of the three
models may achieve a draw.)

The hybrid models outperform the two models that are
based solely on joints or limbs in terms of both overall
accuracy and number of best performance classes, which
demonstrates that our hybrid models successfully inherit the
advantages from both the limb-based and joint-based models.

G. Computational Time

In this section, we list the computational time cost by each
model, as listed in Table IV. The reported computational time
is averaged on multiple test epochs.

From Table IV, we see that there is no huge difference
between the time costs of edge- and node-convolutional
networks, which accords with our complexity analysis in
former parts. On Kinetics, our edge convolutional model
is slightly faster, and on NTU-RGB+D, it is a little bit
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Fig. 11. Class accuracy on the NTU-RGB+D data set with cross-subject separation. For each class, we represent the accuracies of four models, with the
corresponding bars in four different colors. We provide only the number denoting each class with red and bold numbers denoting the classes on which our
model performs better; for the detailed name of each class, please refer to https://github.com/shahroudy/NTURGB-DNTU-RGB+D.

Fig. 12. Top row: 5 frames extracted from an example in the 47th class
“touch neck (neckache)”; we can see that the joints of the hands seriously
overlap the joint around the neck. Bottom row: 5 frames extracted from the
initial part of an example in the third class “brushing teeth”; we can see that
the joints of the two hands overlap each other greatly.

slower. Our hybrid models cost more time than the sole
node- or edge-convolutional model because of higher com-
plexity. However, from Tables II and III, we can see that the
performance improvement brought by the hybrid models is
significant. On Kinetics, the highest improvement achieved by
the hybrid models is 2% compared to GECNN and 2.6% com-
pared to ST-GCN, and on NTU-RGB+D, the corresponding
improvement is 1.4% and 2.4%. Thus, the extra time cost by
hybrid models is worthwhile.

TABLE IV

COMPUTATIONAL TIME OF DIFFERENT MODELS
ON DIFFERENT DATA SETS

V. CONCLUSION

Considering the lack of attention on human limb dynamics
for skeleton-based action recognition, in this article, we pro-
pose a novel graph edge convolution that represents each edge
by integrating its neighboring edges. A GECNN is then con-
structed based on the edge convolution operation. Our model
captures the relationship and dependences between human
limbs by conducting convolution on edges of human skeleton
graphs. We apply our model to human action recognition tasks
on two data sets, resulting in remarkably superior performance
over the existing state-of-the-art methods. Considering the
complementarity of node- and edge-convolutional networks,
we further seek to combine node convolution and edge con-
volution in two hybrid models that inherit the advantages of
both the models. The experiment results show that our hybrid
models can further improve the performance.
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