
 

Li Zhang1, 2, Guan Gui3, Senior Member, IEEE, Abdul Mateen Khattak1,4, Minjuan Wang1, 2, 

Wanlin Gao1, 2* and Jingdun Jia1* 
1Key Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China 
2College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China 
3Nanjing University of Posts and Telecommunications, Nanjing, 210003 China 
4Department of Horticulture, The University of Agriculture Peshawar, 25120, Pakistan  

 

*Corresponding author: Wanlin Gao (e-mail: wanlin_cau@163.com), Jingdun Jia (e-mail: jiajdun@most.cn) 

This work was supported by Project of Scientific Operating Expenses, Ministry of Education of China (2017PT19) and China Postdoctoral Science Foundation 

(2018M630222). All the mentioned support is gratefully acknowledged. 

ABSTRACT Effective and efficient fruit detection is considered crucial for designing automated robot (AuRo) for yield 

estimation, disease control, harvesting, sorting and grading. Several fruit detection schemes for designing AuRo have been 

developed during the last decades. However, conventional fruit detection methods are deficient in real-time response, accuracy 

and extensibility. This paper proposes an improved multi-task cascaded convolutional network (MTCNN) based intelligent 

fruit detection (InFD) method. This method has the capability to make the AuRo work in real-time and with high accuracy. 

Moreover, based on the relationship between the diversity samples of dataset and the parameters of neural networks evolution, 

this work presents an improved augmented method. A procedure that is based on image fusion to improve the detector 

performance. The experiment results demonstrated that the proposed detector performed immaculately, both in terms of 

accuracy and time-cost. Furthermore, the extensive experiment also demonstrated that the proposed technique has the capacity 

and a good portability to work with other akin objects conveniently. 

INDEX TERMS Fruit detection, real-time, cascaded convolutional networks, automated robot

I. INTRODUCTION 

Fruit detection for yield estimation, grade sorting, disease 

control and other applications in agricultural field have 

achieve intensive popularity over the past few decades [1-5]. 

Several systems have been deployed for automated 

harvesting robots, which have led to considerable 

improvement in the industry [6],[7]. Particularly, 

recognizing and classifying fruits according to their quality 

has been one of the most popular research fields attracting 

most of the farm enterprises. Fruit detection is undoubtedly 

the first and foremost parameter to be considered in order 

carry out more in-depth studies on the subject. Therefore, 

many researchers have made efforts for years to develop 

robust algorithms for fruit detection [8-10]. Although, the 

performance of fruit detection systems has been improved 

remarkably, they are still far from practical application. The 

basic difficulties in developing such fruit detection system 

are the uncertain and unrestrained environments of orchards. 

These include numerous challenging tasks, such as 

insufficient or over illumination, indistinguishable 

backgrounds, heavy occlusion by neighborhood fruits or 

foliage, low-resolutions, variation of pose and so on. 

Fruit detection can be considered a special type of object 

detection that has many similarities with face detection task 

[11-13]. Due to the advantage of high precision, cascaded 

convolutional networks (CCN) based face detection has 

acquired a remarkable breakthrough [14], [15]. Among these 

state-of-the-art methods, multi-task cascaded convolutional 

network (MTCNN) [16] is the most popular one due to its 

outstanding performance in accuracy and time-consumption. 

Although MTCNN has achieved great progress in face 

detection task, deploying this method directly for fruit 

detection task is not suitable. It is due to the design of 

MTCNN, that its architecture includes many specificity 

functions for face detection, which are not suitable for the 

task of fruit detection. Thus, there is a need to improve this 

MTCNN framework by removing customized functionality. 
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The absence of a unified benchmark is another great 

challenge for fruit detection. A sufficient amount of sample 

images plays an important role in deep learning based model 

training. In this research, we collected images from apple 

orchard by digital camera. Then we selected the suitable ones 

and labelled them to create a dataset. Creating a dataset 

manually is a tedious and time-consuming task. So we 

devised a new augmented method based on fusion algorithm. 

The motivation for this fusion method came from the 

principle that the generated new samples should be close to 

authentic images. Supplementary samples were created for 

diversity by adding fusion images that would help improve 

the final result of this detector. In order to evaluate the 

structure whether it could be applied to other kinds of objects 

conveniently, we trained the detector on two other fruits 

species (strawberry and orange) as well.  

To summarize, our contributions are as follows: 

1. We proposed a new architecture for fruit detection 

called Fruit-MTCNN (F-MTCNN) by improving the 

baseline model of MTCNN. And this detector has the 

attributes of high accuracy and less time-consumption.  

2. We proposed a novel augmented method called fusion 

augmentation (FA). We generate artificial images 

samples by adding negative patches from samples of 

dataset by random cropping that supplement the 

samples diversity.  

3. The proposed approach can be deployed to other kinds 

of objects conveniently with a small amount of training 

samples. 

The organization of the rest paper is arranged as follows. 

In Section II, we review prior related work in fruit detection. 

Section III, IV we introduce method used in this study. Our 

experiments in this research are shows in Section V. In 

Section VI, we analyze and discuss our results and present 

the conclusion of this work. 

II. RELATED WORK  

Automated harvesting robot is a potential solution for many 

challenges in agriculture such as the explosively increasing 

global old-age population, labor cost increase, increasing 

demand for of produce and so on. Identify and obtaining 

precise positions of fruits are the most important parts of the 

visual system for a harvesting robot. Due to this reason, fruits 

identification and detection has been extensively studied for 

years. Generally, these methods can be divided into three 

types by the technologies they employ. 

A. IMAGE PROCESSING 

Several image processing techologies are in use for fruit 

detection task [17-20]. For example, Aggelopoulou et al, [21] 

proposed an algorthim based on binary image technology for 

flower images of apple tree, and analyzed the correlation 

between yield and flower density. To segment branches from 

images, Ji et al. [22] converted RGB color space to I1I2I3 

and XYZ space by a transformation formula. Several 

classification techniques such as decision trees, K-nearest 

neighbor, and discriminant analysis image processing 

algorithms are used to choose appropriate wavelengths to 

classify images of codling moth infestation in apples [23]. 

To improve fruit detection, Bulanon et al. [24] proposed an 

image fusion method by obtaining thermal and visible 

images simultaneously. Moreover, the experiments on an 

orange canopy scene of orchard showed that this approach 

improved fruit detection compared to the one that only used 

thermal images. In general, these methods need to design a 

special algorithm for a specific task, and they are highly 

dependent upon the characteristics of the subject, which 

needs to be redesigned if there is a slight change in its 

condition. Therefore, the weaknesses in these methods 

hardly satisfy requirements of a farm manager.  

B. MACHINE LEARNING 

There are some machine learning based techologies for 

detection tasks, such as those reported by [25-30]. To detect 

and count immature citrus fruits, Lu et al. [9] extracted 

features of local binary pattern (LBP) and detected local 

intensity maxima around the immature fruits. Benalia et al. 

[31] developed a system to improve the quality control and 

sorting of dried fruits of fig (Ficus carica). These approaches 

employ computer vision techniques such as PLS-DA and 

PCA to analyze images and get better result ultimately. 

Borges et al. [32] also presented a classification system 

based on clustering. This technique was applied to classify 

the severity of bacterial spot in tomato filed. All these 

machine based learning methods greatly improved the 

detection performance. However, the shortcomings were that 

the features they used were extracted through experienced 

worker. In addition, the high performance achieves by these 

machine learning based methods was at the cost of high 

computational complexity. Therefore, there was a need to 

search for and find out some new procedures that would 

extract features automatically.  

C. DEEP LEARNING 

Over the past few years, deep neural networks procedures 

have made a considerable progress in many fields [33]. 

Wireless communication [34] [35], signal processing [36-

38], image classification [39], saliency detection [40-44]. 

Many approaches have been developed in the field of 

agriculture as well [45-[48]. Bargoti and Underwood, [49] 

presented an approach for fruit detection and counting using 

images taken in orchard. They used two feature learning 

algorithms i.e. multi-scale Multi-Layered Perceptrons and 

Convolutional Neural Networks (CNN), to segment the fruit 

from its background. Their final results showed the 

performance closer to the state-of-the-art perfection. Faster-

RCNN is one of the most advanced object detection methods, 

has provided good results in many detection tasks [50]. 

Recently, a Faster-RCNN framework approach was adopted 

for fruit detection for mango, almond and apple in orchards 

http://www.baidu.com/link?url=gOm_yz76NiwevfNs2LRrM1dL5IV11J7Q5Fz3HCf3q9-4fnqzQfq-W0gtPfbHEQKF5ch3lBDh9drxZWMpL_ZhZn12aAif1M7uCMyIfaZXmjdLDsPI9EjaT54FS1YmAHuH
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[51]. This method also showed that data augmentation can 

signify performance and reduce training images by more 

than two-folds. The final result presented that this approach 

accomplished a remarkable detection performance for apples 

and mangoes. Similarly, Sa et al. [52] also used Faster-

RCNN as a baseline fruit detector. The difference is they 

used imagery obtained from these two modalities i.e. Color 

and Near-Infrared. Thus they proposed a new approach by 

combining these two kinds of information earlier or later. 

This proposed multi-modal approach provides better 

performance compare to prior work. However, using Faster-

RCNN architecture for fruit detection directly is inadequate. 

This is because the Faster-RCNN designed detection task for 

many categories of objects with large scale change. Whereas, 

the visual system in agriculture needs to detect one or only a 

few kinds of fruit in general, and usually the fruit size does 

not change significantly. Thus, the application of Faster-

RCNN model for fruit detection task is complicated and 

time-consuming. Furthermore, providing a large amount of 

data is necessary to prevent over-fitting problems, because 

the structure of Faster-RCNN is of a deeper architecture that 

contains thirteen convolution layers. During the recent years, 

due to the rapid development of security, intelligent 

equipment and other applications, the detection accuracy has 

been highly improved.  

III. F-MTCNN DETECTOR 

A.  MOTIVATION 

There are many similarities between face detection and fruit 

detection, such as various poses, illuminations and 

occlusions. Nevertheless, there are some differences as well 

between both of them. Firstly, compared with facial features 

(eyes, nose, mouth), the information contained in fruit is 

usually relatively simple. In general, the fruit feature only 

includes the overall information (shape, color). Secondly, it 

is more likely to be confronted with heavy occlusion in the 

tasks of fruit detection. Thirdly, there is no uniform 

benchmark for fruit detection, and sufficient images 

acquisition and annotation are time-consuming tasks. Finally, 

real-time is one of the most important indices for fruit 

detection. This is because fruit detection model is generally 

applied to automatic equipment, such as picking robot, 

sorting robot, yield estimation robot and so on. So, for the 

design of fruit detection model, the above mentioned motives 

should be taken into consideration. Based on all that, we 

designed a fruit detector that can detect fruits with different 

pose, low resolution and occlusion. It also has the capability 

to count the number of fruits.  Fig. 1 shows a typical example 

of apple fruits appearing at different poses, sizes, distances, 

resolutions and occlusions. 

 

 

FIGURE 1. This is an example image for fruit detection, which contains 
pose, illumination, occlusion and scale variability. The rectangles with 
yellow line are the results using our methods.   

B.  THE OVERALL ARCHITECTURE 

We improved the architecture of MTCNN by omitting 

landmark loss of three cascaded networks for fruit detection 

task. The overall architecture of this model includes three 

stages as shown in Fig. 2. 

 

 

FIGURE 2. The overall architecture of the detection network. (top) the proposal network, (middle) the refine network, (bottom) the output network. 
“Conv” represents convolution and “MP” denotes max pooling. 

IT 8.1
Typewritten text
IEEE Journals & Magazines Volume: 7 , February 2019



 

The model first stage is the proposal network (PNet). This 

stage includes only three CNN layers to extract features and 

plays a key role for the proceeding two networks. After 

object classification and bounding box regression, this stage 

can obtain a high amount of candidate windows. To reduce 

the highly overlapped candidates, this stage exploits the non-

maximum suppression method before furnishing the final 

output. Then these candidate windows from the first stage 

become inputs for the second stage, called refine network 

(RNet). At this stage, a lot of false candidate windows from 

stage one are rejected, and the candidate bounding boxes are 

calibrated. The third one is the output network (ONet) stage. 

The inputs to this stage come from the output of RNet. The 

significance of this stage is that it further rejects false 

candidate windows and obtains precise regression bounding 

boxes. These three networks gradually identify fruits against 

their background and obtain precise bounding boxes of these 

objects. The change in size of this cascaded convolutional 

networks work can be considered as a pyramid architecture. 

C. LOSS FUNCTION 

The loss function for fruit detection consists of two parts viz. 

classification and regression. We train F-MTCNN to acquire 

the classification of fruit or non-fruit objects, and then use 

regression bounding box for the fruit location detection. 

1) FRUIT CLASSIFICATION 

The classification task is to distinguish fruits from the 

background, so it can be regarded as a two-class 

classification problem. Thus, we exploit cross-entropy loss 

for each sample 𝒙𝒊. 

 

𝑳𝒊
𝒄𝒍𝒔 = − (𝒚𝒊

𝒄𝒍𝒔 𝒍𝒐𝒈(𝒑𝒊) + (𝟏 − 𝒚𝒊
𝒄𝒍𝒔)(𝟏 − 𝒍𝒐𝒈(𝒑𝒊)))     (1) 

 

where 𝑦𝑖
𝑐𝑙𝑠 ∈ {0, 1} present ground-truth value, 𝑝𝑖  is the 

probability of the input sample 𝑥𝑖 , being a fruit. 

2) BOUNDING BOX REGRESSION 

The bounding box regression is to reduce the location 

information of each candidate window that is predicted by 

the detector to the nearest ground-truth. Here, each bounding 

box includes four coordinates i.e. left, top, height and width. 

So 

𝐿𝑖
𝑟𝑒𝑔

= ‖�̂�𝑖
𝑟𝑒𝑔

− 𝑦𝑖
𝑟𝑒𝑔

‖
2  

2
                         (2) 

Where �̂�𝑖
𝑟𝑒𝑔

 represents the bounding box predicted by the 

detector, and  𝑦𝑖
𝑟𝑒𝑔

 is the ground truth object location.  

D. TRAINING 

For each unit network, there are fruit, partially fruit and non-

fruit images for training. The overall loss function is as 

follows in Eq (3); 

C = Σ𝑖=1
𝑁 (𝜆1𝛼𝑖

𝑐𝑙𝑠𝐿𝑖
𝑐𝑙𝑠 + 𝜆2𝛼𝑖

𝑟𝑒𝑔
𝐿𝑖

𝑟𝑒𝑔
)            (3) 

Where 𝜶𝒊
𝒄𝒍𝒔 ∈ {𝟎, 𝟏} denotes the input sample type of 𝒙𝒊 . 

We used 𝝀𝟏 = 𝟏, 𝝀𝟐 = 𝟎. 𝟓 for PNet,  𝝀𝟏 = 𝟏, 𝝀𝟐 = 𝟎. 𝟔 

and  𝝀𝟏 = 𝟏, 𝝀𝟐 = 𝟎. 𝟕 for RNet and ONet respectively, to 

obtain more accurate bounding box.  

IV. DATASET DESCRIPTION 

A. IMAGE ACQUISITION 

In this work, nearly 1800 images were collected from Beijing, 

China, using Canon EOS 100D camera. Besides, some 316 

supplemental images from Internet and 511 from ImageNet 

(an open source database) [53]  were acquired for diversity 

of samples. Specifically, each of these images contained at 

least one object of fruit, and the maximum count of fruits per 

image was 28. All the objects were labelled manually as 

individual image datasets.  

B. TRAINING DATA 

After acquisition, we divided these image into three different 

types, i.e. negative, positive or partial fruit samples. This 

division was made on the basis of the Intersection-over-

Union (IoU) value with the ground truth, as shown in 

TABLE I. 

 
TABLE I 

IOU VALUE FOR THREE TYPE OF SAMPLES DIVISION  

Sample IoU 

Positive ≥ 0.7 

Partial ≥ 0.45 ∩ < 0.7 

Negative < 0.2 

C. FUSION AUGMENTATION  

Accumulating diverse samples for the model training can 

improve the performance of the detector. However, 

collecting a sufficient amount of samples is a tedious and 

time-consuming task, and it is not convenient to train the 

detector with a new category. Therefore, many studies have 

been conducted on augmentation methods such as rotation, 

translation, scaling, adding Noise and so on, and these 

methods have improved the performance to some extent as 

well. Through these methods, we found that the augmented 

samples were very close to the real environment and they 

improved the final performance as well. Motivated by this, 

we randomly extracted several sizes of negative patches 

from the original images. After that, we augmented our 

dataset by the fusion of positive or partial objects with one 

or several of small size negative patches. To the best of our 

knowledge, this was the first time proposed augmentation by 

fusion (FA). The flowchart can be seen in Fig. 3.

http://dict.youdao.com/w/supplementary/#keyfrom=E2Ctranslation
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FIGURE 3. The illustration of our proposed fusion augmentation method. 
 

In this article, we generated seven groups of Negative 

patches (NP) by randomly tailoring a fixed rectangle size 

from negative images of a dataset. The sizes of these seven 

NP groups are n × n  pixels n ∈ [1,9] 𝑎𝑛𝑑 𝑛 ∈ 𝑍 . And we 

augmented our dataset by the following Algorithm: 

Algorithm for FA:  

Input:𝑰𝒋, 𝒋 ∈ 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐨𝐫 𝐏𝐚𝐫𝐭 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐢𝐦𝐚𝐠𝐞 𝐬𝐚𝐦𝐩𝐥𝐞𝐬 

If:  the size of sample is 𝟏𝟐 × 𝟏𝟐 

     Count = random choose from 1 to 3 

     If 𝐂𝐨𝐮𝐧𝐭 ≡ 𝟏;   n = random choose size from 4 to 9 

     If 𝐂𝐨𝐮𝐧𝐭 ≡ 𝟐 𝐨𝐫 𝟑;  n = random choose size from 1 to 3 

Else if:  the size of sample is 𝟐𝟒 × 𝟐𝟒 

     Count = random choose from 1 to 6 

     If 𝐂𝐨𝐮𝐧𝐭 ≡ 𝟓 𝐨𝐫 𝟔;   n = random choose size from 1 to 3 

     If 𝐂𝐨𝐮𝐧𝐭 ≡ 𝟐 𝐨𝐫 𝟑;   n = random choose size from 4 to 6 

     If 𝐂𝐨𝐮𝐧𝐭 ≡ 𝟏;   n = random choose size from 7 to 9 

Else: 

     Count = random choose from 3 to 8 

     If 𝐂𝐨𝐮𝐧𝐭 ≡ 𝟔 𝐨𝐫 𝟕 𝐨𝐫 𝟖;   n = random choose size from 1 to 3 

     If 𝐂𝐨𝐮𝐧𝐭 ≡ 𝟒 𝐨𝐫 𝟓;   n = random choose size from 4 to 5 

     If 𝐂𝐨𝐮𝐧𝐭 ≡ 𝟑 ;   n = random choose size from 6 to 9 

 Output: Fusion image 𝑰𝒋𝒇 = ∑ 𝑰𝒋
𝒄𝒐𝒖𝒏𝒕
𝒌=𝟏 × 𝒑𝒏 𝒑𝒏 ∈ random choose one patch 

from the group of n  

V. EXPERIMENTS 

A. EVALUATION METHOD 

In this work, we utilized true positive rate (TPR) and false 

positive rate (FPR) as evaluation method for fruit detection. 

And the TPR, FPR can be computed as: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       FPR =  

𝐹𝑃

𝐹𝑃+𝐹𝑁
                  (4)  

where 𝑇𝑃 represents the number of correct detection 

results, 𝐹𝑃 the number false detections, and 𝐹𝑁 the number 

of missing objects. 

B. ENVIRONMENTS AND TRAINING 

We conducted our experiments through an Ubuntu 16.04 64-

bits PC, equipped with an Intel(R) Core (TM) i5-7500 CPU 

@ 3.20GHz processor having 8 GB-RAM. We used 

NVIDIA (R) GeForce GTX 1060 graphics card having 3GB 

of memory to reduce our training time. The implementation 

of this fruit detection architecture used TensorFlow, which is 

an open-sourced deep learning framework developed by 

Google Brain Team. Besides this, we utilized Python as the 

programming language to adapt to the structure of 

TensorFlow. The time cost for each network is shown in 

Table II. As obvious from the table, the time cost of training 

for this whole detection network is about 2.5 hours. This low 

time consuming detection network is conducive to be applied 

in other fields as well. 

 
TABLE II 

 TIME COST FOR EACH UNIT NETWORK 

Model  Epochs 
Time cost 

(minutes) 

PNet 16571 98 

RNet 6048 45 

ONet 3726 25 

Total 26345 168 

C. COMPARISON WITH AUGMENTED DATASET 

In order to know the function of FA in detail, we studied a 

fusion of the datasets of PNet, RNet and ONet in 

combination. The number of each unit patch of original 

dataset and that augmented by FA is presented in Table III.  

 
TABLE III  

A COMPOSITION OF THE ORIGINAL AND FUSION DATASET  

Name size Original Fusion 

Negative 

12x12 96337 -- 

24x24 96206 -- 

48x48 95071 -- 

Partial 

12x12 64682 90554 

24x24 16198 80990 

48x48 16365 65460 

Positive 

 

12x12 23003 92012 

24x24 5712 28560 

48x48 5532 33193 

 

To verify FA, we took our experimental datasets of all the 

three network units (PNet, RNet and ONet) and combined 

them with two other datasets, i.e. one was a fusion of these 

three networks (Fusion ALL), and the other was our original 

dataset. We trained the detector on these different datasets, 

and the True Positive Rate (TPR) result is shown in Fig. 4.  
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From the result we can observe that the model trained on 

all augmented networks by FA can improve true positive rate 

of 0.05 compared with the model trained on original dataset. 

While, only fusion of these networks got lower True Positive 

Rate when False positive samples were less than 100. This 

demonstrated that, if the detector is trained on one of these 

network units (PNet, RNet, ONet) individually, it will only 

affect part of result when used on a small number of false 

positive samples. However, with the increase in the number 

of false samples, these differences gradually decrease. 

 

 
FIGURE 4. The true positive rate for the detection model trained on 
different datasets. 

 

D. COMPARISON WITH DIFFERENT THRESHOLDS 

Threshold value plays a key role in getting the final results 

and how to choose an appropriate threshold is very crucial. 

So, we set the threshold equal to 0.5, 0.6, 0.7, 0.8 and 0.9, 

and verified the detection model on the same test dataset with 

the five groups having different thresholds. The number of 

true positive samples and false positive samples are shown 

in Fig. 5.  

 

 
FIGURE 5. The number of the true positive samples and false positive 
samples for the detection model with different threshold value 

 

From the figure, we can see that when the threshold value 

decreases from 0.9 to 0.5, the number of true positive 

samples increases, however, the number of false positive 

samples also increases. This result means that if the network 

threshold is weak, then there is a high probability of showing 

extra wrong objects and with a high threshold there is a 

chance of missing true objects. Therefore, we continued 

further experimentation on the TPR and FPR with the same 

conditions, as shown in Fig. 6 and Fig. 7. Fig. 6, reveals that 

the false positive rate was less than 0.2 when the threshold 

was 0.9. When the threshold decreased to 0.8, the false 

positive rate went above 0.5 sharply. Moreover, when the 

threshold value was 0.5, 0.6 or 0.7, the FPR raised to almost 

0.7. Further, Fig. 7 shows that the TPR was as high as 0.98 

when the threshold was 0.9. The other four groups threshold 

resulted in values below 0.9. After all the considerations, we 

adopted 0.9 as threshold value for our model. 

 

 
FIGURE 6. The false positive rate for the detection model with different 
threshold value 

 

 
FIGURE 7. The true positive rate for the detection model with different 
threshold value 
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E. COMPARISON AT DIFFERENT STATUSES 

It is known that when the objects are with minor disturbance 

or occlusion, the results detected by a model are improved 

and close to the real situation. However, the detection results 

will be abruptly affected when the object environment is 

complex or with heavily occlusion. To verify and analyze the 

performance of the model further, we divided the test images 

into three levels according to the complexity of the 

environment and/or the severity of occlusion. These three 

levels were easy, medium and hard, and we conducted 

further experiments on these three levels. Fig. 8, Fig. 9 and 

Fig. 10 show the results of the experiments at easy, medium 

and hard levels respectively. 

 

 

FIGURE 8. Some examples of apple detection results at the easy level. 
The yellow boxes are the results of our detector. 
 

Fig. 8, indicates that for the fruits with no or less occlusion, 

the detector provided high accuracy, whether that was for 

counting the total number or the precision in position of each 

object. Fig. 9 demonstrates that these samples of foliage or 

tree branches were taken at a medium occlusion. Here some 

of the detected objects images were taken with varying light 

intensities and some with changes in their scale and sizes. In 

this case, the detector also achieved high accuracy, both on 

account of the total number and precision in the position of 

each object. Similarly, we took images with heavy occlusion 

and/or strong variations in light intensity as the hard level 

images. We can observe from Fig. 10 that in such conditions, 

although the detector missed some objects and got some 

error too, it detected most of the objects correctly, overall. 

 
FIGURE 9. Some examples of apple detection results at the medium 
level. The yellow boxes are the results of our detector. 

 

 
FIGURE 10. Some examples of apple detection results at the hard level. 
The yellow boxes are the results of our detector. 
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F. COMPARISON WITH OTHER KINDS OF FRUITS 

In order to verify whether the detector can adapt to other 

fruits conveniently, we carried out experiments on 

strawberry and orange. We obtained the clear and usable 

images of the two fruit species from ImageNet dataset [53]. 

The number of images for both the fruit species can be found 

in each respective batch of Table IV. We trained our model 

on both the fruits images datasets.  
TABLE IV 

THE COMPOSITION OF STRAWBERRY AND ORANGE DATASET  

Name size Strawberry Orange 

Negative 

12x12 54418 107967 

24x24 54333 107846 

48x48 53873 107330 

Partial 

12x12 40345 84388 

24x24 10100 21033 

48x48 10144 21081 

Positive 

 

12x12 10791 26663 

24x24 2661 6715 

48x48 2711 6773 

 

We took some untrained images from ImageNet dataset 

[53] and also collected some from Images of Baidu as the 

test dataset. We trained our model on these two datasets. 

After training and validation some samples of strawberry and 

oranges are presented in Fig. 11 and Fig. 12. 

 

 
FIGURE 11. Some examples of strawberry detection results. The yellow 
boxes are the results of our detector and the blue boxes are the missing 
ones. 

 
FIGURE 12. Some examples of orange detection results. The yellow 
boxes are the results of our detector and the blue boxes are the missing 
ones. 

From above two figures, it is clear that most of the fruits 

can be correctly detected. This demonstrated that detector 

can be feasibly adapted for other kinds of fruits, though there 

is still room for perfection. 

G. TIME COST 

Time-cost is one of the very important indexes for a detector. 

This is because the automatic agricultural equipment needs 

to collect and analyze the image and make decision in real-

time. We conducted our experiment on twelve different 

groups of images. Each group included one hundred images. 

Then we tested our model on these twelve groups separately. 

The results of our experiment are presented in Fig. 13. 

 

 
FIGURE 13. Time cost for the detector tested on twelve different groups 
of images. 
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Here, we analyze and discuss the detection result 

presented in the previous section. As shown in Fig. 11 and 

Fig. 12, there are some false positive and false negative 

samples. The small amount of dataset is probably one reason 

for that. Although we proposed a novel augmented method 

to improve the performance, the small number of training 

data limits the final result. Our detection model is based on 

deep learning method, which need sufficient samples to 

adjust parameters of a network. The diversity of size for 

detection network is another reason. If there is a great gap 

between test set and training set, the detector may miss some 

objects. 

VI.  CONCLUSION 

In this study, we exploited a multi-task cascaded 

convolutional networks based detector for fruit detection. 

We chose apple for our study and collected more than one 

thousands of images from apple orchards and labeled them. 

Alongside this, we also added an appropriate amount of 

supplementary images from internet and ImageNet dataset to 

create a dataset. Furthermore, we proposed a novel 

augmented method called fusion augmentation. The 

comparative experiment results demonstrated that this 

augmented method can improve the final result. To verify 

whether the detector could be applied to other kinds of fruits 

as well, we selected strawberry and orange as two other test 

fruits. The dataset for training was obtained from ImageNet 

dataset, which contains hundreds of images. Our results 

showed that the detector can conveniently adapt to other 

kinds of fruit as well. Finally, we tested the detector on 

twelve groups of images with different resolutions. Each 

group had one hundred images. The average time cost of the 

detector was less than 80 seconds per one hundred images, 

which is very close to real-time response. 

VII. FUTURE WORK 

We find proposed multi-task cascaded convolutional 

networks based fruit detector have good performance of 

timeliness and accuracy to meet the requirements for the 

visual system of harvesting robot from the experimental 

results.  However, there is still a long distance for practical 

application and promotion of the harvesting robot. One of the 

most important task is to determine the order for all detected 

fruits. In other words, is to decide which object should be 

first considered for picking. Compared with picking 

manually, by human visual attention can solve this kind of 

problem effectively. On the basis of this study, we will focus 

on the study and mimic the human visual attention when 

viewing the scene by relevant studies such as visual saliency 

detection and semantic segmentation. 

In future, we will also study the characteristics of fruit 

deeply and design a more reasonable and effective network 

model for fruit recognition tasks. Besides this, improving 

and optimizing the accuracy of the detector is also an 

important task for the future. 
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