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Abstract—The inherent dependencies among facial action units (AU) caused by the underlying anatomic mechanism are essential for
the proper recognition of AUs and estimation of intensity levels, but they have not been exploited to their full potential. We are
proposing novel methods to recognize AUs and estimate intensity via hybrid Bayesian networks. The upper two layers are latent
regression Bayesian networks (LRBNs), and the lower layers are Bayesian networks (BNs). The visible nodes of the LRBN layers are
representations of ground-truth AU occurrences or AU intensities. Through the directed connections from latent layer and visible layer,
an LRBN can successfully represent relationships between multiple AUs or AU intensities. The lower layers include Bayesian networks
with two nodes for AU recognition, and Bayesian networks with three nodes for AU intensity estimation. The bottom layers incorporate
measurements from facial images with AU dependencies for intensity estimation and AU recognition. Efficient learning algorithms of
the hybrid Bayesian networks are proposed for AU recognition as well as intensity estimation. Furthermore, the proposed hybrid
Bayesian network models are extended for facial expression-assisted AU recognition and intensity estimation, as AU relationships are
closely related to facial expressions. We test our methods on three benchmark databases for AU recognition and two benchmark
databases for intensity estimation. The results demonstrate that the proposed approaches faithfully model the complex and global
inherent AU dependencies, and the expression labels available only during training can boost the estimation of AU dependencies for
both AU recognition and intensity estimation.

Index Terms—AU recognition, AU intensity estimation, latent regression Bayesian network, label dependencies.
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1 INTRODUCTION

Recent years have seen increasing research on automatic
facial expression recognition and facial action unit (AU) analy-
ses due to their great application potential in human-computer
interaction. Facial expression categories are global descriptions
of facial behavior. There has not previously been a complete,
established expression category set. Facial action units describe
facial behavior locally, representing the movement of one or more
muscles in the face. An established, complete facial action unit
set has already been proposed by Ekman et al. [1]. Almost all
anatomically feasible facial expressions can be deconstructed into
several AUs. This paper focuses on AU analyses.

Current work of AU analyses mainly detects action units or
estimates the intensity of each action unit independently, ignoring
AU relations. Since certain anatomic mechanisms govern the
interactions between facial muscles, there are dependencies among
the AUs, including both co-occurrence and mutual exclusion.
Certain AU combinations may lead to certain facial expressions.
For example, as shown in Fig. 1, both the inner brow raiser
action unit (AU1) and the outer brow raiser action unit (AU2) are
associated with the frontalis muscle group. Most people cannot
move AU1 without also moving AU2, and vice versa. These
action units have a coexistent relationship. On the other hand,
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the lip corner puller action unit (AU12) does not usually coincide
with chin raiser (AU17). The former requires the zygomaticus
major muscle group, while the latter uses the mentalis muscle
group. They have a mutually exclusive relationship. Most people
raise their cheeks and stretch their mouths when smiling. The
Emotional Facial Action Coding System (EMFACS) has a list
of AU combinations which often appear in certain expressions.
These demonstrate the close relations between expressions and
AUs. The inherent relationships between AUs themselves, as well
as between expressions and AUs, should be exploited to improve
AU recognition and AU intensity estimation.

AU1 (Inner Brow Raiser)

AU2 (Outer Brow Raiser )

(a) AU1+AU2

AU12 (Lip Corner Puller) AU17 (Chin Raiser)AU6 (Cheek Raiser)

AU7 (Lid Tightener)

(b) AU12

AU12 (Lip Corner Puller) AU17 (Chin Raiser)AU6 (Cheek Raiser)

AU7 (Lid Tightener)

(c) AU17

Fig. 1: The examples of co-occurrent and mutual exclusive rela-
tions among AUs.

Researchers have just started exploring the role AU relations
play in AU recognition and intensity estimation. Both discrimina-
tive approaches and generative approaches are investigated. The
former incorporates further constraints on the loss function to
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represent AU relations, and the latter adopts the parameter and
structure of probabilistic graphical models to capture the prob-
abilistic dependencies between AUs. The additional constraints
can model local or fixed AU relations, but are unable to model the
many variations in AU dependencies. while probabilistic graphical
models can capture more complex and global AU dependencies
through their diversiform structures. Therefore, we prefer to adopt
generative approaches for AU analysis enhanced by label depen-
dencies.

Compared to currently used probabilistic graphical models
like dynamic Bayesian networks (DBNs) [2], [3] and restricted
Boltzmann machines (RBMs) [4], [5], [6], latent regression
Bayesian networks (LRBNs) [7] can more thoroughly represent
visible units. The LRBN is able to take into account the global
dependencies between visible nodes, as well as the dependencies
among hidden nodes given observations. In this paper, we capture
high-order and global dependencies among AUs by using an
LRBN. Specifically, we propose a hybrid Bayesian network in
which the upper two layers consist of latent regression Bayesian
network and the lower layers are composed of Bayesian networks.
The ground-truth AU states or AU intensities are represented by
the visible nodes of the LRBN. Through the learning process,
the LRBN is able to accurately represent relationships among
multiple AUs or AU intensities. The lower layers include two-
node Bayesian networks for AU recognition, and three-node
Bayesian networks for AU intensity estimation. The bottom layers
perform AU recognition and intensity estimation by incorporat-
ing measurements from facial images with AU dependencies.
We then extend our proposed hybrid BN model, using the AU
relations and expression-AU relations for AU recognition and
intensity estimation. By introducing facial expression nodes as
visible variables, facial expressions, only available during training,
can more effectively capture AU dependencies. Experimental
results on several benchmark databases show that our proposed
approaches are able to effectively capture complicated intrinsic
relationships among AUs. We further show that expression labels
can more effectively model AU dependencies for AU recognition
and intensity estimation, even when the labels are only available
during training.

The rest of this paper is organized in the following manner.
The next section gives an overview of the related work on
AU recognition and AU intensity estimation. Section 3 briefly
introduces LRBN. Section 4 and Section 5 elaborate on the
proposed AU recognition models and AU intensity estimation
models, respectively. Section 6 presents the experimental results
on three databases for AU recognition and two databases for
intensity estimation, and makes the comparison to related works.
Section 7 concludes our work.

2 RELATED WORK

A recent comprehensive survey of facial action unit analysis can
be found in Martinez et al. [8]. In this section, we briefly review
AU recognition and intensity estimation works that leverage label
dependencies.

2.1 AU recognition leveraging label dependencies
Researchers have recently begun to examine the ways in which
AU relations could improve AU recognition. Both discriminative
approaches and generative approaches are investigated. For dis-
criminative approaches, additional constrains of the loss function

are used to represent AU relations. Zhu et al. [9] and Zhang et
al. [10] regarded each AU recognition as a singular task, and
adopted multi-task learning for the simultaneous recognition of
multiple AUs. The constraints among several tasks were repre-
sentative of fixed and local AU relationships. Zhao et al. [11]
employed the constraints to represent group sparsity as well as
local positive correlation and negative competition for multiple AU
recognition. Eleftheriadis et al. [12] suggested a multi-conditional
latent variable model. This model projects the features of the
image onto a shared manifold, which is then regularized by
constraints representing global and local co-occurring dependen-
cies among the AU labels. Eleftheriadis et al. considered co-
occurrent relationships between AU labels, without considering
mutually exclusive relationships. All the adopted constrains can
model certain kind of AU dependencies, but cannot fully represent
hundreds of variations in AU dependencies.

Generative approaches use the parameters and structure of
probabilistic graphical models to incorporate the probabilistic
dependencies between AUs. Tong et al. [2] and Li et al. [3]
each proposed a dynamic Bayesian network (DBN) to capture
probabilistic relationships and temporal changes among action
units. Because of the Markov assumption, their proposed DBNs
are only able to capture local relations, such as co-occurrence
and mutual exclusion, between pairs of AUs. Wang et al. [4] and
Wu et al. [5], [6] proposed an RBM to capture the global relations
among AUs, since RBM introduces a layer of latent units in order
to model higher-order dependencies among random variables.
However, as an undirected latent variable model, hidden units of
RBM are independent to one other given the visible units. The
introduction of dependencies among the hidden units is expected
to allow the model to better explain the patterns embedded in
the visible units. Unlike an RBM, an LRBN is a directed model,
capturing the global dependencies among visible nodes as well
as the dependencies among hidden nodes given observations.
It therefore offers a better representation of visible units via
directed links amongst hidden and visible units. Therefore, we
employ an LRBN to successfully model high-order and global AU
dependencies.

Unlike AU recognition enhanced by AU relations, expression-
assisted AU recognition has not been paid as much attention.
As far as we know, just three works recognize action units
assisted by expressions. One adopted discriminative approaches,
and the other two used generative approaches. Ruiz et al. [13]]
proposed a discriminative approach to learn AU classifiers from
unannotated facial images and another large-scale facial images
with expression labels only. Their approach uses ground-truth
expression labels to generate pseudo-labels according to summa-
rized dependencies between expressions and AUs from Gosselin et
al. [14] and Scherer et al. [15]. Then, expression classifiers from
AUs are trained with the generated AU pseudo-labels and the
ground-truth labels. After that, AU classifiers are learned by
using the output of the action unit classifiers as the input for
the expression classifiers. Their research exploited the fixed and
pairwise expression relations to train AU classifiers from facial
images without AU annotations.

For generative approaches, a Bayesian network [16] and a
three-way Restricted Boltzmann Machine [4] are used to capture
the dependencies between AU and expressions in addition to the
dependencies between AUs. Wang et al. [4], [17] proposed a
Bayesian network to capture local dependencies between AUs and
between AUs and expressions, for the task of AU recognition
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for images with full expression labels but limited action unit
labels. The dependencies between expressions and AUs are used
as supplementary to missed AU labels. Wang et al. [4] proposed
a mixture model a three-way RBM that independently captured
the relationships between each expression and the AUs for AU
recognition. The expression labels are only needed during training
as privileged information.

The adopted Bayesian network captures pairwise relations
between expressions and AUs, and the used three-way RBM mod-
els global relations among each expression and AUs. However,
AU recognition requires the capture of more complex, global
dependencies among expressions and AUs. Therefore, we extend
the proposed LRBN to enable the capture of high-order and global
AU dependencies and AU-expression dependencies for the task
of AU recognition. Expression labels are only required during
training.

2.2 AU intensity estimation leveraging label dependen-
cies

Due to the limited available databases with AU intensity an-
notations, few works consider AU intensity estimation. Among
them, several works focus on the use of AU relations for intensity
estimation using either discriminative approaches or generative
approaches.

As in AU recognition, the additional loss function constraints
as well as parameters and structures of generative models are
used to capture dependencies among action units for intensity
estimation. For example, Nicolle et al. [18] and Wang et al. [19]
considered intensity estimation of one AU as one task, and
proposed multitask learning solutions to predict AU intensities.
The constrains among multiple tasks represent the local and fixed
AU relations among a task group. Li et al. [20] used DBN to
capture local and pairwise AU relationships in order to measure
their intensities. Sandbach et al. [21] constructed Markov random
field trees to depict the pairwise AU intensity combinations in the
region of the upper face. Kaltwang et al. [22] proposed a gener-
ative latent tree model to represent the joint distribution of AU
intensities and facial features to estimate multiple AU intensities.
Walecki et al. [23] proposed a conditional random field (CRF)
to model individual independent AUs as well as pairs of AUs
to estimate intensity. Rudovic et al. [24] proposed a conditional
ordinal random field model for context-sensitive modeling of AU
intensity. Although current works explore AU dependencies to
some extend for AU intensity estimation, more complete and
global dependencies are still expected to explore. Therefore, we
propose to employ the LRBN to capture and leverage high-order
and global dependencies among AUs for improved AU intensity
estimation.

As far as we know, just one work explores AU-expression
dependencies for AU intensity estimation. Wang et al. [17]
extended their method for expression-assisted AU recognition
to expression-assisted AU intensity estimation. They adopted a
Bayesian network to capture the local and pairwise dependencies
between AU intensities and expressions. A structured EM is used
to learn the parameters and structure of the Bayesian network
for missing AU intensities. Expression labels are used to handle
incomplete AU intensity labeling. Their work can only capture
local and pairwise AU-expression dependencies. More global and
complex AU-expression dependencies are expected to beneficial
for AU intensity estimation. Therefore, we extend the proposed

LRBN to capture both high-order and global dependencies among
AUs, as well as among expressions and AUs. Expression labels
are only required during training.

A previous version of the paper appeared as Hao et al. [25],
which proposed a hybrid Bayesian network consisting of a LRBN
and two-node BNs for AU recognition enhanced by AU depen-
dencies and AU-expression dependencies. Compared with the
previous version, this paper proposes another hybrid Bayesian net-
work consisting of a LRBN and three-node BNs for AU intensity
estimation through leveraging dependencies among AUs as well
as among AUs and expressions. To show the effectiveness of the
proposed intensity estimation method, experiments are conducted
on the BP4D and PAIN databases.

3 BRIEF INTRODUCTION TO LRBN

A latent regression Bayesian network is a type of directed latent
graphic model. An LRBN is made up of a visible layer, a latent
layer, and directed edges between visible nodes hidden nodes, as
shown in Fig. 2. Since the “explaining away” effect can reduce
the necessity of invoking alternative causes when one cause of
an observed event is confirmed [26], the latent variables are
independent of each other given the visible variables.

h

v
Fig. 2: The structure of LRBN.

Bayesian networks are subject to the chain rule, wherein the
joint probability of all visible and latent variables of a LRBN can
be factorized into the product of prior probabilities for any latent
variable h j, P(h j), and the conditional probabilities of any visible
node vi given all latent variables hhh, P(vi|hhh) as shown in Eq. (1):

P(vvv,hhh) =
nh

∏
j=1

P(h j)
nv

∏
i=1

P(vi|hhh) , (1)

where nh,nv represent the number of hidden and visible nodes,
respectively.

In our work, since both h and v are binary, P(h j) and P(vi|hhh)
are assumed to the Bernoulli distribution. They can respectively
be written as Eq. (2) and Eq. (3).

P(h j) = σ(d j)
h j (1−σ(d j))

1−h j , (2)

where σ(x) = 1/(1 + exp(−x)), and d j is the bias of the
variable h j.

P(vi|hhh) = σ(wT
i hhh+bi)

vi(1−σ(wT
i hhh+bi))

1−vi , (3)

where wi represents the weight between all of the latent nodes
h and the visible node vi, and bi is the bias term for vi.

Integrating Eq. (2) and Eq. (3) into Eq. (1) results in Eq. (4):
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PΘLRBN (vvv,hhh)

= ∏
j

exp(d jh j)

1+ exp(d j)
∏

i

exp((wT
i hhh+bi)vi)

1+ exp(wT
i hhh+bbb)

=
exp(−ΓΘLRBN (vvv,hhh))

∏ j (1+ exp(d j))
,

(4)

where ΘLRBN = {WWW ,bbb,ddd}, and

ΓΘLRBN (vvv,hhh) =−∑
i

(
wT

i hhh+bi
)

vi−∑
j

d jh j

+∑
i

log(1+ exp(wT
i hhh+bi)) .

(5)

Compared to the energy function of an RBM, Eq. (5) has the
extra term ∑i log(1+ exp(wT

i hhh+ bi)) which is used to explicitly
capture relationships among latent variables. Unlike the RBM,
which uses undirected links between visible and hidden nodes,
the LRBN uses directed links. These directed links result in the
dependencies among the latent layer given the visible layer. Thus,
the LRBN is better able to explain the patterns inherent in the
observations. Additionally, the LRBN does not suffer from an in-
tractable partition function issue; the joint distribution is obtained
using the product of all the prior and conditional probabilities.

4 AU RECOGNITION ENHANCED VIA LABEL DE-
PENDENCIES

Fig. 3 shows the proposed hybrid BN for AU recognition enhanced
by modeling AU relationships. The proposed network has three
layers. The upper two layers is a latent regression Bayesian net-
work, and the lower two layers are two-node Bayesian networks.
To be specific, the visible nodes (i.e., aaa), are representative of the
ground-truth AU states. LRBN is able to capture the dependencies
among latent variables and among the visible variables via the
directed connections from the hidden nodes to the visible nodes.
Thus, it is able to thoroughly capture the global and complex
relations among several AUs. The lower two layers consist of
two-node Bayesian networks. They connect the ground-truth AU
states (aaa), and their measurements (aaa′). Therefore, the aaa and
aaa′ are binary. Using measurements obtained from the images
as evidence, the lowest two-layer Bayesian network integrates
the facial images with the AU dependencies for improved AU
recognition.

h

a

'a

Fig. 3: Proposed AU recognition using AU-relation modeling.

The joint probability of all of the variables for the proposed
hybrid Bayesian network is shown in Eq. (6):

P(aaa,hhh,aaa′′′)

= P(aaa′′′|aaa)P(aaa,hhh)

= P(aaa′′′|aaa)
exp−ΓΘLRBN (aaa,hhh)
Π j(1+ exp(d j))

.

(6)

4.1 Parameter Learning
Given a set of samples D = {aaa(m),aaa′′′(m)}M

m=1, the parameters Θ

are estimated by maximizing the marginal log-likelihood during
training, according to Eq. (7):

Θ
? = argmax

Θ

1
M

M

∑
m=1

L (Θ)

= argmax
Θ

1
M

M

∑
m=1

log(∑
hhh

P(aaa,hhh,aaa′′′))

= argmax
Θ

1
M

M

∑
m=1

log(∑
hhh

P(aaa′′′|aaa)P(aaa,hhh))

= argmax
Θ

1
M

M

∑
m=1

(logP(aaa′′′|aaa)+ log∑
hhh

P(aaa,hhh)) .

(7)

Eq. (7) demonstrates that the parameters of the uppermost
two-layer (ΘLRBN) and the parameters of the bottom two-layer
BNs (ΘBN) can be separately learned (i.e., Θ = {ΘBN ,ΘLRBN}) as
shown in Eq. (8) and Eq. (9),

Θ
?
LRBN = argmax

ΘLRBN

1
M

M

∑
m=1

log(∑
hhh

exp−ΓΘLRBN (aaa,hhh)
Π j(1+ exp(d j))

) , (8)

Θ
?
BN = argmax

ΘBN

1
M

M

∑
m=1

logP(aaa′′′|aaa) . (9)

4.1.1 Parameter learning for the uppermost two-layer
LRBN
The gradient of Eq. (8) with respect to parameter ΘLRBN is shown
in Eq. (10),

5ΘLRBN L (ΘLRBN) = ∑
m

∑
h

P(hhh|aaa(m))
∂ −ΓΘLRBN (aaa

(m),hhh)
∂ΘLRBN

. (10)

The directed connections of LRBN are from hidden nodes to
visible nodes, therefore, P(hhh|aaa(m)) is computationally intractable.
The exact gradient in Eq. (10) also requires exponential summa-
tions over all of the possible latent variables hhh.

We prefer to obtain P(hhh|aaa(m)) by adopting sampling method
from the true posterior probability. This allows us to preserve
certain dependencies among hidden variables. As the specific form
of P(h|a) is unavailable, it would be intractable to draw exact
samples from P(hhh|aaa) through Gibbs sampling. Therefore, some
approximations are taken during sampling according to Eq. (11).

P(hhh|aaa) = ∏
j

P(h j|h1, . . . ,h j−1,aaa)

≈∏
j

P(h j|h− j,aaa) ,
(11)

where h− j = {h1, . . . ,h j−1,h j+1, . . . ,hnh} is a set of all latent
variables with the exception of h j. Each of the latent nodes is
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sampled with all other nodes fixed as Eq. (12). Therefore, we are
able to preserve the dependencies among latent variables to some
extent. The procedure is iterated until convergence, whereupon a
sample is collected and used to update the parameters.

ht
j ∼ P(h j|aaa,hhht−1

− j ) . (12)

Markov Chain Monte Carlo (MCMC) methods are typically
used to estimate the summation with samples, thus addressing the
issue of exponential summation. An intuitive estimation is shown
in Eq. (13),

5ΘLRBN L (ΘLRBN)≈
1
n ∑

m
∑
s

∂ −ΓΘLRBN (aaa
(m),hhh(m,s))

∂ΘLRBN
, (13)

where hhhm,1, . . . ,hhhm,n are n samples from P(hhh|aaa(m)).
To avoid the computing complex of multiple Gibbs chains, we

adopt the stochastic approximation procedure (SAP) framework
[27]. The SAP only requires one latent variable sample for gradi-
ent estimation, and convergence to a local optimum is guaranteed
[28] if the learning rate ηt satisfies Eq. (14),

∞

∑
t=1

ηt = ∞ ,

∞

∑
t=1

η
2
t < ∞ .

(14)

The stochastic gradient ascent algorithm speeds up the learning
phase, and we use a mini-batch of training samples to estimate the
gradient.

The detailed algorithm for learning parameters ΘLRBN can be
seen in Algorithm 1.

4.1.2 Parameter learning for the lower two-layer BN
Due to the independence among different AU state nodes at the
lower two-layer BN, Eq. (9) is rewritten as Eq. (15),

Θ
?
BN = argmax

ΘBN

1
M

M

∑
m=1

logP(aaa′′′|aaa)

= argmax
ΘBN

1
M

M

∑
m=1

(
1
n

logP(a′1, . . . ,a
′
n|a1, . . . ,an;ΘBN)

= argmax
ΘBN

1
M

M

∑
m=1

(
1
n

n

∑
i=1

logP(a′i|ai;ΘBN)) ,

(15)

where a1,a2, . . . ,an are n ground-truth AU states, and
a′1,a

′
2, . . . ,a

′
n are the corresponding measurements. All of them are

available during training. Thus, maximum log-likelihood is used
to obtain parameter ΘBN .

4.2 Network Inference
The learned hybrid BN model combines AU measurements with
the dependencies captured during training to recognize multiple
AUs through inference. Specifically, we compute all possible AU
combinations according to P(aaa|aaa′,Θ), and then select the most
probable explanation AU combination (i.e., the most probable
explanation).

a1, . . . ,an

= argmax
a1,...,an

p(a1, . . . ,an|a′1, . . . ,a′n)

= argmax
a1,...,an

p(a′1, . . . ,a
′
n|a1, . . . ,an)p(a1, . . . ,an)

p(a′1, . . . ,a
′
n)

= argmax
a1,...,an

p(a′1, . . . ,a
′
n|a1, . . . ,an)p(a1, . . . ,an)

= argmax
a1,...,an

n

∏
i=1

p(a′i|ai) ∑
h1,...,hm

p(a1, . . . ,an,h1, . . . ,hm)

= argmax
a1,...,an

n

∏
i=1

p(a′i|ai)

×
exp(−ΓΘLRBN (aaa,hhh))

∏i
(
1+ exp(wT

i +b)
)

∏ j (1+ exp(d j))
,

(16)

where, h1, . . . ,hm is m latent nodes of LRBN.

4.3 Expression-Assisted AU recognition
As discussed in Section 1, AU dependencies are influenced by
expressions, since certain AU combinations formulate certain
expressions. Such expression dependent AU relations can help AU
recognition. Therefore, we extend our proposed AU recognition
method, which is augmented by AU dependencies, to expression-
assisted AU recognition method, which is enhanced by dependen-
cies among AUs as well as dependencies among expressions and
AUs as shown in Fig. 4.

Compared with Fig. 3, in which the second layer consists
entirely of AU nodes, the second layer of the expression-assisted
AU recognition model includes AU nodes aaa and expression nodes
eee. Accordingly, the lowest layer contains AU measurement aaa′′′ as
well as expression measurement eee′′′. The upper two-layer LRBN
thoroughly models global relationships among multiple AUs and
among AUs and expressions via the directed connections from the
hidden nodes to the expression and AU nodes. The lower two-
layer network employs measurements taken from the images as
evidence to integrate the facial images with the AU dependencies
and the AU-expression relationships.

For our proposed expression-assisted AU recognition model,
the joint probability of all is shown in Eq. (17):

P(aaa,eee,hhh,aaa′′′,eee′′′)

= P(aaa′′′,eee′′′|aaa,eee)P(aaa,eee,hhh)

= P(aaa′′′,eee′′′|aaa,eee)
exp−ΓΘLRBN (aaa,eee,hhh)

Π j(1+ exp(d j))
.

(17)

For both the AU recognition model and the proposed
expression-assisted model, the parameters of the upper two-layer
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AUs Expression
'a

a

h

e

'e

Fig. 4: The proposed AU recognition model enhanced by expres-
sion.

LRBN and those of the bottom two-layer Bayesian networks can
be learned separately according to Eq. (18) and Eq. (19).

Θ
?
LRBN = argmax

ΘLRBN

1
M

M

∑
m=1

log(∑
hhh

exp−ΓΘLRBN (aaa,eee,hhh)
Π j(1+ exp(d j))

) . (18)

Θ
?
BN = maxarg

ΘBN

(
1
M

M

∑
m=1

1
n

n

∑
i=1

logP(a′i|ai;ΘBN)

+
1
M

M

∑
m=1

1
ne

ne

∑
j=1

logP(e′j|e j;ΘBN)) ,

(19)

where ne is the number of expression nodes eee.

For Eq. (18), similar to Algorithm 1, Algorithm 2 is proposed
to learn the parameters ΘLRBN . For Eq. (19), maximum log-
likelihood is used to obtain parameter ΘBN .

After the expression-assisted model is learned, AU mea-
surements and expression measurements are combined with the
captured AU dependencies and AU-expression dependencies to
perform multiple AU recognition using probabilistic inference,
according to Eq. (20):

a1, . . . ,an

= argmax
a1,...,an

n

∏
i=1

P(a′i|ai)

×max
eee
{

ne

∏
j=1

P(e′j|e j)× ∑
h1..hm

p(a1..an,e1..ene ,h1..hm)}

= argmax
a1,...,an

n

∏
i=1

P(a′i|ai)×max
eee
{

ne

∏
j=1

P(e′j|e j)

×
exp(−ΓΘLRBN (aaa,eee,hhh))

∏i
(
1+ exp(wT

i +b)
)

∏ j (1+ exp(d j))
} .

(20)

Comparing the proposed AU recognition model with the
expression-assisted AU recognition model, we see that the pro-
posed AU recognition through AU-relation modeling happens
to be a particular case of our proposed expression-assisted AU-
recognition model, since expression nodes are excluded from the
second and third layers.

5 AU INTENSITY ESTIMATION VIA AU-RELATION
MODELING

Compared to action unit occurrences, AU intensities provide more
fine-grained level for facial analysis. In this section, we propose
AU intensity estimation model as show in Fig. 5. For simplicity,
the top two layers are the same as those in Fig. 3. It means
the visible nodes of LRBN in Fig. 5 are binary value. We use
vvvaaa to represent whether the ground-truth AU intensity is larger
than its mean value or not. We further propose to a three-nodes
Bayesian Network (tri-BN) [29] to capture the relations between
ground-truth AU intensity and its measurement for AU intensity
estimation. As shown in Fig. 5, the tri-BN consists of three nodes:
one two-value node va and two multi-value discrete nodes a, a′.
The node a represents the ground-truth AU intensity, and aaa′′′ are its
corresponding measurement.

av

a
'a

h

Fig. 5: The proposed estimation of AU intensity using AU-relation
modeling.

The joint probability of all variables for Fig. 5 is as Eq. (21):

P(vvvaaa,aaa,aaa′′′,hhh)

= P(aaa|vvvaaa)P(aaa′′′|vvvaaa,aaa)P(vvvaaa,hhh)

= P(aaa|vvvaaa)P(aaa′′′|vvv,aaa)
exp−ΓΘLRBN (vvvaaa,hhh)

∏ j(1+ exp(d j))
.

(21)
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5.1 Parameter Learning
The parameters of the upper two-layer LRBN and the lower tri-BN
can be learned through Eq. (22) and Eq. (23), respectively.

Θ
∗
LRBN = argmax

ΘLRBN

1
M

M

∑
m=1

log(∑
hhh

exp−ΓΘLRBN (vvvaaa,hhh)
∏ j(1+ exp(d j))

) , (22)

Θ
∗
BN = argmax

ΘBN

1
M

M

∑
m=1

logP(vvvaaa)P(aaa|vvvaaa)P(aaa′′′|vvvaaa,aaa)

= argmax
ΘBN

1
M

M

∑
m=1

(
1
n

n

∑
i=1

logP(vai)+ logP(ai|vai)+ logP(a′i|vai ,ai)) ,

(23)

where a1, . . . ,an are n ground-truth AU intensity values, a′1, . . . ,a
′
n

are corresponding measurements, and we classify a1, . . . ,an into
two classes according to their mean value to obtain va1 , . . . ,van .

Eq. (22) is as the same as Eq. (8), therefore, Algorithm 1 is
used to learn ΘLRBN . Maximum log-likelihood is used to obtain
parameter ΘBN .

5.2 Network Inference
During inference phase, the learned hybrid Bayesian network
model combines intensity measurements with the captured action
unit dependencies to perform multiple action unit intensity esti-
mation using probabilistic inference, according to Eq. (24):

a1, . . . ,an

= argmax
a1,...,an

n

∏
i=1

P(at |a′i,ai)

= argmax
a1,...,an

n

∏
i=1

P(ai|vai)P(a
′
i|ai,vai)

×
exp(−ΓΘLRBN (vvvaaa,hhh))

∏ j(1+ exp(wT
i +b))∏ j(1+ exp(d j))

.

(24)

5.3 AU intensity estimation enhanced by expressions
Similar as AU recognition, expression dependent AU relations are
expected to help AU intensity estimation. Therefore, we extend the
proposed AU intensity estimation method, which is enhanced by
AU dependencies, to expression-assisted AU intensity estimation
method, which is enhanced by dependencies among AUs in
addition to the dependencies among expressions and action units
as shown in Fig. 6.

Compared with Fig. 5, in which the second layer consists
solely of va nodes, the expression-assisted AU recognition model
includes both va nodes and ve nodes in the second layer. Accord-
ingly, the lower layer contains AU intensity measurement a′ as
well as the expression measurement e′. If we have the ground-truth
of expression intensities, the bottom layer of the expression part is
three-node BNs, as the same as that of AU part. If we only have
the ground-truth of expression categories, without intensities, the
bottom layer of the expression part is two-node BNs, as the same
as that in Fig. 4. Through incorporating expression nodes, the top
two-layer LRBN uses the directed connections from hidden nodes
to expression and AU nodes to thoroughly model both global
relationships among multiple AUs and the relationships among
AUs and expressions. The lower two-layer network consolidates
facial images with the AU dependencies and the AU-expression

AUs Expression

h

a

'a

evav

e
'e

Fig. 6: The proposed AU intensity estimation enhanced by expres-
sion.

relations, employing measurements from the images to obtain AU
recognition.

The joint probability of all variables for Fig. 6 is shown in
Eq. (25):

P(vvvaaa,vvveee,aaa,aaa′′′,eee,eee′′′,hhh)

= P(aaa,eee|vvvaaa,vvveee)P(aaa′′′,eee′′′|aaa,eee,vvvaaa,vvveee)
exp−ΓΘLRBN (vvvaaa,vvveee,hhh)

∏ j(1+ exp(d j))
.

(25)

The parameters of LRBN part and tri-BN part can be learned
through Eq. (26) and Eq. (27), respectively.

Θ
∗
LRBN = argmax

ΘLRBN

1
M

M

∑
m=1

log(∑
hhh

exp−ΓΘLRBN (vvvaaa,vvveee,hhh)
∏ j(1+ exp(d j))

) . (26)

Θ
∗
BN = argmax

ΘBN

1
M

M

∑
m=1

logP(vvvaaa)P(aaa|vvvaaa)P(aaa′′′|vvvaaa,aaa)

+
1
M

M

∑
m=1

logP(vvveee)P(eee|vvveee)P(eee′′′|vvveee,eee)

(27)

Eq. (26) is as the same as Eq. (18), therefore, Eq. (26) is
used to learn ΘLRBN . Maximum log-likelihood is used to obtain
parameter ΘBN .

After parameters learning, we can inference AU intensity
through Eq. (28),

a1, . . . ,an

= argmax
a1,...,an

n

∏
i=1

P(ai|vai)P(a
′
i|ai,vai)

×max
eee
{P(eee|vvveee)P(eee′′′|eee,vvveee)

×
exp(−ΓΘLRBN (vvvaaa,vvveee,hhh))

∏ j(1+ exp(wT
i +b))∏ j(1+ exp(d j))

} .

(28)

6 EXPERIMENTS AND RESULTS
6.1 Experimental conditions
To validate the proposed AU recognition and intensity estima-
tion methods, we conducted AU recognition experiments on
three benchmark databases: the Extended Cohn-Kanade (CK+)
database [30], the BP4D-Spontaneous database [31] and the SE-
MAINE database [32]. We conduct AU intensity estimation exper-
iments on two benchmark databases, i.e., the BP4D-Spontaneous
database [31] and the UNBC-McMaster Shoulder pain Expression
Archive database (PAIN) [33].
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The CK+ database is made up of 593 posed facial image
expression sequences taken from 123 subjects. Sequences begin
with the onset frame, and end with the apex frame. Among them,
327 sequences have both annotations of expressions and AUs.
All 327 of these apex frames are used in our experiments. Seven
expressions (i.e., anger, contempt, disgust, fear, happiness, sadness
and surprise) and 13 AUs (i.e., AU1, AU2, AU4, AU5, AU6,
AU7, AU9, AU12, AU17, AU23, AU24, AU25 and AU27) are
considered. Only selected samples with frequencies larger than
10% are used.

The SEMAINE database records naturally induced facial ex-
pressions of subjects throughout a conversation. Thus far, FACS
experts have coded 180 frames from eight sessions of two subjects.
As in Wang et al. [4], 10 AUs present in at least 15 instances
are used (i.e. AU1, AU2, AU4, AU5, AU6, AU7, AU12, AU17,
AU25, and AU26). The SEMAINE database provides seven types
of expressions: fear, anger, happiness, sadness, disgust, contempt
and amusement.

The BP4D database is composed of 328 facial videos taken
from 41 subjects. Each of the subjects attended eight emotion-
elicitation experiments. Similar to Li et al. [34], Chu et al. [35]
and Bishay et al [36], we use 12 AUs (i.e., AU1, AU2, AU4,
AU6, AU7, AU10, AU12, AU14, AU15, AU17, AU23, and AU24).
For AU intensity estimation, the BP4D database only provides
intensity annotations for five AUs: AU6, AU10, AU12, AU14, and
AU17. We estimate intensities for all five AUs. In our experiments,
all images with missing annotation and without active AUs are
dropped. Finally, apex frames are adopted for AU recognition and
intensity estimation respectively.

The PAIN database contains 200 videos from 25 subjects. A
total of 48398 frames have been facial action coding system coded
and active appearance model tracked. Following the same data
selection criteria as Walecki et al. [23], the image frames with two
or more active AUs were selected. For AU intensity experiments,
we adopted 10 AUs (i.e., AU4, AU6, AU7, AU9, AU10, AU12,
AU20, AU25, AU26, and AU43). For expression-assisted AU
intensity estimation, we use the Prkachin and Solomon pain
intensity (PSPI) [33]] as expression-factor. Following Rudovic et
al. [37], we discretized PSPI into six levels: 0, 1, 2, 3, 4-5, 6-15.
Since the multi-labeled samples are very imbalance, we adopted
multi-label balance strategy proposed by Chu et al. [38].

Table 1 shows the AU distribution on the CK+, the SEMAINE,
and the BP4D databases, and Fig. 7 shows the action unit intensity
distribution for the BP4D and PAIN databases.

For features, facial points provided by the database construc-
tors are used. The feature points are normalized according to affine
transformation, such that the centers of the eyes fall on given
positions for each image. For AU recognition, support vector
machines (SVMs) are utilized as classifiers to collect the mea-
surements of AU. For AU intensity estimation, we consider AU
intensity estimation to be a multi-class problem, and then adopt
support vector machines (SVMs) to obtain the measurements of
AU intensities.

Like related works, we adopt 3-fold subject-independent cross-
validation on the BP4D database. For the CK+ and SEMAINE
databases, we use leave-one-subject-out cross-validation. On the
PAIN database, we apply a 5-fold subject-independent cross-
validation procedure. For AU recognition, F1 score is used as the
evaluation metric. AU intensity estimation uses Pearson correla-
tion coefficient (PCC), intra-class correlation coefficient (ICC),
and the mean square error (MSE) as evaluation metrics. Model

selection is used to select hyper parameters.

TABLE 1: Distribution of AU occurrence.

CK+ SEMAINE BP4D

AU1 130 51 852
AU2 99 52 676
AU4 122 34 998
AU5 92 16 -
AU6 95 54 3271
AU7 79 41 3362
AU9 61 - -
AU10 - - 3515
AU12 80 64 2921
AU14 - - 2772
AU15 - - 922
AU17 115 28 1745
AU23 43 - 798
AU24 43 - 831
AU25 181 107 -
AU26 - 70 -
AU27 72 - -
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Fig. 7: Distribution of the AU intensity levels

To show the effectiveness of the proposed AU recognition
methods, we conducted three kinds of experiments. First, we
conduct an experiment on image-driven AU recognition. We then
conduct experiments on the proposed AU recognition enhanced by
AU-relations and the proposed expression-assisted AU recognition
enhanced by both AU relations and expression-AU relations. The
SVM is employed as the classifier recognizing the AUs from
the feature points for image-driven AU recognition. As all three
databases have not larger than eight expression categories, the
expression labels are encoded with three binary nodes to match
the action unit forms.

As in AU recognition, we conduct three kinds of experi-
ments to validate the proposed AU intensity estimation method:
the image-driven AU intensity estimation, the proposed AU in-
tensity estimation enhanced by AU-relations, and the proposed
expression-assisted AU intensity estimation enhanced by both AU
relations and expression-AU relations. For the expression-assisted
AU intensity estimation method, each expression corresponds to
one nodes, indicating its presence/absence or larger intensity/small
intensity.

As well as the above within-database experiments, we con-
duct cross-database AU recognition experiments using the image-
driven method, the proposed method of AU recognition enhanced
by AU relations, and the proposed expression-assisted AU recog-
nition method. The common AUs and expressions between the
training and the testing databases are used. Since the sample size
of the BP4D database is far larger than that of the CK+ database
and the SEMAINE database, we do not conduct cross-database
experiments training on the small database and testing on the
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large database. For AU intensity estimation, we have conducted
cross-database experiments using the image-driven method and
the proposed AU recognition enhanced by AU relations. Similarly,
as cross-database AU recognition experiments, the common AUs
between the training database and the testing database are used.
We have not conducted cross-database AU intensity estimation
experiments using the proposed expression-assisted AU analyses,
since the expression categories for the two databases are totally
different. Specifically, the pain database provides pain intensity,
and the BP4D database consists of eight kinds of facial expression
images, i.e., happiness, sadness, surprise, embarrassment, fear,
pain, anger and disgust.

6.2 Within-Database Experimental Results and Analy-
ses

6.2.1 Experimental Results and Analysis on AU Recogni-
tion
The results of our AU recognition experiments on three databases
can be found in Table 2. From the table, we make these observa-
tions:

On all databases, the proposed AU recognition method using
AU-relation modeling achieves significant improvement over the
image-driven method that uses SVM. To be specific, the proposed
method surpasses the image-driven method by about 3%, 5%,
and 6% of average F1 score on the CK+, SEMAINE, BP4D
databases, respectively. The image-driven method does not con-
sider AU relations, while the proposed method faithfully captures
AU dependencies through LRBN. The better performance of the
proposed method leveraging AU-relation modeling demonstrates
that the inherent AU dependencies can be leveraged for improved
AU recognition. Furthermore, the improvements on the BP4D and
SEMAINE databases are larger than that on the CK+ database.
The BP4D and the SEMAINE databases are made up of sponta-
neous facial expressions, while the CK+ database mainly consists
of posed expressions. There are two possible reasons: one is that
captured inherent AU dependencies may provide more benefits for
spontaneous AU recognition than posed AU recognition, and the
other is that the CK+ database is an easier database performance
on which does not have as much room for improvement.

Secondly, the proposed expression-assisted AU recognition
method outperforms both the image-driven method and the pro-
posed AU recognition through AU-relation model, with a higher
overall average F1 score as well as higher F1 scores for most of the
AUs. Specifically, the proposed expression-assisted recognition
model achieves superior performance over the proposed method of
AU recognition through AU-relations, achieving a better average
F1 score by about 1% on the CK+ database and 2% on the BP4D
database. These results suggest that the expression labels, which
are only available during training, can capture more thoroughly
AU dependencies, and thus are beneficial for AU recognition.
We also find that the proposed expression-assisted AU recognition
method achieves marked improvements on AU1, AU2, AU4, AU5,
AU6, and AU23 on the CK+ database. These AUs are similar to
the AU combinations commonly seen for surprise and fear. The
improvements of AU6 and AU12 are more marked than the other
AUs on the SEMAINE database. AU6 and AU12 often appear
when happiness is expressed. Similarly, the improvements on the
AU4, AU15 and AU23 are marked on the BP4D database. These
AUs correspond to the AU combinations for anger. This pro-
vides further confirmation that the proposed expression-assisted

AU recognition method successfully captures the dependencies
between AUs and expressions, and effectively leverages such
dependencies for AU recognition.

We also conduct hypothesis testing to further validate the
superiority of the proposed methods. Specifically, 5× 2 cross-
validation paired t-test [39] are conducted to verify the improve-
ment of the proposed model enhanced by AU relations to images-
based method (i.e., SVM vs. Model) and the improvement of the
proposed model enhanced by AU relations and expression over
the image-based method or the proposed model enhanced by AU
relations (i.e., SVM vs. Exp and Model vs. Exp). As shown in
Table 3, most of the p-values for F1 score are less than 0.05. It
suggests that the improvement is significant for the proposed AU
recognition methods.

To show the effectiveness of the proposed LRBN in capturing
AU relations, we graphically illustrated the captured AU depen-
dencies in Fig. 8. As we discuss in Section 3, each of the latent
nodes is able to capture a specific pattern. This pattern is measured
by weights Wi j between the latent nodes and AUs. A larger weight
indicates a high probability of occurrence. A smaller weight is
indicative of a higher probability of absence. The figure shows
the first latent node, which encodes a pattern for a person who
is likely to simultaneously “raise brow,” “lower brow,” and “raise
lip,” but is probably not going to “dimple.” This likely represents
AU relations for a negative emotion like sadness, fear, or anger.
The second latent node encodes a pattern for a person who is
likely to “raise cheek,” “pull lip corner,” and “press lip,” but is less
likely to either “tighten lid” or “tighten lip.” This could represent
AU relations for a positive emotion, i.e., happiness. These learned
relations show that the proposed model is able to effectively
capture global AU relationships. Thus, proposed models obtain
better performance of AU recognition.

1 2 4 6 7 10 12 14 15 17 23 24

10

5

0

5

W

brow raiser
brow lowerer

upper lip raiser

dimpler

lip corner depressor

chin raiser

1 2 4 6 7 10 12 14 15 17 23 24

10

5

0

5

10

W

cheek raiser

lid tightener

lip corner puller

lip tightener

lip pressor

Fig. 8: Semantic relationship captured by two latent nodes of
LRBN for AU recognition

To analyze the limitations of the proposed method, we man-
ually check the misclassified samples. Take the BP4D database
as an example, AU7, AU10 and AU12 occur simultaneously
for a sample. The sample is predicted correctly by image-based
method, but two proposed methods predict that AU6, AU7, AU10
and AU12 occur simultaneously. We find that the ground-truth
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TABLE 2: F1 Score of AU occurrence recognition

Method AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU10 AU12 AU14 AU15 AU17 AU23 AU24 AU25 AU26 AU27 Avg.

CK+

Image-driven 0.84 0.87 0.75 0.80 0.76 0.63 0.94
-

0.86
-

0.88 0.70 0.45 0.96
-

0.89 0.79
Model-based 0.88 0.90 0.78 0.81 0.76 0.65 0.94 0.87 0.88 0.72 0.56 0.97 0.91 0.82
Expression 0.93 0.93 0.82 0.84 0.84 0.63 0.93 0.89 0.86 0.75 0.53 0.97 0.90 0.83

SEMAINE

Image-driven 0.73 0.74 0.56 0.37 0.64 0.56
-

0.66
-

0.33
-

0.88 0.63
-

0.61
Model-based 0.83 0.83 0.58 0.40 0.67 0.61 0.76 0.37 0.90 0.67 0.66
Expression 0.84 0.82 0.58 0.40 0.69 0.61 0.77 0.37 0.90 0.67 0.66

BP4D

Image-driven 0.29 0.21 0.50
-

0.84 0.85
-

0.88 0.92 0.69 0.36 0.65 0.37 0.59
-

0.60
Model-based 0.36 0.32 0.53 0.90 0.88 0.89 0.93 0.76 0.44 0.70 0.37 0.63 0.64
Expression 0.34 0.32 0.62 0.91 0.89 0.90 0.94 0.76 0.46 0.70 0.39 0.64 0.66

TABLE 3: p-values over average F1 score for AU recognition.

SVM vs. Model SVM vs. Exp Model vs. Exp

CK+ 1.46e-02 6.09e-05 1.96e-01
SEMAINE 2.31e-16 4.95e-17 1.61e-01
BP4D 2.24e-10 8.28e-13 1.70e-03

AU combination is a small probability event. Specifically, the
probability P(AU6= 0|AU7= 1,AU10= 1,AU12= 1) is less than
0.05. And given other AUs, the probability of AU6=1 is around
350 times that of AU6=0. Therefore, the AU combination is
predicted to a more likely combination by the proposed methods.
It suggests that proposed methods may ignore the small probability
event during exploiting the AU relations. In addition, the proposed
methods may not perform well on datasets that have very different
AU and expression relationships and biases from the training
dataset.

6.2.2 Experimental Results and Analysis on AU Intensity
Estimation

The results of the experiments on AU intensity estimation are
shown in Table 4. The table shows the following:

First, compared to the image-driven method employing SVM,
the proposed AU intensity estimation model leveraging AU re-
lations modeling achieves superior performance on the BP4D
database and the PAIN database. On the BP4D database, the pro-
posed model has an improved performance over the image-driven
method by about 7% over average PCC and 7% over average
ICC. In addition, the proposed model shows a 0.13 decrease in
average MSE compared to the image-driven method. On the PAIN
database, the proposed model achieves an improvement of 12%
over average PCC and 5% over average ICC in comparison to
the image-driven model. Besides, the proposed model shows a de-
crease of about 0.22 in average MSE when compared to the image-
driven method. Unlike image-driven method, which ignores AU
dependencies, the proposed AU intensity estimation through AU
relation modeling completely captures AU dependencies through
LRBN. The superiority of the proposed method over the image-
driven method suggests that the inherent AU dependencies are
crucial for AU intensity estimation.

Secondly, the proposed AU intensity estimation enhanced by
expressions outperforms the image-driven method as well as the
proposed AU intensity estimation model leveraging AU relations,

with higher PCC, ICC and lower MSE for most AUs. On the BP4D
database, the expression-assisted model achieves superior perfor-
mance over the AU-relation model by about 5% over average PCC
and 7% over average ICC, separately. In addition, the expression-
assisted model decreases the AU-relation model by about 0.11
in average MSE. On the PAIN database, the expression-assisted
model outperforms the AU-relation model by about 4% over
average PCC and 5% over average ICC, respectively. Besides, the
proposed model shows a decrease of about 0.08 for average MSE
when compared to the AU-relation model. All these improvements
demonstrate that AU intensity estimation can be further facilitated
through the semantic relationship between AUs and expressions.

Thirdly, we can observe that the proposed two AU intensity
estimation models have marked improvements for AU14 and
AU17 on the BP4D database. For image-driven method, the PCC
and ICC of the two AUs are lower than those of other three AUs.
As shown in Fig. 7(a), the distribution of AU14 and AU17 is more
imbalanced than others. Such imbalanced data distribution may
cause their worse performance in image-driven method. While the
proposed methods can successfully capture AU dependencies, and
leverage the captured AU dependencies to improve their perfor-
mances. On the PAIN database, the proposed two AU intensity
estimation models have marked improvements for AU9, i.e. nose
wrinkler, compared to image-driven method. Since we use feature
points as the features, it is no wonder that the image-driven
method cannot recognize AU9 well. AU9 is one of the primary
AUs in expressing pain expressions as indicated in the PSPI
score [33], PSPI = AU4 + max(AU6,AU7) + max(AU9,AU10) +
AU43. By capturing global AU dependencies and AU-expression
dependencies, the proposed AU intensity estimation models can
obtain marked improvement for AU9 recognition.

For AU intensity estimation experiments, we also conduct
the 5× 2 cross validation paired t-test. As shown in Table 5,
all of the p-values are less than 0.05 for PCC and ICC, and
most of the p-values are less than 0.05 for MSE. It illustrates
that the improvement is significant for the proposed AU intensity
estimation methods.

To show the effectiveness of the proposed LRBN in capturing
AU relations for AU intensity estimation, we graphically illus-
trated the captured AU dependencies in Fig. 9. The first latent
node encodes a pattern for a person who is likely to simultaneously
exercise the AUs for “brow lowerer,” “cheek raise,” “lid tightener,”
and “nose wrinkle,” which may represent AU relations for sharp
pain. The second latent node encodes the pattern for “lip corner
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TABLE 4: AU intensity estimation results

Method AU4 AU6 AU7 AU9 AU10 AU12 AU14 AU17 AU20 AU25 AU26 AU43 Avg.

BP4D

PCC
Image-driven

-
0.70

-
0.68 0.83 0.23 0.51

-
0.59

Model-based 0.73 0.71 0.85 0.43 0.58 0.66
Expression 0.76 0.71 0.86 0.53 0.71 0.71

ICC
Image-driven

-
0.70

-
0.68 0.83 0.23 0.51

-
0.59

Model-based 0.73 0.71 0.85 0.43 0.57 0.66
Expression 0.76 0.71 0.85 0.52 0.69 0.70

MSE
Image-driven

-
1.23

-
1.33 1.10 2.11 1.22

-
1.40

Mode-based 1.20 1.25 1.02 1.79 1.11 1.27
Expression 1.10 1.14 1.02 1.61 0.94 1.16

PAIN

PCC
Image-driven 0.60 0.64 0.60 0.29 0.70 0.70

-
0.36 0.60 0.64 0.69 0.58

Model-driven 0.69 0.84 0.47 0.66 0.79 0.74 0.64 0.59 0.89 0.71 0.70
Expression 0.77 0.88 0.63 0.69 0.82 0.86 0.56 0.69 0.69 0.77 0.74

ICC
Image-driven 0.58 0.63 0.58 0.29 0.70 0.69

-
0.22 0.60 0.64 0.65 0.61

Model-driven 0.63 0.82 0.46 0.52 0.75 0.71 0.62 0.54 0.88 0.67 0.66
Expression 0.75 0.87 0.63 0.61 0.81 0.86 0.49 0.65 0.68 0.76 0.71

MSE
Image-driven 0.48 1.34 1.41 0.53 0.21 1.29

-
0.30 0.96 0.78 0.08 0.74

Model-driven 0.37 0.64 1.15 0.24 0.15 1.19 0.27 0.87 0.25 0.11 0.52
Expression 0.28 0.46 1.09 0.21 0.12 0.60 0.21 0.70 0.62 0.11 0.44

TABLE 5: p-values over average PCC, ICC and MSE for AU
intensity estimation.

SVM vs. Model SVM vs. Exp Model vs. Exp

BP4D

PCC 1.36E-02 9.97E-08 2.21E-02
ICC 2.95E-04 1.59E-07 5.13E-04
MSE 1.61E-02 1.42E-02 8.77E-02

PAIN

PCC 1.40E-03 2.05E-05 1.91E-03
ICC 8.01E-05 1.47E-05 2.82E-02
MSE 5.32E-03 1.80E-03 3.00E-02

puller” and “lip part,” which may represent AU relations for
painless. These learned relations show that the proposed model
effectively captures the global AU dependencies among AU and
expression.
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Fig. 9: Semantic relationship captured by LRBN for AU intensity
estimation on the PAIN database.

6.2.3 Comparison with Related Works
To further demonstrate the superiority of the proposed AU recog-
nition method, we compare our proposed method to state-of-the-
art works leveraging AU relationships for AU recognition.

We compare our proposed method to MC-LVM [12], BN [17],
and HRBM+ [4] on the CK+ database. Since BN [12] and
HRBM+ [17] do not offer results from experiments on the SE-
MAINE database, we instead choose to compare our proposed
method to HRBM+ [4]. Most AU recognition works on the BP4D
database employed deep networks. Therefore, we opt to compare
our proposed method to four recent deep works: Wu et al. [5],
Li et al. [34], Chu et al. [35] and Bishay et al. [36]. Since the
experimental conditions of the deep works and ours are not exactly
the same, the comparisons are only for reference. The comparisons
to the related works on AU recognition are illustrated in Table 6.

TABLE 6: Comparison with related works over AU occurrence
recognition

Database Method F1 score

CK+

MC-LVM [12] 0.781
BN [17] 0.800

HRBM+ [4] 0.8244
Ours 0.83

SEMAINE
HRBM+ [4] 0.6079

Jiang et al. [40] 0.6083
Ours 0.66

BP4D

Wu et al. [5] 0.491
Li et al. [34] 0.559

Chu et al. [35] 0.532
Bishay et al. [36] 0.627

Ours 0.66

Furthermore, we validate the superiority of the proposed AU
intensity estimation method over recent state-of-the-art methods
leveraging AU relationships for AU intensity estimation. For the
BP4D database, we compare the proposed method with Valstar et
al. [41], Gudi et al. [42], Wang et al. [17] and Linh et al. [43].
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TABLE 7: Comparison with related works over AU intensity
estimation

Database Method PCC ICC MSE

BP4D

Valstar et al. [41] 0.554 0.592 1.401
CNN [42] 0.621 0.613 1.181
BN [17] 0.632 0.600 -
2DC [43] 0.66 0.95
Ours 0.71 0.70 1.16

PAIN

MLT+BN [19] 0.28 0.38 0.36
LT-all [22] - 0.23 0.60
COR-LIT [23] 0.33 0.37 1.10
cs-CORF [24] 0.617 - -
Ours 0.71 0.74 0.44

Valstar et al. [41] provided a baseline intensity estimation on the
BP4D database. As mentioned in Section 2, Wang et al. [17] used
BN to model AU dependencies and AU-expression dependencies.
Gudi et al. [42], and Linh et al. [43] are recent deep AU intensity
estimation works. For the PAIN database, our proposed method
is compared to MLT+BN [19], LT-all [22], COR-LIT [23] and cs-
CORF [24]. All of the compared work leveraged AU dependencies
for intensity estimation. The comparisons with related works of
AU intensity estimation are shown in Table 7.

Table 6 shows that the proposed AU recognition model en-
hanced by expressions achieves the best performance on every
tested database. The average F1 score for the proposed method
is about 4.9% higher than MC-LVM [12], 3.0% higher than
BN [17] and 0.6% higher than HRBM+ [4] for the CK+ database.
As mentioned in Section 2.1, MC-LVM [12] used constrains
to represent co-occurrence AU dependencies, BN [17] adopted
BN to capture pair wised AU dependencies, and HRBM+ [4]
employed RBM to model global AU dependencies and AU-
expression dependencies. Although all the compared works take
advantage of AU dependencies for AU recognition, their captured
AU dependencies are less thoroughly and faithfully than the
proposed method. Therefore, the proposed method achieves better
performance. On the SEMAINE database, the average F1 score of
proposed method is about 5.3% higher than [4] and 5.2% higher
than [40]. The superior performance of the proposed method to
HRBM+ further demonstrates the more powerful data representa-
tion ability of LRBN than other generative models, such as RBM.
The average F1 score of the proposed method is about 16.9%
higher than [5], 10.1% higher than [34], 12.8% higher than [35]
and 3.3% higher than [36] for the BP4D database. Although these
deep AU recognition works can learn better facial representations,
they do not capture AU dependencies from the label-level. These
results strongly suggest the superiority of proposed method. This
suggests that the proposed method is superior to other state-of-
the-art works.

Table 7 demonstrates that our proposed expression-assisted
AU intensity estimation method outperforms all related AU inten-
sity estimation works enhanced by AU dependencies. To be spe-
cific, on the BP4D database, the average PCC and ICC of proposed
method are about 7.8% and 10.0% higher than Wang et al. [17].
On the PAIN database, the proposed method outperforms all the
compared works with higher PCC and ICC as well as lower MSE,
except for MSE of MLT+BN [19]. Wang et al. [19] did not use
AU43, which does not have intensity annotation, but occurrence
state. While the proposed method recognized AU43 in addition
to estimate intensities of other 10 AUs as shown in Table 4. The
recognition of AU43 increases the average MSE. As mentioned

in Section 2, Wang et al. [19] adopted the constraints among
multiple tasks as representations of AU relations. Kaltwang et
al. [22], Walecki et al. [23] and Rudovic et al. [24] adopted
generative latent tree, conditional random field, and conditional
ordinal random field to capture AU dependencies respectively.
Wang et al. [17] adopted BN to model dependencies among
AU intensities and expressions. The better performance of the
proposed method in AU intensity estimations further demonstrates
the superiority of the LRBN in capturing AU dependencies over
state-of-the-art work.

Compared with current deep AU intensity estimation works,
the proposed work achieves better performance with higher ICC
for the BP4D database. Specifically, on the proposed method, the
average ICC is about 8.7% higher than CNN [42], and 4.0% higher
than 2DC [43]. Although the deep AU intensity estimation works
take advantage of the strength of deep network in representation
learning, they do not explicitly explore AU dependencies from
the label-level. Our superior performance further demonstrates the
importance of AU dependencies for intensity estimation.

6.3 Cross-database Experimental Results and Analy-
ses
6.3.1 Experimental Results and Analysis on AU Recogni-
tion
The cross-database experimental results of AU recognition are
shown in Table 8.

From Table 8, we can find that the proposed AU-relation
recognition method and the proposed expression-assisted AU
recognition method outperform the image-based method with
higher F1 scores in most cases. It demonstrates that the proposed
methods are able to effectively leverage the captured AU relations
for AU recognition. Compared Table 8 with Table 2, we can find
that the improvements of the proposed methods to the image-
based method for the cross-database experiments are smaller than
those for the within database experiments. Specifically, for within
database experiments, the proposed methods enhanced by AU
relations outperforms the image-based methods by about 2%-6%
on the three databases. But for the cross-database experiments, the
improvements are less than 3%. This may be due to the database
bias.

Furthermore, from Table 8, we find that when comparing
our proposed AU-relation enhanced model for AU recognition,
the proposed AU recognition method enhanced by expression
does not improve the performance of AU recognition effectively.
The reason may be that the expression induced method for the
three databases are totally different. Specifically, the seven basic
emotion categories are posed and they are labeled according to AU
combination on the CK+ database. For the SEMAINE database,
the seven expressions come from interactions between users and
agent. For the BP4D database, the spontaneous emotions are
elicited through eight designed emotion-induced tasks.

6.3.2 Experimental Results and Analysis on AU Intensity
Estimation
From Table 9, we find that the proposed AU intensity estimation
enhance by AU relations performs better than the image-based
method, with higher ICC, higher PCC and lower MSE in most
cases. The better performance demonstrates that the proposed
model successfully captures the anatomical relationships among
AUs for AU analyses. Due to the database biases, the improvement
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TABLE 8: Cross-database experimental results of AU recognition.

Method AU1 AU2 AU4 AU5 AU6 AU7 AU12 AU17 AU23 AU24 AU25 Avg.

BP4D → CK+

Image-driven 0.68 0.62 0.64
-

0.62 0.43 0.64 0.81 0.47 0.46
-

0.60
Model-based 0.73 0.63 0.64 0.63 0.42 0.65 0.83 0.51 0.46 0.61
Expression 0.68 0.62 0.70 0.64 0.42 0.75 0.83 0.51 0.47 0.63

BP4D → SEMAINE

Image-driven 0.67 0.70 0.53
-

0.57 0.46 0.61 0.40
-

0.56
Model-based 0.67 0.73 0.60 0.56 0.44 0.62 0.40 0.57
Expression 0.70 0.73 0.56 0.56 0.43 0.62 0.42 0.57

CK+ → SEMAINE

Image-driven 0.54 0.55 0.35 0.24 0.44 0.20 0.38 0.56
-

0.91 0.46
Model-based 0.58 0.59 0.40 0.24 0.48 0.20 0.45 0.54 0.89 0.49
Expression 0.54 0.58 0.40 0.24 0.48 0.20 0.44 0.56 0.91 0.48

SEMAINE → CK+

Image-driven 0.66 0.80 0.51 0.10 0.68 0.27 0.82 0.47
-

0.94 0.58
Model-based 0.69 0.80 0.51 0.10 0.70 0.30 0.76 0.50 0.94 0.59
Expression 0.74 0.82 0.53 0.10 0.69 0.32 0.71 0.48 0.94 0.59

TABLE 9: Cross-database experimental results of AU intensity
estimation.

Method AU6 AU10 AU12 Avg.

BP4D → PAIN

ICC Image-driven 0.36 0.06 0.38 0.26
Model-based 0.36 0.08 0.49 0.31

PCC Image-driven 0.38 0.21 0.40 0.33
Model-based 0.37 0.26 0.50 0.38

MSE Image-driven 2.87 6.37 2.81 4.02
Model-based 2.40 5.06 2.30 3.25

PAIN → BP4D

ICC Image-driven 0.39 0.02 0.15 0.19
Model-based 0.44 0.05 0.22 0.23

PCC Image-driven 0.51 0.10 0.19 0.27
Model-based 0.55 0.15 0.23 0.31

MSE Image-driven 2.20 7.75 3.22 4.39
Model-based 2.23 7.28 2.27 3.93

on cross-database experiments is smaller than that on within-
database experiments.

7 CONCLUSIONS
This paper proposes a novel approach for multiple AU recognition,
and a novel intensity estimation method for multiple AUs that
captures the global dependencies among action units. Hierarchical
models are employed with a hybrid Bayesian network. To be
specific, the upper two layers are an LRBN model capturing
global dependencies among the action units. The lower layers are
Bayesian networks. They connect ground-truth AU labels with
their respective measurements. The hierarchical Bayesian model
leverages the dependencies between expressions and AUs. It is
enhanced during training with facial expression labels to further
improve AU intensity estimation and recognition performance.
The results of our experiments on three benchmark databases
(for AU recognition) and two benchmark databases (for AU
intensity estimation) show that the proposed methods are able to
effectively capture relationships among AUs and between AUs

and expressions, thereby improving AU intensity estimation and
multiple AU recognition.
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