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ABSTRACT Uploading virtual reality (VR) video over cellular networks is expected to boom in the near
future, as general consumers could generate the high-quality VR videos with portable 360-degree cameras
and are willing to share with others. Consequently, the concerns of uplink bandwidth and delay arose for
current popular technology of tile-based VR video streaming, which requires high-quality video to transcode
into multiple representations for further adaptive streaming. Motivated by this, we proposed a novel scheme
for uplink delivery of tile-based VR video over cellular networks, in which encoding bit rate of each tile is
determined by the uplink resource allocation (RA), and the quality of content (QoC) contribution of each
tile and channel quality of user equipments (UEs) are jointly considered during RA. Moreover, the RA
problem is formulated as a frequency and time dependent non-deterministic polynomial (NP)-hard problem.
Furthermore, we propose three algorithms to explore solving the RA problem. The simulation results show
that the proposed approximate convex algorithm with low-complexity can achieve higher utility, i.e., higher
total quality of experience (QoE) for viewers.

INDEX TERMS VR video, quality of experience (QoE), resource allocation, cellular network, saliency,

utility optimization.

I. INTRODUCTION
In recent years, virtual reality (VR) technology has been
rapidly commercialized, forming a $209 billion market by
2022 as predicted in [1]. Thanks to the development of
VR display devices, the general public are able to experi-
ence VR capabilities on head-mounted displays (HMDs) such
as HTC VIVE and Oculus Rift. VR applications make use
of 360-degree panoramic or omnidirectional videos with high
resolution (higher than 4K) and high frame rate (60-90fps) in
order to create immersive experience to the viewer.

More and more people would like to generate VR videos
themselves and share with others using the popular
User-Generated Content (UGC) platforms such as Facebook
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and YouTube. With the help of portable 360-degree cameras
(e.g. GoPro OMNI and Samsung Gear 360, etc.), common
users can produce high-quality VR videos and upload them
to the UGC platform (uplink procedure); then, the UGC
platform disseminates them to other VR viewers through
applications like VR live broadcast (downlink procedure).
In these procedures, transmission latency of VR video is one
of the biggest issues.

Optimization of VR video transmission is actively
researched, but previous work mostly focused on the down-
link procedure [2], [3], and a common precondition of these
studies is transcoding VR videos into multiple representa-
tions (bit rates) on the cloud server, which enable adap-
tive video streaming by selecting a proper representation
of video content based the predicted viewport and avail-
able bandwidth. Among them, tile-based adaptive downlink
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streaming has been studied [4]-[7], and its basic idea is
that partitioning the panorama into independent tiles enables
quality and rate of content to be adapted locally according
to the desired viewport of viewers. As for the underlying
technology, some researchers explore the potential of down-
link delivering tile-based VR video over cellular network
(e.g. LTE) by applying the multicast [3], [8].

Up to now, few research on VR video uplink transmission
is reported. However, as popularity of VR video sharing,
the need of VR video uploading over cellular network is
increasing. Especially in delay sensitive scenarios, e.g., UGC
VR application, which calls for the use of cellular network as
strong support of mobility and collaboration.

However, optimization for uplink delivery of VR videos is
more challenging. First, it is not viable for a user terminal to
create multiple representations due to the lack of computing
and storage resources on board, especially for delay sensitive
scenarios, e.g., Live VR broadcast. Second, the uplink wire-
less bandwidth is more limited than the downlink. The last
but not the least, viewports of viewers seem more difficult to
be predicted than expected to implement adaptive downlink
streaming, and transcoding procedure can be ignored in delay
sensitive scenarios. Essentially, source coding rate of uplink
VR video largely determines QoE of viewers in client side.
Hence, producing uplink VR video with acceptable QoE
under limited uplink wireless resource is a big challenge.

Motivated by the challenges, in this work, we propose a
novel scheme with predefined tile-based encoding factors
dependent on expected QoC [9], involving uplink resource
allocation (RA) correspondingly. Tile-based encoding factors
impacting viewer’s QoE are first investigated. We further for-
mulate the problem as an NP-hard problem of uplink resource
assignment, and explore solving the optimization problem by
different approaches.

The remainder of the paper is organized as follows.
In Section II, we review the main contributions in literature
related to the presented research topic. Scenario and pre-
liminary are presented in Section III. Proposed scheme and
problem formulation are described in Section IV. Proposed
RA algorithms are presented in Section V. We evaluated
the proposed scheme and algorithms in Section VI. Finally,
Section VII concludes the paper.

Notations: The symbols and notations used in this paper
are summarized in Table 1.

Il. RELATED WORK
VR video content is captured from multiple cameras and
pre-stitched to a single 360-degree layout (i.e., spherical
video), then a key step of the encoding chain is to project
the spherical video onto the planar surface due to cur-
rent video encoders operate on two-dimensional rectangular
image. Equirectangular Projection (ERP) [2] and CubeMap
Projection (CMP) [10] are widely used projection schemes.
However, transmission full view of VR video requires high
bandwidth. Hence, viewport adaptive streaming is proposed
to save transmission bandwidth which can be classified into

TABLE 1. List of symbols.
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Quantity
Number of VR videos
Index of VR video
Number of tiles in VR video frame
Index of tiles in an VR video frame
Index of resource block
Number of resource blocks in one TTI
Index of TTI
Number of TTI in one Resource allocation Round
ile;,j | The j th tile of i th VR video
i Data rate of T'ile; ;
Utility function
The saliency value of T'ile; ;
The vertical position of T'le; ; in ERP frame
The QoC contribution weight of T'ile; ;
the coefficient of the utility model
the coefficient of the utility model
Z; j.k,n| The assignment indicator for n th RB in k th TTI is
assigned to T'ile; ; or not
Ti,j,n | The assignment indicator for n th RB is assigned to
T'ile;,; or not

ﬂxwzﬁmksg‘

B3

EYERE

eff The efficiency of one resource element with a specific
MCS
MCS | The modulation and coding scheme

CQI | The channel quality
C The capacity of one resource block with a specific MCS

two categories: asymmetric panorama-based streaming and
tile-based streaming. Truncated Pyramid Projection (TSP)
and Facebook’s offset cubemap [11] are the typical formats to
represent asymmetric panorama. According to the asymmet-
ric panorama scheme, a VR video is transformed and encoded
into multiple versions towards different perspectives. And a
viewer requests one certain version according to the viewer’s
orientation. However, such scheme produces high redun-
dancy of contents (e.g., Facebook creates 150 versions for one
VR video) which leads storage and bandwidth waste.

Nonetheless, tile-based streaming has proven more
effective [10]—[12]. Each tile in a VR video is encoded into
multiple representations (i.e. bit rate), while tiles viewed
by the viewer are streamed in high bit rate and the rest of
tiles are streamed in low bit rate, which results in more
flexible and bandwidth saving for VR video streaming.
Thus tile-based adaptive streaming has been extensively
researched. Bao ef al. [3] proposed a scheme to optimize
the network bandwidth using motion-prediction-based mul-
ticast to serve concurrent viewers. Rondao et al. [6] studied
the effective of tile-based streaming for omnidirectional
video, their experiments showed that the tiling grid between
8 x 8 and 16 x 16 can achieve best peak signal-to-noise
ratio (PSNR) performance measured on the viewport for
fixed bandwidth. Graf er al. [12] proposed a novel tile-based
adaptive streaming method over HTTP/2. However, those
study mainly focused on optimizing for the transmission part
between content server and viewers.

In terms of VR video uplink transmission, especially for
VR video uplink transmission over the cellular network, rel-
atively fewer have been researched. However, regular video
uplink optimization has been studied due to the popularity of
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mobile video streaming. Essaili ef al. [13] presented a LTE
Uplink scheduling scheme for the heterogeneous Quality
of Service (QoS) requirements of multimedia traffics, they
formulated it as a Joint Time and Frequency Domain Packet
Scheduling problem, and they proposed three algorithms to
solve the problem. Zhang, et al. [14] presented a systematic
resource allocation and transmission optimization approach
for the simultaneous streaming of user-generated video con-
tent, distributed QoE-based optimization is performed by
each video producer in the terminal to decide on which video
layers to transmit and their respective rates. While a greedy
resource allocation algorithm was introduced to determine the
resource share ratio of each user at each schedule round that
maximizes the overall QoE. In [15], surveillance video uplink
streaming over wireless network was investigated. In order to
solve the global video uplink streaming problem, they studied
both the long-term bit-rate assignment for video encoding and
the real-time packet scheduling in each OFDMA frame under
the real-time constraint. Recently, Quality-of-Content (QoC)
based joint source and channel coding in a mobile surveil-
lance cloud has been investigated in [9]. They aimed at opti-
mizing the wireless resource usage so that more accurate
human detections can be performed at the cloud server based
on the received videos. Based on the previous work, we inves-
tigate the optimization of VR video uplink delivery over the
cellular network in this paper, which provides an applicable
solution for uplink transmission of bandwidth-intensive and
delay-sensitive VR video.

Ill. SCENARIO AND PRELIMINARY

A. SCENARIO

According to Fig. 1, consider a LTE system consisting of
a single eNodeB and several user equipments (UEs). Those
UEs produce VR videos simultaneously and transmit them
to the UGC platform by competing for the available uplink
bandwidth. In this paper, we specifically optimize the gener-
ation and transmission of VR videos through the bottleneck
from UEs to eNodeB, aiming at maximizing the total QoE of
all viewers.

FIGURE 1. Sharing of user generated VR video.

A VR video must be encoded into variable bit rate depen-
dent on the sub-region or tile, since a UE cannot afford
to produce various representations. Actually, the spherical
video captured by a 360 degree camera is first projected into
equirectangular projection (ERP) frame [11]. The ERP has
advantages of being both rectangular and straightforward to

visualize and manipulate using an existing video encoder.
After the projection, the ERP VR video sequence is encoded
into tiled video by encoder, e.g., High Efficiency Video Cod-
ing (HEVC). The encoding bit rate of each tile are related
with its contribution weight of QoC, the significance of this
tile.

B. SALIENCY AND ERP
Saliency represents the degree of a spatial region in video
frames attracting attention of viewers. Tiles with high
saliency scores represent regions with attractive texture or
object for viewers. And saliency detection can be applied
according to [17]. Furthermore, distortions happened in a
more salient region result in a much lower subjective quality
scores of a perceived video, i.e., viewers are more eager
toward more clear details (i.e., higher bit rate) on the salient
region. Reference [18] reported that the viewer’s fixation in
a 360-degree video is more preferred on the salient regions.
Hence in principle, the salient tiles need higher bit rate.
However, the salient region usually does not get more bits
in ERP. On the contrary, after ERP, the polar regions with
lower saliency get more video pixels, whereas the equatorial
region gets relatively fewer [19]. Consequently, tiles in the
polar part cost higher bit rate compared with these in the
equatorial part when applying the 2D encoder (e.g., HEVC).
On the other hand, spherical videos usually have their impor-
tant content distributed around the equatorial regions (the
middle), where need less distortion (i.e., higher bit rate) is
desired on these tiles, and vice versa. Fig. 2 and Fig. 3 show
a saliency map of ERP VR video frame by applying the

FIGURE 2. An ERP VR video frame with 4 x 8 tiles.

FIGURE 3. Saliency map of an ERP VR video frame with 4 x 8 tiles.
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FIGURE 4. Proposed scheme for VR video uplinking.

saliency detection [17]. Thus, we are motivated to introduce
the equatorial weight of each tile according to its vertical
position in the 2D plane, resulting in higher bit rates at
encoding the tiles near the equatorial part.

C. UTILITY MODEL

The QoE metric for video networking quality evaluation is
commonly used as (1) defined [16], where the U denotes
the utility of the video, R denotes the video rate, Rys repre-
sents the maximum video rate the Dynamic Adaptive Stream-
ing over HTTP (DASH) server could provide, and R €
{R1, ..., Ry}, where Ry and Ry, represents the minimum and
maximum rate, respectively

alog(BR/Ry), R>0

UR) =
®) 0, R=0

ey

Inspired by the QoE metric for downlink adaptive stream-
ing, QoC metric for VR video uploading is introduced in
this paper, which reflects the perceived quality of VR video
after source coding. Note that during the uplink procedure
only one representation will be generated for each tile accord-
ing to our proposed scheme in this paper. And traditional
transcoding procedure can be adopted if needed for further
downlink adaptive streaming. Therefore, the encoding bit rate
of uploading video provides a base version for downlink
streaming (i.e., from UGC platform to viewers).

We define a weighted utility of a tile as in (1), modified
from [16], where i and j represents the index of video and
index of tile in one video, respectively; o and 8 denotes the
coefficients of utility model, respectively. R; ; denotes the bit
rate of the j-th tile in the i-th video, R, represents the prede-
fined maximum rate of a tile, and w; j denotes the contribution
weight of a tile to the QoC. The utility of i-th video U is the
sum of the utilities of all tiles in this video, defined in (3),

where J is the number of tiles.

Uij = Wij-a log(IBRi,j/Rmax)’ Rij>0 @
07 Ri,j =0
J
Ui =2 Ui 3)
j

According to the aforementioned analysis, the QoC contri-
bution of each tile is related with its saliency and its vertical
position. Naturally, the QoC contribution weight of a tile,
w; j, s defined as the product of them, denoted by S; j and V; j,
respectively, as in (4).

wij=S8;jVij 4

IV. SCHEME AND PROBLEM FORMULATION

A. SCHEME

The proposed scheme is illustrated in Fig. 4, in which encod-
ing bit rate of each VR video tile is determined by uplink
resource allocation. Only one representation for each video
tile is generated in UEs side, and transmitted to the UGC
platform then directly streamed to viewers. Moreover, quality
of Content (QoC) contribution of each tile and channel quality
of user equipments (UEs) are jointly considered during RA.
Specifically, ERP video is encoded into tile bit streams by
HEVC encoder, where the target tile bit rate is assigned based
on the RA results of eNodeB. Tile bit streams with the same
weight are stored to one buffer waiting for transmission. The
buffer status report (BSR) is sent to eNodeB through the
priority handing module.

The weight of each tile is defined as the product of detected
saliency and its vertical position, and calculated within every
RA round by the tile-based weight calculation module. The
calculated weight is then quantized into the range of Quality
of Service (QoS) class identifier(QCI) (i.e., from 1 to 9). And
the quantized weight is reported to the RA scheduler as the
QCI. At the eNodeB, the RA scheduler extracts the quantized
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weight for performing RA in our scheme instead of ensuring
bearer traffic’s QoS. Finally, the RA scheduler allocates the
resources jointly according to the feedback Channel Qual-
ity Indicator (CQI) of UEs, the quantized QoC contribution
weight of each tile and the BSR.

For all UEs and all video tiles, the RA module considers the
channel quality of each UE as well as the QoC contribution
weight of each tile within each RA interval. The objective
is to maximize the total utility of VR videos by assigning
optimal encoding bit rate for each tile. Finally, traditional
transcoding procedure can be ignored and only one version
of tile-based variable bit rate for each video is transmitted
to the UGC platform and can be immediately streamed to
viewers. Note that the encoding bit rate of uploading video
provides a base version for downlink streaming. Therefore,
optimal encoding bit rate of uploading VR video could lead to
total QoE of viewers maximized. Although different viewers
have different quality expectation on different area of the
full video, the total QoE is maximized since different tiles
have different optimal quality. Essentially, the key of the
whole process is to find an optimal RA scheme for the uplink
transmission by optimizing total utility.

B. PROBLEM FORMULATION

Note that UEs traffic is heterogeneous (e.g., VR, voice, other
video). However, VR video is much more bandwidth consum-
ing, which ought to be separated from common video by slic-
ing. The network slicing (NS) allows the independent usage
of a part of network resources by a group of mobile terminals
with special requirements [24], [25]. For simplicity, wireless
resource for VR traffic is assumed as a predefined value by
network slicing. In this case, All VR videos generated by
UEs need to be transmitted simultaneously through the LTE
uplink by competing these resources, and each VR video is
encoded as the format of tiles, while each tile can be encoded
and decoded independently. In addition, the target tile bit rate
is determined by the resource allocation of RA module of
LTE uplink. Thus, the original problem can be formulated as
find the optimal tile rate for each tile to maximize the total
utility, while the total tile bit rates are under constraint of
available bandwidth. And the original problem can be written
as follows:

Porig
1 J
max » |} Uijwiy, Rij)
1] i ]
s.t.Rij€(R1,....,Ruw), Viel,Vjed (5)
ZZRiJSBW, Viel, Vjel (6)
i

where (5) denotes each tile can only have a single prede-
fined bit rate representation, i.e., R;; € ({Ri,..., Rpax},
and (6) denotes the total tile bit rates should be smaller than
the total available bandwidth(i.e. BW).

In the LTE, the Single-Carrier Frequency-Division Mul-
tiple Access (SC-FDMA) is used for the uplink as the
multiple-access scheme because of its advantage to pro-
vide a low peak-to-average power ratio (PAPR). A resource
block (RB) is the smallest unit of the uplink, where each
RB’s channel quality is measured on the UE side and then
fed back to the eNodeB to decide which Modulation and
Coding Scheme (MCS) to be used. Moreover, the resource
of each 1ms LTE uplink frame (a transmission time interval,
TTI) can be divided into N RBs. The capacity of one RB
is determined by the chosen MCS, which can be expressed
as (7), where N, S’SB and Nglfm represent the number of subcar-
riers and symbols of one RB respectively. And eff denotes
the efficiency of resource element (RE), which is determined
by the chosen MCS. The MCS selection is according to CQI,
and the mapping relation is given in Table.2 [21].

C =N« N, = eff (MCS) (7)

TABLE 2. CQI-MCS mapping.

CQI index Modulation Code Efficiency
rate(x 1024)
1 QPSK 78 0.1523
2 QPSK 120 0.2344
3 QPSK 193 0.3770
4 QPSK 308 0.6016
5 QPSK 449 0.8770
6 QPSK 602 1.1758
6 QPSK 602 1.1758
7 16QAM 378 1.4766
8 16QAM 490 1.9141
9 16QAM 616 2.4063
10 64QAM 466 2.7305
11 64QAM 567 3.3223
12 64QAM 666 3.9023
13 64QAM 772 4.5234
14 64QAM 873 5.1152
15 64QAM 948 5.5547

Normally, the RA module assigned the RBs to UEs at
every TTIs. However, for the simplicity of system model,
we define an RA round as 1 second (i.e., 1000 TTIs), and
the CQI of UEs are unchanged over the RBs in an RA
round. In addition, RBs are allocated to video tiles instead
of UEs, because tiles even in same VR video still competing
uplink resources for higher encoding bit rate. All tiles in one
VR video has the same channel quality as the associated UE,
which is shown as (8). UE has the same channel quality over
RBs from different TTIs with the same » index (i.e., CQI of
UEs are unchanged over the RBs in an RA round), which is
presented as (9).

CQli,l,k,n = CQIi,m,k,n:CQIi,k,nv Vl, me -I(l 7& m) (8)
COILijpn = COLijgn Yp, qe K(p #q) )

Thus the assignment problem can be illustrated in Fig. 5,
where in each RA round, we need to find an optimal RBs
allocation scheme that maximizes the total utility. We asso-
ciate the set of variables {x;j, .| = 1,2,...,1,j =
,2,....J,k = 1,2,...,K,n = 1,2,...,N)} to the
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FIGURE 5. Demonstration of the assignment problem.

assignment problem, where x; j ¢, = 1if the RB natk-th TTI
is assigned to the j-th tile of i-th video, and x;jt, = 0
otherwise. Each tile rate can be written as (10)

K N
Rij= Z in,j,k,nci,j,k,n (10)
k n

Consequently, the assignment problem Py, can be for-
mulated as follows:

Pssign -
I J K N
max Z Z Ui jwij, Z in,j,k,nci,j‘k,n)
Xijk,n ; ; P "
st. Y Y xijkn=1, VkeK, VneN (11)
i
Xijkn €10,1}, Viel, VjeJ,VkeK, VneN

(12)

Equations (11) and (12) imply that a certain RB can only
be allocated to one tile. Note that Py, is similar to a
0-1 Knapsack Problem (KP) along time, which is proved as
an NP problem and 0-1 KP can be solved by a dynamic
programming (DP) algorithm [22]. However, Pggsign is also
a frequency and time dependent assignment problem, which
is prohibitively difficult to apply DP algorithm. Furthermore,
the problem is also a large-scale problem (the possible vari-
able selection space can be (I  J)VK ), which is hard to find
an optimal solution. Nevertheless, we notice that UE has the
same channel quality over RBs from different TTIs with the
same n index, which indicates that we can transform the RA
problem into a frequency domain formulation. Particularly,
at each »n index, there are K RBs with same capacity as the
n-th RB. So the Py, can be rewritten as follows:

Ptrans :
1 NK
max O Uijwis Y xijnCijon)
ijn -
i n
st. Y Y xijn=1 VneNK (13)
i

Xijn €101}, Viel,Vjel, Vne NK (14)

FIGURE 6. Demonstration of the transformed problem.

The Pigns can be demonstrated in Fig. 6. Note that the
Pirans 1s also a KP problem, where the total number of RBs
is NK . Nonetheless, the Py, is still hard to be solved by the
DP algorithm, due to nonlinear logarithmic function of sum
of allocated bit rates in our formulation, the function leads
former step decision also affect next step decision. In addition
to large scale of the problem. All of these leads to DP is
prohibitively difficult to solve the problem.

V. RESOURCE ALLOCATION ALGORITHM
Based on the aforementioned analysis, three algorithms are
proposed to explore solving the problem in following part:

A. GREEDY ALGORITHM
The greedy algorithm solves the Py, by greedily allocating
RBs to the tiles to iteratively maximize the total utility gain.
Particularly, the algorithm divides the KP problem into NK
sub-problems, and each sub-problem can be described as
selecting the best tile which maximizes the utility gain for
each RB. The utility gain is defined as the incremental of total
utility once the RB is assigned to a specific tile.

However, as one tile’s utility is determined by the sum of
allocated bit rates (i.e., capacities of allocated RBs to the tile),
each sub-problem solution is dependent on the solution of
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a former sub-problem, so that the algorithm finds the best
allocation for each sub-problem based on the solution of
former sub-problem step by step. The algorithm iteratively
executes the RA process until all RBs are allocated. The
overall algorithm is summarized in Algorithm 1.

Algorithm 1 Greedy Algorithm
1: ©: the set of RBs already assigned and the indication
2: : the set of RBs need to assign
3: initial ® = @and 2 =0
4: while Q! = @ do

5 forn=1,n<NK;n++do

6 t=0u=0,v=0;

7: // find the optimal allocation for each RB
8 if n € Q then

9: fori=1;i<I;i++do

10: forj=1;j<J;j++do

11: Xijn < argmaxUq ;i j)
12: t=nmu=iv=j

13: end for

14: end for

15: end if

16: end for

17: update ® < O + {(t; u, v)}; Q < Q — {r}
18: end while

B. TWO-STAGE ALGORITHM

Note that the objective is to find the optimal RA result for
each tile of all competing VR videos, then each tile is encoded
at the target bit rate to maximize the defined utility. Inspired
by this, we also propose a naive algorithm called two-stage
algorithm, where RBs are allocated based on cardinality of
UEs instead of tiles in the first stage, then each tile in the
corresponding UE is allocated proportionally based on total
allocated bit rates of the UE according to the QoC contribu-
tion weight of this tile.

Since the two-stage algorithm assigns RBs to UEs instead
of tiles in the first stage, the objective utility defined in (2)
is no longer suitable for the RBs assignment problem, thus
Proportional Fairness (PF) utility function is applied in the
first stage of algorithm, which corresponds to the common PF
objective [10]. Furthermore, the greedy algorithm is applied
for the RBs assignment. After the stage 1, each tile in a
specific UE is allocated a bit rate proportionally according
to the weight of tiles, which is given in (15), where R;/FF is
the achieved bit rate of the i-th UE in stage 1. The overall
algorithm is summarized in Algorithm 2.

Wi
Rij =R L (15)

D wij
7

C. ONE-SHOT ALGORITHM

One-shot algorithm is proposed to solve the problem by an
approximate convex method. The basic idea is to relax the
optimization problem within one RBs group of one TTI, and

Algorithm 2 Two-Stage Algorithm
1: // Stage 1
2: forn=1;n<NK;n+ +do
3: fori=1;i<I;i++do
4 apply the greedy algorithm with the proportional
fairness utility function to find the optimal x;‘n;
end for
: end for
cfori=1;i<I;i+ +do
calculate the Rf F according to the x
NK
9: RPF,' = Zx*i,nci,n
10: end for
11: // Stage 2
12: fori=1;i<I;i+ + do
13: forj=1;j<J;j++do

*
in’

® R

14: obtain the target bit rate R; j,
15: Rij =R - S
ij i " Wiy
J
16: end for
17: end for

Algorithm 3 One-Shot Algorithm
1. forn=1;n<N;n++do
2 fori=1;i<I;i++do
3: forj=1;j<J;j++do
4: solve the problem Psn0: by the CVX to get

*

Xijon

5: end for

6: end for

7: end for

8: fork=1,k<K;k++do

9: forn=1;n<N;n++do

10: fori=1;i<I;i++do

11: forj=1;<J;j++do

12: if > xijkn < round(Kx}; ) then
k

13: Xijkn = 1

14: else

15: Xijkn = 0

16: end if

17: end for

18: end for

19: end for

20: end for

accordingly allocate RBs in the total RA Round by mak-
ing use of solution of the relaxed convex sub-problem. The
overall algorithm is summarized in Algorithm 3. Specifically,
we find that the sub-problem P10 can be solved using
the optimization toolbox by relaxing the constraint of x; .
By relaxing the x; j , from binary to continuous value between
0 and 1, Pypeshor can be solved by applying the CVX [13].
Note that the optimal solution for P,esno: indicates that a
proportion of each RB need to be assigned to each tile if one
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RB can be allocated to multiple tiles or UEs. Unfortunately,
one RB can only be allocated to one tile or one UE in
practice. However, note that one RA round in our transformed
problem Py,y;s, each RB with the same index in different RB
groups has same capacity, which means there are K RBs with
the same capacity in the n index.

Inspired by this, in order to find the optimal solution
of Pyrans, we convert the optimal solution of problem P yyesh0r
by multiplying K to turn the proportional fraction to an
integer number (accurately, rounding the result number after
multiplication). Consequently, the obtained numbers of RBs
with same n index should be the number of RBs assigned to
each tile.

Poneshor
I J N
max Y > Ui jwij. Y xijnCijon)
L].n l ] n

s.t. ZZX"’/»” =1, VmneN (16)
i

0<xiju<l, Viel YjeJ,VneN (17

FIGURE 7. An example of the RB assignment for P, esp0t -

Fig. 7 shows an example of RB assignment in one RB
group. In order to demonstrate the strategy clearly, let us
assume that there are 10 RBs in one RB group, and three
tiles need to allocate resource in each RA round. As we relax
assignment indicator as decimal between 0 and 1, the assign-
ment indicator could be obtained from optimization solution
of Pyueshor- While the indicator for the Tilel on RB 1 in the
RB group is 0.1, thus 0.1 x K RBs with index of 1 in the RA
round are assigned to the Tilel according to the Algorithm 3,
and the rest of 100 and 800 RBs with index of 1 are assigned
to the Tile2 and Tile3, respectively (Actually, total 1000 RBs
with index 1 in the time domain should be allocated in one
RA round).

Hence, the RBs allocation of an RA round could follow
this assignment strategy. We can see that the complexity of
one-shot algorithm is dramatically reduced with the help of
optimization toolbox CVX by relaxing the binary constraint
of assignment indicator.

Note that proposed three algorithms could not guarantee
the global optimality of solutions, since they are all approxi-
mate solutions. The greedy algorithm solves the problem by
finding optimal solutions of the NX sub-problems step-by-
step, however these solutions are local optimal. The two-stage
algorithm allocates RBs to UEs instead of tiles, while it

reduces the complexity of algorithm. Since QoC contribution
weight of tiles are only considered after the RA in stage one,
which means that even the tile bit rate allocation in the stage
two is optimal, it still fails to jointly optimize the target utility
according to the channel quality and QoC contribution weight
of tile at the same time.

The one-shot algorithm obtains the solution by convert-
ing the optimal fraction solution of problem Pgeshor With a
relaxed assignment indicator, which may also leads the local
optimal solution. However, the strategy of one-shot algorithm
is easy to implement, which also dramatically reduces the
complexity of algorithm. Meanwhile the solution of one-shot
algorithm is empirically shown to be close to the greedy
algorithm solution in Simulation Section. Overall, one-shot
algorithm is a promising solution with low complexity.

VI. SIMULATIONS
In this section, we conduct plenty simulations to evaluate the
performance of our proposed solutions for the problem.

A. SETUP

Nine uncompressed 360-degree video sequences: Aca-
demicBuilding (Videol), Runner (Video2), StudyRoom
(Video3), Sward (Video4), SiyuanGate (Video5), SouthGate
(Video6), SouthGateNight (Video7), BridgNight (Video8),
BasketballCourt (Video9) from the STJU immersive video
sequence Dataset [27]are used for evaluations. 240 frames of
each video sequence are extracted for the simulations. The
open-source HEVC encoder Kvazaar [28] is applied as video
encoder; the frame rate and GoP for all the 360 degree videos
are set as 25 fps and 8, respectively. In addition, we adopt the
4 x 8 tiling scheme in this paper.

For LTE RA module part, the simulations are conducted
based on MATLAB. ITU pedestrian B fast fading model
and the COST231 Hata propagation model for micro-cell
environment [29] are adopted. In addition, lognormal shad-
owing with 8 dB standard deviation is implemented, where
the available uplink bandwidth for VR video transmission
is set as 2.5 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz,
respectively, so that the corresponding number of RBs in each
TTI are 12, 25, 50, 75, 100, respectively.

In this work, in addition to three aforementioned RA algo-
rithms in Section III, we also implemented the proportional
fair (PF) [24] algorithm without weighting (PFww) for per-
formance comparison, which are summarized as follows:

Greedy algorithm: it greedily allocates the RBs one by
one to the tile which brings maximum utility gain in order to
achieve the maximum total utilities.

Two-stage algorithm: The RBs assignment is based on
cardinality of UEs instead of tiles in the first stage, then
each tiles of the corresponding UE is allocated the bit rate
proportionally according to the weight of tiles.

One-shot algorithm: it allocates RBs according to the
converted the optimal integer solution of the problem P50 -
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PF without weight(PFww) algorithm: it applies a similar
strategy of greedy algorithm, however without considering
the weight of tiles during the RA.

The coefficients of utility model «, 8 are empirically set
as 0.1 and 1000, respectively.

B. RESULTS

Fig. 8 shows the total utilities achieved by four algorithms
with different available bandwidth in case of four UEs in the
system. Note that the total utilities increase as more wireless
resources are reserved, since higher source coding rate for
VR video tiles are achieved with more allocated resources.
Fig. 8 also shows that proposed one-shot and greedy algo-
rithms achieve at least 17% more system utilities than that
obtained by the PFww algorithm, and at least 15% more
system utilities than that obtained by the two-stage algo-
rithm. The greedy algorithm performs slightly better than the
one-shot algorithm, whereas the one-shot algorithm has less
complexity than the greedy algorithm, which will be analyzed
in the complexity analysis part.
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FIGURE 8. The total utilities of system with different available bandwidth.
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FIGURE 9. The total utilities of system with different UEs.

Fig. 9 shows the trend of system utilities with different
RA algorithms as the number of UEs changes under 10 MHz

available bandwidth. According to Fig. 9, achieved utilities
of all algorithms are increasing as the number of UEs in
system increases. However, the increase scope slowed as the
number of UEs reaches to a certain value. This infers that
some tiles are allocated with small amount of resources when
considerable UEs are competing for the limited resources.
Particularly, utilities with the PFww algorithm performs the
worst, since not enough resource is allocated the tiles with
high weights. The greedy algorithm performs slightly better
than the one-shot algorithm, whereas the two-stage algorithm
performs much worse than the greedy and one-shot algo-
rithms, since it allocates the resource by dividing the problem
into two-stages instead of considering the channel quality and
tile weights collectively.

Furthermore, we applied VW-utility (viewport-weighted-
utility) to measure the real viewer’s QoE objectively during
the VR video watching. A viewer’s VW-utility is defined
as sum of the tiles’ utilities in the viewport, which can be
obtained with the help of field of viewport (FOV) tracker.
Similar strategy to measure the viewer’s QoE is also applied
in [30]. Four VR videos (Videol-Video4)(i.e., four UEs in the
simulation generate the videos respectively for uploading) are
selected for evaluation of the VW-utilities, which are encoded
according to different RA algorithms with 10 MHz available
bandwidth respectively. Eventually each of video is encoded
into four different versions, so that 16 encoded videos
are totally generated. The viewers watch those VR videos
through the HMD, the eye tracking module aGlass [31] is
integrated with the HMD for FOV tracking. The VW-utility
is calculated according to FOV tracking data and the corre-
sponding tiles’ utilities in the viewport, which is used to eval-
uate the performance of proposed RA schemes and PFww,
respectively.
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FIGURE 10. CDF of VW-utilities for VR videol.

Fig. 10-13 show the CDF(cumulative distribution function)
of VW-utilities for each VR video with 10 MHz available
bandwidth. We can see clearly that the greedy and one-shot
algorithms perform better than the two-stage and PFww algo-
rithms, and the VW-utilities of the greedy and one-shot algo-
rithms are improved by 26.4% and 25.2% compared to the
PFww algorithm, respectively, and are increased by 12.6%
and 12.1% compared to the two-stage algorithm, respectively.
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Note that the saliency of content of Video3 (indoor study
room) and Video4 (outdoor sward) are more dispersed in the
ERP frames than the Videol and Video2, and the viewers’
attention for one VR video frame may also dispersed, thus
the tile weight would not affect the RA results dominantly.
Consequently, the VW-utilities for Video3 and Video4 show
that the greedy and one-shot algorithms perform slightly
better than the PFww, and the saliency impact for RA will
be studied more carefully in our future work.

Finally, complexities of proposed algorithms and PFww
are analyzed. Complexity of the greedy algorithm is in order
of number of total tiles power of number of total RBs.
Since each RB would have to associate with a specific tile
according to the greedy algorithm, and the complexity is

exponential increased as the number of UEs and tile grid
increases. Complexity of the two-stage algorithm is order of
number of total RBs power of number of total UEs. One-shot
algorithm’s complexity is order of number of total tiles power
of number of RBs in one TTI. Note that the complexity is
exponential increased as the number of total tiles, however the
complexity is dramatically reduced compares to the greedy
algorithm since number of RBs for optimization is only in
terms of one TTI. PPww adopts a similar strategy as the
greedy algorithm, which search the optimal assignment for
each RB without considering the weight of tile during the RA,
and the search space for each RB is in order of number of total
tiles. Therefore, complexity of PPww algorithm is in order of
number of total tiles power of number of total RBs.

TABLE 3. Comparisons of complexities.

Algorithm Complexity CPU time(sec)
Greedy O((IN)NE) 5.78
Twostage O((N)NE) 0.36
Oneshot o((In)N) 0.67
PFww O((IT)NE) 4.95

Table.3 shows the comparisons of complexities. CPU time
is also measured using Matlab when there are 100 available
RBs in one TTI (i.e., 20 MHz available bandwidth) and
4-different videos with 4 x 8 tiles competing for the available
resources. The greedy algorithm and PFww algorithm take
long time to complete the optimization since the large-scale
of problem. The two-stage algorithm takes shortest time to
obtain the solution, however with worse achieved utility.
The one-shot algorithm can complete the optimization much
faster than greedy algorithm, and with comparable utility.

Overall, the proposed scheme could significantly improve
QoE by optimizing uplink resource allocation for VR video
delivery over cellular network, especially for delay sensitive
scenarios, (e.g., live UGC VR broadcast). And proposed
approximate convex algorithm (i.e., one-shot algorithm) is a
promising RA solution with low complexity and comparable
performance.

VIi. CONCLUSION

This paper studies the optimization of uplink resource alloca-
tion for VR video transmission over cellular network, which
is very important in future live UGC VR applications. We pro-
posed a novel uplink transmission scheme, based on this,
tile-based video encoding is adopted, while the encoding bit
rate of tiles are determined by the RA module of LTE uplink.
Three RA algorithms are proposed to explore solving the RA
problem to maximize the total utility of VR videos under the
limited available bandwidth. The simulation shows that the
proposed one-shot algorithm with low complexity performs
comparably with the greedy algorithm with high complexity,
and the results also verify that the proposed scheme and
algorithms could significantly improve the QoE.
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