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Abstract—In this paper, we study a generalized framework
that combines the three major techniques for 5G communica-
tion systems such as the multi-user multi-input multi-output
(MuMIMO) techniques for spectral efficiency enhancement, the
cognitive radio (CR) techniques for spectrum sharing, and the
simultaneous wireless information and power transfer (SWIPT)
techniques for convenient power supplies, which is called a
MuMIMO-CR-SWIPT network. In this system, we have one
base-station that simultaneously supports multiple information
decoding (ID) and energy harvesting users under a condition that
interference power to the primary ID (P-ID) receivers stays below
a certain threshold. With this scenario, our goal is to design an
optimal precoder that maximizes the sum-utility cost function
for the ID users while satisfying the transmit power constraint
at the BS, the energy requirement at each EH user, and the
interference power constraint at each P-ID user. As we consider
a general sum-utility cost function that puts together different
target utilities in a general MuMIMO-CR-SWIPT environment,
the previous works for each of the MuMIMO, CR, and SWIPT
systems are casted as particular solutions of our framework. The
problem has been considered to be challenging, since the weighted
minimum mean-squared error problem transformation no longer
resolves the non-convexity of the original problem. In this paper,
we settle such an issue by demonstrating that the WMMSE
transformation guarantees zero-duality gap between the primal
and dual problems. Based on the observation, we attain the optimal
precoder by solving the dual problem through the sub-gradient
ellipsoid method. We also propose a simplified algorithm for the
case of a single ID user, which is shown to achieve the globally
optimum. Finally, we demonstrate the optimality and efficiency of
the proposed algorithms through numerical simulation results.

Index Terms—Cognitive radio (CR), multiuser (MIMO),
SWIPT, sum utility maximization, weighted MMSE.
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I. INTRODUCTION

R ECENTLY, cognitive radio (CR) technologies have been
developed as a promising solution for efficient spectrum

usage. It was shown that even when the licensed primary users
are active for transmission or reception, the unlicensed sec-
ondary users are still able to share the spectrum opportunisti-
cally with the active primary users by utilizing multiple transmit
antennas and properly designing its transmit spatial spectrum.
The fundamental limit of such a network was studied in [1].
More feasible approaches have also been discussed in [2]–[4]
and references therein to provide linear precoders that maximize
the weighted sum-rate (WSE) or minimize the minimum mean-
squared error (MMSE) of the secondary users by imposing con-
straints on the interference power at the primary receivers.

In the meantime, the idea of energy harvesting (EH) has re-
cently been introduced to provide convenient and sustainable
energy supplies. In particular, considering the information car-
rying radio frequency (RF) signals as a new energy source for
the EH, simultaneous wireless information and power transfer
(SWIPT) techniques have garnered a lot of interest. Recently,
new advances in hardware technologies have enabled power to
be transferred and harvested efficiently over a distance [5], [6].
However, appropriate precoder designs based on multi-input
multi-output (MIMO) antennas are still essential to fully exploit
the advantages of the SWIPT by concurrently maximizing the
spectral efficiency for the information decoding (ID) users and
the amount of harvested energy for the EH users. From this
viewpoint, various precoding techniques have been investigated
in multi-user SWIPT environments [7]–[17].

Zhang and Ho [7] considered a two-user broadcasting channel
(a single ID and a single EH) in terms of maximizing the in-
formation rate to the ID user under a single EH constraint. The
result was then re-interpreted in [8]–[10] with respect to the
weighted MMSE (WMMSE) criterion, and more generalized
and efficient solutions were provided. Xu et al. [11] solved a
transmit power minimization problem under multiple signal-to-
noise ratio (SNR) and EH constraints for the ID and EH users,
respectively. However, all the users were restricted to having
a single antenna. To take into account the general multi-user
MIMO (MuMIMO) SWIPT environment where all ID and EH
users are equipped with multiple antennas, Rubio et al. [12]
proposed a precoder design based on the multi-objective cost
function to overcome the non-convex problem of the transmit co-
variance matrices in multi-stream MuMIMO SWIPT networks.
However, high computational complexity is still an issue, be-
cause a string of semi-definite programming (SDP) problems
should be solved for each filter update during the iterative algo-
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Fig. 1. Schematic diagram for the proposed MuMIMO-CR-SWIPT networks.

rithm. In [13]–[15], the security issue has been addressed for the
beamforming designs in the multi-antenna SWIPT networks.

In the SWIPT networks, it is often required to achieve the
high received signal power to satisfy the energy requirement
of each EH user, which may also incur strong interference to
other nearby users and networks that utilize the same spectrum.
Therefore, a practical SWIPT system should come with a proper
interference management technique. To address such an issue,
an efficient beamforming scheme has been developed in [18] to
control the interference power to the primary networks in the
CR-SWIPT topology. However, the study was limited to a single
antenna environment with a single ID user.

In this paper, we investigate the optimal precoder designs in
a general MuMIMO-CR-SWIPT network, where one secondary
base-station (S-BS) supports multiple secondary ID (S-ID) and
multiple secondary EH (S-EH) users all having multiple anten-
nas by utilizing the licensed spectrum assigned to the primary
ID (P-ID) users as shown in Fig. 1. We model our transmitter de-
sign as a unified framework for sum-utility maximization in the
MuMIMO-CR-SWIPT systems, in which the previous studies in
[7], [8], [9], [11], [12], and [18] are shown to be particular solu-
tions of the proposed framework. The sum-utility maximization
problem has initially been proposed in [19] to address different
types of cost functions, such as the WSR, proportional fairness
(PF), and harmonic mean rate (HMR) at once in the conventional
MuMIMO systems. However, it remains unclear whether such
existing solutions are applicable to the general MuMIMO-CR-
SWIPT networks, because the WMMSE transformation tech-
niques in [19] no longer resolve the non-convexity of the original
problem.

A main difference point of our study from the aforementioned
previous works is that we treat a general sum-utility maximiza-
tion problem in general MuMIMO-CR-SWIPT systems, where
the transmit power constraint at the S-BS, the interference power
constraint at each P-ID user, and the EH constraint at each EH-
user are simultaneously satisfied. Although the previous work
in [18] also considers the CR-SWIPT topology, it is confined
to the single receive antenna scenarios with a single S-ID user,
which results in an easy-to-solve convex problem. In contrast,
our problem is generally non-convex, and thus more challeng-
ing to solve. Note that the conventional SDP approach as in [12]
is not directly applicable to our problem due to the non-linear
utility cost functions.

The contribution of the paper is summarized as follows.
1) In Section III, first, we propose an optimal energy trans-

mission scheme to maximize the amount of energy

harvested at the S-EH users under the CR constraints.
We show that the rank-1 transmission is optimal for max-
imizing the weighted sum of harvested energy regardless
of the number of EH and CR constraints. Then, we de-
velop an efficient algorithm to find the optimal energy
beam vector based on the subgradient ellipsoid method.
This scheme enables us to identify a feasible range of the
energy thresholds for the subsequent precoder designs.

2) In Section IV, we propose an optimal precoder design for
general sum-utility maximization in the MuMIMO-CR-
SWIPT networks. First, we mathematically demonstrate
that the WMMSE problem transformation gives rise to a
strong duality between the primal and its dual problems in
terms of the precoding matrix. Based on the observation,
we propose an efficient algorithm to find an optimal pre-
coder by adopting the ellipsoid and alternating optimiza-
tion methods in its inner and outer iterations, respectively.
The proposed algorithm converges at least to a locally
optimal point, and thus can be made arbitrarily close to
the global optimum with the aid of multiple initial points.
A modified algorithm is also introduced to address the
zero-interference constraints to the primary users.

3) In Section V, we provide a simplified algorithm that
achieves a globally optimal solution considering a spe-
cial case of the S-BS supporting one S-ID user at a time in
a time division multiple access (TDMA) manner, which is
called single user MIMO (SuMIMO) CR SWIPT. Unfor-
tunately, the problem is still non-convex. To resolve the
problem, we first determine an optimal precoder structure
through the Lagrange dual analysis. Then, we propose an
efficient algorithm to find the remaining dual variables
based on the subgradient ellipsoid method. We show that
the proposed solution finds a globally optimal point with-
out the aid of the alternating optimization and the multiple
initial points, and thus is efficient. The resulting solution
is also exploited as a useful outerbound of the MuMIMO-
CR-SWIPT system by presuming that the multiple S-ID
users act like a single macro user with ideal multiuser
cooperation.

4) In Section VI, we provide an in-depth discussion on the
proposed designs from the practical implementation per-
spectives, such as the required channel state information
(CSI) at each node, the channel estimation procedure, and
the computational complexity.

5) Finally, in Section VII, we offer extensive simulation re-
sults to demonstrate the efficiency of the proposed designs.
We first confirm that the proposed SuMIMO design attains
the global optimum. Then, we verify the optimality of the
MuMIMO design by observing that the performance ap-
proaches its SuMIMO outerbound with the aid of multiple
initial points. One interesting observation is that the op-
timal point is achievable with only a few initial points in
the low-to-medium SNR region, although a larger number
of initial points may be still needed as SNR grows high.
Obviously, the proposed MuMIMO design based on the
WSR utility achieves the best WSR performance. How-
ever, the PF and HMR designs may be preferred over the
WSR design in terms of the rate balancing among the
S-ID users.

Notations: Throughout the paper, boldface upper and
lowercase letters denote matrices and vectors, respectively.
The superscripts (·)T and (·)H stand for the transpose and
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Hermitian-transpose operations, respectively. We use E[·],
det(·), and Tr(·) to denote the expectation, determinant, and trace
operations, respectively. A notation blkdiag{A1 , . . . ,AK } rep-
resents a blockwise diagonal matrix with matrices A1 , . . . ,AK .
For a matrix A, we define δmax(A), δmin(A), (A)+ , and
∇f(A) as the largest eigenvalue, the smallest eigenvalue, the
element-wise max(·, 0) operation, and the gradient of f(·) at A,
respectively. Also, we define

[{Ai}K
i=1

]
= [A1 , . . . ,AK ] as a

matrix consisting of Ai’s from i = 1 to K. We define IN as an
N × N identity matrix.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a general MuMIMO-CR-
SWIPT network where an unlicensed S-BS with M antennas
supports KI S-ID users and KE S-EH users by sharing the
licensed spectrum assigned to the KP P-ID users such that the
performance degradation of each active primary link is within a
tolerable margin. It is generally assumed that each of the S-ID,
S-EH, and P-ID users has NI , NE , and NP number of antennas,
respectively. Here, we assume that M is sufficiently large such
that M > KP NP to circumvent a feasibility issue for the zero-
interference conditions as will be described in more detail in
Section IV-C.

Define x = [xT
1 , . . . ,xT

KI
]T ∼ CN (0, IKI NI

) and n =
[nT

1 , . . . ,nT
KI

]T ∼ CN (0, σ2
nIKI NI

) as the baseband signal vec-
tors for the data and noise associated with the S-ID users, respec-
tively. Then, considering the narrow-band flat fading channels,
the received signal vector y = [yT

1 , . . . ,yT
KI

]T ∈ CKI NI for KI

S-ID users can be expressed as

y = HFx + n (1)

where H ∈ CKI NI ×M and F ∈ CM ×KI NI denote the channel
and the precoding matrices from the S-BS to the S-ID users,
respectively. Specifically, we have

H =
[
{HT

k}KI

k=1

]T
and F =

[
{Fk}KI

k=1

]

where Hk ∈ CNI ×M and Fk ∈ CM ×NI represent the channel
and precoding matrices from the S-BS to the kth S-ID user,
respectively. Thus, the received signal at the kth S-ID yk can be
rephrased by

yk = HkFkxk +
KI∑

m=1,m �=k

HkFmxm + nk ,

which leads to the information rate Rk to the kth S-ID user as

Rk = log det (FH
k HH

k R−1
n,kHkFk + INI

) (2)

where Rn,k �
∑

m �=k HkFmFH
mHH

k + σ2
nINI

denotes the ef-
fective noise covariance matrix. For simplicity, here, we ignored
the interference from the primary transmitter to the S-ID users,
but the result can be applied to more general cases. For nota-
tional convenience, we also define a stacked noise covariance
as Rn � blkdiag[Rn,1 , . . . ,Rn,KI

].
Define the downlink channel matrices from the S-BS to

the ith S-EH and the jth P-ID users as Gi ∈ CNE ×M and
Tj ∈ CNP ×M , respectively. Then, by employing the conven-
tional linear EH model in [7], the amount of energy that
can be harvested per unit time at the ith EH-user is quan-
tified as ρ‖GiF‖2

F = ρTr(FHGH
i GiF) where 0 < ρ < 1 rep-

resents the RF-to-energy conversion efficiency. For ease of
presentation, we set ρ = 1 unless stated otherwise. Similarly,

one can define the total interference power at the jth P-ID user
as ‖TjF‖2

F = Tr(FHTH
j TjF) [4].

We consider the quasi-static fading environment, where the
channel matrices are approximately constant over a few trans-
mission blocks. Then, considering the time division duplex
(TDD) scheme, the S-BS obtains the CSI of all links utiliz-
ing the uplink reference signals from the users, while each S-ID
user obtains its own CSI by leveraging the downlink training
from the S-BS. Then, we can formulate a precoder design prob-
lem for sum-utility maximization in the MuMIMO-CR-SWIPT
networks as

(P-1) max
F

KI∑

k=1

Uk (Rk )

s.t. CBS : Tr
(
FHF

) ≤ PT

CEH : Tr
(
FHGH

i GiF
) ≥ Eth,i for i = 1, . . . ,KE

CCR : Tr
(
FHTH

j TjF
) ≤ Ith,j for j = 1, . . . ,KP

where CBS denotes the transmit power constraint at the S-BS and
CEH and CCR represent individual harvested energy and interfer-
ence constraints for the S-EH and P-ID users, respectively. Here,
Eth,i and Ith,j refer to the target energy level at the ith S-EH user
and the target interference level at the jth P-ID user, respectively.
Uk (·) indicates a utility function that is for example given by
Uk (Rk ) = αkRk , Uk (Rk ) = log Rk , and Uk (Rk ) = −R−1

k for
the WSR, PF, and HMR, respectively. Note that (P-1) is gener-
ally non-convex, and thus is difficult to solve in its current form.
Throughout the paper, we assume that the S-BS solves (P-1)
with global perfect CSIs of {Hk ,Gi ,Tj ∀k, i, j}. More de-
tails about the required CSIs at each node and the correspond-
ing channel acquisition procedure will be discussed later in
Section VI.

III. ACHIEVABLE ENERGY REGION

When the EH requirements at the S-EH users grow too high,
the system may become infeasible due to limited transmit power
at the S-BS. Therefore, it is important to check whether the sys-
tem is feasible or not before solving the problem in (P-1). In this
section, we formulate an weighted sum harvested energy max-
imization problem in the CR-SWIPT topology to identify the
Pareto optimal boundary points of the achievable energy region
in (P-1) and provide an efficient algorithm to find a solution.

Let us set wi ≥ 0 as an weight factor for the harvested
energy at the ith EH user such that

∑KE

i=1 wi = 1. Then, the
weighted sum harvested energy maximization problem can be
formulated as

(P-2) min
S
0

−
KE∑

i=1

wiTr
(
GiSGH

i

)

s.t. Tr
(
S
) ≤ PT

Tr
(
TjSTH

j

) ≤ Ith,j ∀j.

The above problem is convex, for which the strong duality
holds. Here, we have relaxed a constraint S = FFH, but one
may recognize from the following proposition that a precoding
matrix that is given in the form F = [f 0M ×(KI NI −1) ] can
achieve the optimal value of (P-2). According to the weight
factors wi’s, the resulting solution identifies each Pareto
optimal boundary point of the achievable energy region.
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TABLE I
ALGORITHM FOR SOLVING (P-3)

Proposition 1: With the assumption that M > KP NP , the
optimum in (P-2) can be achieved by a rank-1 matrix S having
full transmit power Tr(S) = PT .

Proof: First, by contradiction, let us presume that the
optimum of (P-2) occurs at a point where Tr(S) < PT . De-
fine an aggregated P-ID user channels T = [{TT

j }KP
j=1]

T. Then,

for M > KP NP , we can find a matrix Q ∈ CM ×(M −KP NP )

to meet TQ = 0. Therefore, any matrix S′ in the form of
S′ = S + cQQH with a constant c > 0 such that Tr(S′) = PT

achieves a greater amount of energy than S without violating
all the constraints in (P-2), which contradicts to our previous
presumption. Therefore, Tr(S) = PT is always optimal.

In the meantime, let us consider the Lagrangian as

LP 2 = −
KE∑

i=1

wiTr(GiSGH
i ) + ν(Tr(S) − PT ) − Tr(ΨS)

+
KP∑

j=1

μj

(
Tr(TjSTH

j ) − Ith,j

)
(3)

where ν ≥ 0, μj ≥ 0, and Ψ ∈ CM ×M 
 0 denote the dual
variables corresponding to the S-BS power constraint, the jth
CR constraint, and the semi-definite constraint, i.e., S 
 0,
respectively.

Then, from the KKT conditions, we have

Ψ = νIM − P 
 0 and ΨS = 0 (4)

where P �
∑KE

i=1 wiGH
i Gi −

∑
j μjTH

j Tj . From the former
condition in (4), we have ν ≥ δmax(P). However, the latter
condition, i.e., ΨS = 0, only holds for ν = δmax(P) because
otherwise Ψ becomes a full-rank matrix for which there exists
no S �= 0 that satisfies ΨS = 0. Therefore, we can conclude
that ν = δmax(P) is optimal, which implies that the optimal S
occurs at a point where all column vectors of S are aligned with
the eigenvector corresponding to δmax(P). �

The result in Proposition 1 enables us to find a solution of
(P-2) without solving the complicated SDP problem. Specifi-
cally, let us define u =

[{μj}KP
j=1

]
. Then, by leveraging (3) and

(4), we can formulate a simple dual problem of (P-2) as

(P-3) sup
u
0

g(u)

where g(u) � infS
0 LP 2 = −δmax(P)PT − ∑KP

j=1 μj Ith,j ,
which is easily solved via the subgradient ellipsoid method
[21], for which it can be shown that the subgradient of g(u)
at a point u is given by {−‖Tjp‖2 + Ith,j}KP

j=1 [22]. Here,
p denotes the eigenvector of P corresponding to δmax(P).
After we find the dual optimal u, the primary optimal pre-
coding matrix F = [f 0M ×(KI NI −1) ] is computed such that
(δmax(P)IM − P)f = 0 with ‖f‖2 = PT from Proposition 1.
The algorithm is summarized in Table I.

IV. PROPOSED MUMIMO-CR-SWIPT PRECODER DESIGNS

In this section, we provide an efficient optimization algo-
rithm to solve the sum-utility maximization problem in (P-1)
for general MuMIMO-CR-SWIPT networks.

A. WMMSE Problem Reformulation

First, we transform (P-1) to an equivalent WMMSE problem
that is relatively easy to solve. Let us define Lk ∈ CNI ×NI

and ŷk = Lkyk as the linear receiver and the final observation
at the kth S-ID user, respectively. Then, one can compute the
MSE matrix as

Ck � E
[
(γ−1 ŷk − xk )(γ−1 ŷk − xk )H

]

= γ−2Lk

(
HkFkFH

k HH
k + Rn,k

)
LH

k

− γ−1LkHkFk − γ−1FH
k HH

k LH
k + INI

(5)

where a new variable γ > 0 enables us to obtain an efficient
algorithm.

For convenience, let us set F = γF̄ for unknown F̄. Then, by
introducing an weight matrix Wk ∈ CNI ×NI , we can reformu-
late (P-1) to an equivalent WMMSE problem as

(P-4) inf
γ ,F̄ ,{W k ,Lk ,∀k}

KI∑

k=1

{
Tr(WkCk ) + ek (Wk )

}

s.t. C̄BS : Tr
(
F̄HF̄

) ≤ γ−2PT ,

C̄EH : Tr
(
F̄HGH

i GiF̄
) ≥ γ−2Eth,i ∀i

C̄CR : Tr
(
F̄HTH

j Tj F̄
) ≤ γ−2Ith,j ∀j

where ek (Wk ) � ηk (Γk (Wk )) − Tr(WT
kΓk (Wk )) and

ηk (·) � −Uk (− log det(·)). Here, Γk (·) denotes the inverse
mapping of the gradient map ∇ηk (·), e.g., ∇ηk (Γk (Wk )) =
Γk (∇ηk (Wk )) = Wk . As long as ηk (·) is a strictly concave
function for all k, the equivalence between (P-1) and (P-4)
holds. Detailed proof simply follows from [19, Sec. II-B].

Although (P-4) is still jointly non-convex, it is now seen as
an unconstrained convex problem with respect to each of W �
blkdiag{W1 , . . . ,WKI

} and L � blkdiag{L1 , . . . ,LKI
} for

given γ and F̄. Therefore, the optimal structures of Wk and Lk

are easily acquired from the KKT zero-gradient conditions.
Let us set the Lagrangian of (P-4) as

LP 4 = Tr(WC) + e(W) + ν
(
Tr(F̄F̄H) − γ−2PT

)

−
KE∑

i=1

λi

(
Tr(F̄HGH

i GiF̄) − γ−2Eth,i

)

+
KP∑

j=1

μj

(
Tr(F̄HTH

j Tj F̄) − γ−2Ith,j

)
(6)

where ν ≥ 0, λi ≥ 0, and μj ≥ 0 denote the dual variables
corresponding to C̄BS, the ith C̄EH, and jth C̄CR constraints,
respectively. Also, here we define e(W) �

∑KI

k=1 ek (Wk ) and

C � blkdiag{C1 , . . . ,CKI
}

= L
(
HF̄F̄HHH + γ−2σ2

nIKI NI

)
LH

− LHF̄ − F̄HHHLH + IKI NI
. (7)
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Then, the KKT necessary conditions for optimality are given by

Lk

(
Hk F̄k F̄H

k HH
k + γ−2Rn,k

)
= F̄H

k HH
k ∀k (8)

CT
k − Γk (Wk ) = 0 ∀k (9)

(HHLHWLH −
∑

i

λiGH
i Gi +

∑

j

μjTH
j Tj + νIM )F̄

= HHLHWH (10)

β +
∑

i

λiEth,i −
∑

j

μj Ith,i = νPT (11)

C̄BS; C̄EH; C̄CR (12)

ν
(
Tr(F̄HF̄) − γ−2PT

)
= 0 (13)

λi

(
Tr(F̄HGH

i GiF̄) − γ−2Eth,i

)
= 0 ∀i (14)

μj

(
Tr(F̄HTH

j Tj F̄) − γ−2Ith,j

)
= 0 ∀j (15)

where F̄k = γ−1Fk and β = Tr(σ2
nWLLH). Here, the equa-

tions from (8) to (11) stem from the zero gradient conditions
with respect to Lk , Wk , F̄, and γ, respectively, and the equa-
tions from (13) to (15) represent the complement slackness
conditions. Note that (9) follows from [19, Th. 2].

By condition (8), we find the optimal receiver Lk as

Lk = F̄H
k HH

k

(
Hk F̄k F̄H

k HH
k + γ−2Rn,k

)−1 ∀k (16)

which in turn makes the MSE matrix in (5) given in a compact
form of CL,k = (γ2F̄H

k HH
k R−1

n,kHk F̄k + I)−1 [23]. Then, from
(9), we can update the optimal weight matrix as

Wk = ∇ηk (CT
L,k ) ∀k. (17)

For instance, we have Wk = αkC−1
L,k , Wk = (−(log det

(CL,k ))CL,k )−1 , and Wk = ((log det(CL,k ))2CL,k )−1 ac-
cording to our target utilities WSR, HMR, and PF in (P-1),
respectively.

B. Optimal Precoder Design

Unlike the conventional non-SWIPT designs, (P-4) is still
non-convex with respect to γ and F̄, because the conflicting
constraints in C̄BS, C̄EH, and C̄CR form a non-convex feasi-
ble domain. Thus, standard CVX tools such as SeDuMi [24]
are not immediately applicable even if other variables W and
L are fixed. Therefore, it is most important to determine the
optimal structure of γ and F̄. Once their optimal forms are iden-
tified, (P-4) is easily solved by alternately updating γ, F̄, and
{Wk ,Lk ∀k} until convergence.

First, we observe from (11) that for a fixed β, ν in (6) is ex-
pressed as a function of ū � [λ1 , . . . , λKE

, μ1 , . . . , μKP
]. Thus,

we can reduce the number of unknown dual variables by 1. Also,
as we have β > 0, at least one variable among {ν, μ1 , . . . , μKP

}
has a non-zero positive value, which implies that at least one
constraint in C̄BS and C̄CR must be activated due to (13) and
(15). Thus, for a given F̄, we have

γ =

√√
√
√
√min

⎛

⎝ PT

Tr(F̄HF̄)
,

{
Ith,j

Tr(F̄HTH
j Tj F̄)

}KP

j=1

⎞

⎠. (18)

Next, we consider a Lagrange dual function of (P-4) as

h(ū) = inf
γ ,F̄

LP 4(ν, ū, γ, F̄) = inf
F̄

L̄P 4(ū, F̄) (19)

TABLE II
ALGORITHM FOR SOLVING (P-5)

where L̄P 4(ū, F̄) is obtained by applying (11) to (6) as

L̄P 4 = Tr
(
WLHF̄F̄HHHLH − WLHF̄

− WF̄HHHLH + W
)

+ e(W) −
∑

i

λiTr(F̄HZE ,iF̄)

+
∑

j

μj Tr(F̄HZP,j F̄) +
βTr(F̄HF̄)

PT
. (20)

Here, we define ZE ,i � GH
i Gi − E th, i

PT
IM and ZP,j � TH

j Tj −
I th, j

PT
IM . Now, let us temporarily ignore the constant terms in

L̄P 4 with respect to F̄, which makes (19) rephrased by

inf
F̄

{
Tr

(
F̄HKF̄

) − Tr
(
WLHF̄

)}
(21)

where K � Y − ∑
i λiZE ,i +

∑
j μjZP,j with Y � HHLH

WLH + β
PT

IM . Now, suppose that at least one eigenvalue of
K is non-positive with corresponding eigenvector v ∈ CM ×1 .
Then, we can make (21) unbounded from below by simply set-
ting F = [f 0M ×(KI NI −1) ] with ‖f‖2 = ∞. Therefore, a dual
feasible condition K 
 0 arises for (19), which leads us to the
following dual problem as:

(P-5) sup
ū
0

h(ū) s.t. δmin(K) > 0.

Proposition 2: There exists zero-duality gap between (P-4)
and its dual (P-5) with respect to γ and F̄.

Proof: See Appendix A. �
With the assistance of Proposition 2, we can find op-

timal F̄ through (P-5) that is solvable via the ellipsoid
method for constrained problems [21], for which the sub-
gradient of h(ū) at a feasible point ū is computed by
[{Tr(F̄
HZE ,iF̄
)}KE

i=1 , {−Tr(F̄
HZP,j F̄
)}KP
j=1]. Here, F
 de-

notes the corresponding primal optimal solution. Note that K is
invertible for a feasible ū since δmin(K) > 0, and thus we have

F̄
 = K−1HHLHWH.

Otherwise if ū violates the dual feasible condition, i.e.,
δmin(K) ≤ 0, we compute the subgradient of δmin(K) as
[{kHZE ,ik}KE

i=1 , {−kHZP,jk}KP
j=1] where k ∈ CM ×1 repre-

sents the eigenvector of K corresponding to δmin(K). The al-
gorithm is summarized in Table II. After finding the optimal F̄,
we finally set γ as in (18), which results in the optimal precoder
F = γF̄.

Algorithm 1 illustrates the entire WMMSE algorithm for sum-
utility maximization in general MuMIMO CR SWIPT systems
with KI S-ID, KE S-EH, and KP P-ID users. The algorithm
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converges, since each update of L, W, and F minimizes the
weighted sum-MSE that is bounded from below. The converged

Algorithm 1: Proposed MuMIMO CR SWIPT.

Set target metric Uk (·).
Draw achievable energy region (Eth,1 , . . . , Eth,KE

) from
Table I.
Generate NG random initial points {F̄(1) , . . . , F̄(NG )}.
for ip = 1 : NG do

Initialize F̄ = F̄(ip ) and compute γ from (18).
repeat

Compute L and W respectively from (16) and (17)
for given γ and F̄.
Find F̄ from Table II for given L and W.
Compute γ from (18) for a given F̄.

until convergence.
Save F(ip ) = γF̄.

end for
Select the best one among NG different solutions
{F(ip )}NG

ip =1 .

point ensures the local optimum because all gradients with re-
spect to L, W, and F simultaneously vanish. Nevertheless, due
to jointly non-convexity of (P-4), we may need NG different ran-
dom initial points so that the resulting local minimum gets closer
to the global minimum. This may require additional outer-loop
iterations.

C. Zero-Interference Design

When Ith,j = 0 for some j ∈ KP where KP denotes a subset
of P-ID user indices {1, 2, . . . ,KP }, the algorithm in Section IV
may be inefficient and unstable, because we may find unneces-
sary dual variables that are associated with the zero-interference
constraints. It is thus imperative to modify the optimization
problem so that one can solve the problem more efficiently.

Define a stacked P-ID user channel matrix as

Tstack = [{TT
j }j∈N ]T ∈ CQNI×M (22)

where Q designates a cardinality of N. As we assume that M >
QNI , we can also define a matrix U ∈ CM ×(M −QNI ) whose
column vectors constitute the orthonormal basis in the null-
space of Tstack, i.e., TstackU = 0 with UHU = IM −QNI

. Note
that otherwise if M ≤ QNI , the system might be infeasible.

The precoding matrix that satisfies the zero-interference
constraints, i.e., Ith,j = 0,∀j ∈ N, must be in the null-space
of Tstack. Therefore, without loss of optimality, the optimal
precoder can be generally expressed by F = UF̃ for any matrix
F̃ ∈ C(M −QNI )×KI NI . Thus, applying the result to (P-1), we
obtain a modified optimization problem as

(P-6) max
F̃

KI∑

k=1

Uk (R̃k )

s.t. Tr
(
F̃HF̃

) ≤ PT

Tr
(
F̃HG̃H

i G̃iF̃
) ≥ Eth,i ∀i

Tr
(
F̃HT̃H

j T̃j F̃
) ≤ Ith,j ∀j ∈ KC

P

where KC
P denotes a complementary set of KP and R̃k =

log det(F̃H
k H̃H

k R−1
n,kH̃k F̃k + INI

) with H̃ � HU, G̃ � GU,

and T̃ � TU. Once we find F̃, the resulting solution F = UF̃
achieves the zero interference constraints, i.e., Ith,j = 0,∀j ∈
KC

P with reduced number of dual variables by Q, and thus is
efficient. The rest of derivations is the same as the previous
section. Note that when we consider all zero interference, i.e.,
Ith,j = 0,∀j, the CR constraints in (P-6) is completely removed,
which we call a zero-forcing (ZF) design. Further, if we have
KE = 1 and Uk (R̃k ) = R̃k , (P-6) becomes equivalent to the
one in [9].

V. JOINT OPTIMAL SOLUTION FOR SINGLE S-ID USER

In practice, the S-BS may support one S-ID user at a time
in a TDMA manner. In this case, our system model reduces
to the SuMIMO channel with multiple CR and EH constraints,
for which we can show that the WMMSE problem in (P-4)
can be jointly optimized without the aid of the multiple initial
points and the alternating optimization among the filters. The
result in this section not only provides the globally optimal
solution for the SuMIMO-CR-SWIPT system, but also serves
as a theoretical performance outer bound for the MuMIMO-CR-
SWIPT systems in the previous section. Throughout the section,
we will drop the S-ID user index k from all variables related
to the S-ID users, since we only consider KI = 1. Also, the
auxiliary variable γ in (5) is now included in the receiver L
from the joint optimization perspective.

A. Joint Optimal Precoder Design

Setting γ = 1 and F = F̄, and plugging (16) into (P-4), we
obtain a modified WMMSE problem for KI = 1 as

(P-7) inf
F ,W

Tr
(
WCL

)
+ e(W)

s.t. Tr
(
FHF

) ≤ PT ,

Tr
(
FHGH

i GiF
) ≥ Eth,i ∀i

Tr
(
FHTH

j TjF
) ≤ Ith,j ∀j

where Rn = σ2
nINI

, CL = (FHHHR−1
n HF + INI

)−1 , and

e(W) = η
(
Γ(W)

) − Tr
(
WTΓ(W)

)

= − log det
(
W

) − NI . (23)

Here, (23) follows, since for KI = 1 the general sum-utility
maximization in (P-1) boils down to the rate maximization,
i.e., maxF

∑
k Uk (Rk )⇒maxF log det(FHHHR−1

n HF+INI
),

for which the inverse mapping of ∇η(·) is explicitly given by
Γ(W) = (WT)−1 . Note that (P-7) is still jointly non-convex,
and therefore, the optimal solution is not immediate from there.

Define the Lagrangian for (P-7) as

L̄P 4 = Tr
(
W(FHHHR−1

n HF + INI
)−1) + e(W)

+ Tr
(
FHMF

) − νPT +
∑

i

λiEth,i −
∑

j

μj Ith,j (24)

with M � νIM − ∑
i λiGH

i Gi +
∑

j μjTH
i Ti . We first see

from (24) that the optimal weight matrix for a given F should
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be positive definite, because we have

W = ∇η(CT
L ) (25)

= FHHHR−1
n HF + INI

(26)

where (25) follows from the optimality condition in (17). Based
on the result, now we can find the optimal precoding structure
F as described in the following proposition.

Proposition 3: The optimal solution F in (P-7) for a given
positive definite weight matrix W has the form of

F
 = M−1/2V1

(
W1/2Φ−1/2

1 − Φ−1
1

)1/2

+
(27)

where V1 ∈ CM ×NI and Φ1 ∈ CNI ×NI come from the follow-
ing eigenvalue decomposition:

M− 1
2 HH R−1

n HM− 1
2 = VΦVH (28)

with a unitary matrix V = [V1 V2 ] ∈ CM ×M and a square di-
agonal matrix Φ = blkdiag{Φ1 0} ∈ CM ×M having the eigen-
values of (28) in a descending order.

Proof: See Appendix B. �

B. Weight Matrix Design

The weight matrix W can be designed differently according
to the applications.

1) Maximum Rate Design: Due to the equivalence between
(P-1) and (P-7), the maximum rate can be achieved when both F
and W jointly solve (P-7). To this end, the optimal weight matrix
must satisfy the equality in (26) that is alternatively expressed
by using F in (27) as

W − INI
=

(
W1/2Φ1/2

1 − INI

)

+
. (29)

Thus, the kth diagonal element of W should become

wk = max(φk , 1) (30)

where φk denotes the kth diagonal element of Φ1 . It is seen
from (27) that when φk < 1 and wk = 1, the kth data stream
will be unused. As a result, without loss of optimality, we can
set the maximum rate precoder as

Fmax-rate = M−1/2V1
(
INI

− Φ−1
1

)1/2
+ . (31)

2) Quality of Service (QoS) Design: For any given weight
factors, the precoder in (27) minimizes the weighted sum-MSE,
i.e., Tr(WCL ) in (P-7). Therefore, besides the rate maximiza-
tion, the solution can be exploited for handling the error perfor-
mance of each data stream so as to ensure the QoS.

Specifically, the QoS design can be achieved by setting
W = INI

and applying the unitary discrete Fourier transform
(DFT) matrix D ∈ CNI ×NI to (27) as

FQoS = M−1/2V1

(
Φ−1/2

1 − Φ−1
1

)1/2

+
D. (32)

Here, we notify that the DFT matrix D enables all the MSEs,
i.e., the diagonal elements of the MSE matrix CL in (P-7), have
the same value without changing their sum [23] [9]. Since we
have W = INI

, the resulting solution minimizes the maximum
MSE among data streams while maintaining the minimum sum-
MSE, thereby achieving the QoS. The QoS design is particularly
useful when independent messages are spatially multiplexed
across the sub-channels and should be separately decoded. Note
that for the case of a single S-ID user with a single antenna, i.e.,
NI = KI = 1, the two solutions in (31) and (32) are merged into
one. Further, if NP = NE = 1, they reduce to the CR-SWIPT
beamforming scheme in [15].

C. Dual Variable Optimization

The remaining problem is to determine the dual variables ũ
in (27). Let us consider the dual problem constrained by the dual
feasibility δmin(M) > 0 [see (33) in Appendix B] as

(P-8) sup
ũ

l(ũ) s.t. δmin(M) > 0.

Then, following the same argument in Proposition 2, we can
show that the strong duality holds between (P-7) and its dual (P-
8). Therefore, the optimal dual variables in (27) can be attained
by solving (P-8), which is accomplished by applying the ellip-
soid method, for which the subgradient of l(ũ) at a feasible point
ũ is computed by [−Tr(F
HF
) + PT , {Tr(F
HGH

i GiF
) −
Eth,i}KE

i=1 , {−Tr(F
HTH
j TjF
) + Ith,i}KP

j=1]. Otherwise if ũ
is infeasible, i.e., δmin(M) ≤ 0, we update ũ utilizing
the subgradient of δmin(M) as [−1, {mHGH

i Gim}KE
i=1 ,

{−mHTH
i Tim}KP

j=1], where m ∈ CM ×1 denotes the eigenvec-
tor of M corresponding to δmin(M). The ellipsoid updating
procedure is summarized later. The algorithm finds the global
optimal solution of (P-7) attributed to the strong duality of (P-7)
and (P-8) as proved in Proposition 2, the primal optimal solu-
tion in Proposition 3, and the convexity of (P-8) for which the
ellipsoid algorithm converges to the dual optimum [21].

VI. DISCUSSION

In this section, we provide an in-depth discussion on the
proposed precoder designs from the practical implementation
perspectives.

A. Required CSIs at Each Node

In order to meet all required constraints in the CR-SWIPT
networks, the S-BS must control the secondary users with global
CSIs of {Hk ,Gi ,Tj ,∀k, i, j}. Therefore, it is reasonable to
assume that the precoding matrix F is computed at the S-BS.
In contrast, the S-ID users do not need to compute F, because
only the information of the effective downlink channel HkFk

and the effective noise covariance Rn,k is sufficient for the kth
S-ID user to decode its own message as shown in (2). Note
that the S-EH users require neither the precoding matrix nor
the CSI, since no further receive signal processing is needed for
EH. There is no required CSI at the primary nodes to do with
the secondary network.

B. Channel Acquisition Procedure

To achieve the potential benefits of the proposed precoder
designs, an accurate channel estimation at the S-BS is essential.
Thus, for channel estimation, the TDD scheme that can exploit
the channel reciprocity between a transmitter and a receiver
may be a better choice than the frequency division duplexing
schemes. In this section, we introduce TDD-based channel ac-
quisition procedure to achieve the required CSIs at each node.

First, in the beginning of each channel coherence block, the
secondary users transmit orthogonal training sequences to the
S-BS to allow the S-BS to estimate the CSIs of both Hk ,∀k and
Gi ,∀i. Note that the pilot transmission of the S-EH users is also
achievable by using the energy stored in their own batteries or
the energy that has been harvested in the previous transmission
frame [25]. The S-BS also estimates the P-ID user channels
Tj ,∀j by listening to the periodic uplink pilots transmitted
from the P-ID users to the primary transmitter [2]–[4]. With the
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Algorithm 2: Joint Optimal Design for KI = 1.
Initialize ũ 
 0.
repeat

Compute M for a given ũ.
if δmin(M) > 0 then

Set W and D as in Section V-B1 or -B2.
Compute the primal optimal F
 in (27).
Compute the subgradient of l(ũ).

else
Compute the subgradient of δmin(M).

end if
Update ũ using the ellipsoid method subject to ũ 
 0.

until ũ converges to the prescribed accuracy.
Set F = F
 .

TABLE III
COMPUTATIONAL COMPLEXITY

acquired CSIs, the S-BS is now able to compute the precoding
matrix F through Algorithms 1 or 2.

Next, during the downlink training phase, the kth S-ID can
estimate the effective downlink channel HkFk by utilizing the
precoded training sequences at the S-BS. For example, the de-
modulation reference signaling in long-term evolution advanced
can be employed [26]. Then, the S-BS feedforwards the effec-
tive noise covariance Rn,k to each kth S-ID user through the
downlink control channels.1

C. Complexity Analysis

In what follows, we briefly examine the computational com-
plexity of the proposed algorithms. As it is hard to measure the
exact amount of computations, we instead calculate the order of
floating point operations required to find the optimal precoder
F
 at the S-BS. Based on the analysis of matrix computation
complexity in [22], the computational complexity of the pro-
posed algorithms is summarized in Table III. Here, C({X})
represents the required complexity for computing operation
set {X}, and Ielp and Ialt denote the required number of it-
erations for the ellipsoid and alternating optimization process,
respectively.

1It is also possible for each S-ID user to apply the blind noise estimation
scheme [27] to estimate its own effective noise.

TABLE IV
SIMULATION ENVIRONMENTS

First, the result confirms that the SuMIMO design in
Algorithm 2 indeed obtains complexity advantage over the Mu-
MIMO design in Algorithm 1 for the case of KI = 1, because
the multiple initial points and the alternating optimization pro-
cess are unnecessary, not to mention the additional efforts for
computing the auxiliary filter matrices, i.e., C(Rn , γ,L,W).
One interesting observation is that the amount of computations
for Algorithms 1 and 2 increases in the orders of N 3

I and NI , re-
spectively. This means that the complexity gain of Algorithm 2
will be more pronounced as the S-ID user antenna NI grows.

However, it should be noted that as M and KI increase,
the MuMIMO design that can simultaneously support multiple
S-ID users attains a significant throughput gain over the SuM-
IMO design based on the scheduling. Therefore, Algorithm 1 is
also important for achieving high data throughput in multiuser
scenarios. A careful examination on Table III reveals that the
entire complexity for Algorithm 1 is mostly influenced by the
number of antennas of the S-BS and the S-ID users, i.e., M and
KI NI as in the conventional non-SWIPT or non-CR MuMIMO
systems [3], [9], [19]. Therefore, computational complexity of
the proposed designs is comparable with those in the conven-
tional MuMIMO systems.

VII. NUMERICAL RESULTS

In this section, we demonstrate the efficiency of the proposed
algorithms for MuMIMO-CR-SWIPT networks through some
numerical examples. We set the system parameters as in Table IV
so that the average received signal power at each secondary user
appears in a common SNR range, e.g., 10–20 dB. Throughout
the section, each simulation result is based on a sample chan-
nel. As we assumed that all the S-ID, S-EH, and P-ID users
are located in the same distance (10 m) from the S-BS, we
can construct the channel matrices as Hk = 10−3/2H(w )

k ,∀k,

Gi = 10−3/2G(w )
i ,∀i, and Tj = 10−3/2T(w )

j ,∀j, where the

entries of H(w )
k , G(w )

i , and T(w )
j are drawn from independent

and identically distributed standard complex Gaussian based on
the Rayleigh pathloss model. We consider the same noise power
at all S-ID users being equal to σ2

n = −30 dBm and the same
interference threshold for all P-ID users, i.e., Ith,1 = Ith,2 = Ith.2

2As for our simulation results, we have set the interference thresholds such
that they appear between 0 and a certain positive value which is smaller than
the maximum interference level that can be met by a non-CR SWIPT design,
i.e., a solution with Ith = ∞. Similarly, the energy thresholds Eth, i , ∀i are also
set to be in the feasible energy region, while being greater than the minimum
energy levels that are automatically achievable by a non-SWIPT CR design, i.e.,
a solution with Eth, i = 0, ∀i.
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Fig. 2. Convergence trend of Algorithms 1 and 2 with Ith = 0.1 μW, KI = 1,
and M = NI = 4.

Fig. 3. Convergence trend of Algorithm 2 with PT = 10 dBm, Eth,1 =
Eth,2 = 40 μW, M = 4, KI = 1, and NI = 4.

We use an initial value u = [1, 0, . . . , 0] for (P-3). The ini-
tial values of (P-5) and (P-8) are similarly defined. We adopt
NG = 100 random initial points for Algorithm 1 unless speci-
fied otherwise. For simplicity, we set αk = 1,∀k for the WSR
design.

In Figs. 2 and 3, we investigate the SuMIMO-CR-SWIPT
networks with KI = 1. Fig. 2 illustrates the convergence trend
of Algorithms 1 and 2 for a system with M = NI = 4 and
Ith = 0.1 μW. Interestingly, we see that a few initial points may
be sufficient for Algorithm 1 in PT = 10 dBm to achieve the
maximum rate, while a number of initial points may be needed
in PT = 20 dBm. The result implies that although the WMMSE
cost function in (P-4) may have a convex-like form in the low
SNR region, it becomes highly non-convex as SNR goes to high.
Despite the non-convexity of (P-4), we confirm that Algorithm 2
achieves the global optimum with a single initial point even with-
out the alternating optimization process, and thus is efficient.

Fig. 3 presents the convergence trend of the ellipsoid process
in Algorithm 2 in terms of the sum-MSE performance for a

Fig. 4. Rate-energy tradeoff performance of the proposed WSR design with
PT = 10 dBm, M = 4, and KI = NI = 2.

Fig. 5. Rate-energy tradeoff performance of the proposed WSR design with
PT = 10 dBm, M = 4, KI = NI = 2, and Eth,1 = 30 μW.

system with Eth,1 = Eth,2 = 40 μW. We observe that the QoS
design in (32) achieves the minimum sum-MSE in contrast to the
max-rate design. Further, the QoS design makes all sub-channels
experience the same MSE. Therefore, the MSE gain of the QoS
design will lead to the bit error rate performance advantage over
the max-rate design [23]. Observe that the convergence speed
gets slower as the interference threshold becomes tighter. The
result demonstrates that when the allowed interference level at
the P-ID users is very small, the zero-interference design in
Section IV-C may be useful.

Figs. 4 and 5, respectively, show the rate-energy tradeoff per-
formance in a three-dimensional (3-D) plot and in its 2-D inter-
section at Eth,1 = 30 μW in an MuMIMO-CR-SWIPT system
with KI = NI = 2 and PT = 10 dBm. Here, we employed the
WSR utility as an objective function of (P-1) to acquire the max-
imum sum-rate. The name of “SuMIMO outerbound” amounts
to the case of perfect collaboration among the multiple S-ID
users, which results in a single macro S-ID user with NI = 4.
Unlike the case of KI = 1, it is generally difficult to identify
whether the resulting solution is optimal or not due to the lack of
knowledge on the global optimal solution. Nevertheless, we can
carefully infer that the proposed solution achieves the optimum
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Fig. 6. Convergence trend of EH and CR constraints in MuMIMO-CR-SWIPT
with PT = 10 dBm, M = 4, KI = NI = 2, Eth,1 = 30 μW, Eth,2 = 20 μW,
and Ith = 0.1 μW.

Fig. 7. WSR performance comparison with M = KI NI , NI = 4, PT =
13 dBm, Eth,1 = Eth,2 = 30 μW, and Ith = 0.1 μW.

based on the observation that all the tradeoff regions exhibit a
nice convex shape and are close to their single-user outer bounds.
We observe from Fig. 4 that at any information rate, there exists
an unachievable energy region. This shows that the feasibility
check in Section III is important before solving the problem.
Obviously, as Ith decreases, the achievable tradeoff region will
shrink to meet tighter CR constraints. One interesting obser-
vation from Fig. 5 is that as the energy threshold approaches
its maximum value, the achievable rate converges to its outer-
bound. This confirms our previous statement in Proposition 1
that the maximum energy of an S-EH user is achievable via a
single beam vector that is pointing in one direction irrespective
of the S-ID user topology.

Fig. 6 shows a snapshot of the ellipsoid process in Algorithm
1 in terms of the harvested energy and the interference power
for a system with M = 4 and KI = NI = 2. Here, we set the
threshold values as Eth,1 = 30 μW, Eth,2 = 20 μW and Ith,1 =
Ith,2 = 0.1 μW. The figure confirms that the proposed algorithm
achieves all the required constraints. The interference power is
kept below the threshold throughout the iterations attributed to
the power normalizing factor γ in (18).

In Fig. 7, we plot the sum-rate performance of various
precoder designs in systems with M = NI KI , NI = 4, and

Fig. 8. Rate balancing performance of various precoder designs with PT =
13 dBm, M = 8, KI = 4, NI = 2, Eth,1 = 30 μW, Eth,2 = 20 μW, and Ith =
0.1 μW.

Fig. 9. WSR and minimum user rate performance of various precoder designs
according to the interference thresholds Ith with PT = 10 dBm, M = 4, KI =
NI = 2, and Eth,1 = Eth,2 = 10 μW.

PT = 13 dBm. For a fair comparison, we introduce the round
Robin scheduling or opportunistic max-user selection schemes
[28] to the SuMIMO design. As expected, as KI increases, the
proposed MuMIMO designs that simultaneously support multi-
ple S-ID users attain significant performance advantage over the
SuMIMO design based on the scheduling, although the SuM-
IMO design attains complexity gain for the case of a single S-ID
user. The gain grows larger as M and KI increases.

In Fig. 8, we compare the rate balancing performance
of various MuMIMO precoder designs for a system with
M = 8, KI = 4, NI = 2, and PT = 13 dBm. Obviously, the
WSR design achieves the best sum-rate performance. However,
the PF and HMR designs may be more attractive in terms of the
worst user rate or fairness. It is observed that the HMR design
yields the best balancing performance among the S-ID users at
the cost of slight sum-rate performance loss.

Similar observation can be made in Fig. 9 which exhibits
both the sum-rate and minimum user-rate performance for a
system with M = 4, KI = NI = 2, and PT = 10 dBm. Here,
“WSR-ZF design” denotes the WSR solution that is obtained
from (P-6) with Ith = 0 and Uk (R̃k ) = R̃k . We observe that al-
though the ZF design may provide a simpler solution, it cannot
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achieve an additional performance gain from both the sum-rate
and minimum user rate points of view in a situation where
some amount of interference is allowable. This highlights the
advantages of the interference control capability of the pro-
posed MuMIMO-CR-SWIPT designs. As Ith becomes smaller,
the performance variation among the different utility functions
diminishes. This is because the degree of freedom of the pre-
coder design is constrained within the null space of the P-ID user
channels T.

VIII. CONCLUSION

In this paper, we have investigated the optimal precoder de-
signs for general sum-utility maximization in the MuMIMO-
CR-SWIPT networks. First, we examined the optimal energy
transmission scheme to identify the feasible energy region. Sec-
ond, we proposed an efficient algorithm to find the optimal
MuMIMO precoders by adopting the ellipsoid and alternating
optimization process, for which multiple initial points may be
necessary to approach the global optimum. Then, we suggested
a simplified algorithm that can find a globally optimal solution
without resorting to the alternating optimization as well as the
multiple initial points in a special case of a single S-ID user. We
also have offered an in-depth discussion on the proposed de-
signs in terms of the computational complexity and the channel
information requirement. Finally, we verified the efficiency of
the proposed designs via some numerical examples. An investi-
gation on the tradeoff between the training phase duration and
channel estimation accuracy in the imperfect CSI scenarios will
be an interesting topic for future works.

APPENDIX

A. Proof of Proposition 2

Let γ∗, F̄∗, and ū∗ be any points that satisfy the KKT and
dual feasible conditions. Define the objective function of (P-4)
as f0(γ, F̄) = Tr(WC) + e(W). Then, by the weak duality
theorem [24], one can show that

f0(γ∗, F̄∗) ≥ h(ū∗)

= inf
F̄

L̄P 4(ū∗, F̄)

= L̄P 4(ū∗, F̄∗)

= f0(γ∗, F̄∗).

Here, the second line follows from (19) and the third line is due
to the fact that L̄P 4(ū∗, F̄) is convex in F̄ under the dual feasible
condition K 
 0, which means that the infimum of L̄P 4(ū∗, F̄)
occurs at a point where its gradient vanishes, i.e., F̄ = F̄∗. In
the last line, we use the complementary slackness conditions in
(13)–(15). Thus, we can conclude that f0(γ∗, F̄∗) = h(ū∗).

B. Proof of Proposition 3

For any optimal F and an arbitrary unitary matrix Q ∈
CNI ×NI , we can always find a modified solution F̂ = FQ that

is also optimal, since we have

log det

(
F̂HHHR−1

n HF̂ + INI

)

= log det
(
QHFHHHR−1

n HFQ + INI

)

= log det
(
FHHHR−1

n HF + INI

)
.

Here, we can choose Q such that F̂HHHR−1
n HF̂ is diagonalized

without loss of optimality. In this case, the off-diagonal elements
in W will not affect the first term of (24). In addition, by the
Hadamard’s inequality det(W) ≤ ∏

k wk , we have e(W) ≥
−∑

i log wk − NI with wk > 0 being the kth diagonal element
of W. Therefore, we see that a diagonal weight matrix W
suffices to achieve the minimum of (24).

Next, let us define a vector of the dual variables in (24) as ũ �
[ν, λ1 , . . . , λKE

, μ1 , . . . , μKP
]. Then, a dual feasible condition

δmin(M) > 0 arises for ũ, because otherwise the corresponding
dual function l(ũ) goes to −∞ where

l(ũ) � inf
F

L̄P 4 . (33)

Under the dual feasibility, M is invertible, which means that one
can generally express the optimal precoder as F = M−1/2VΣ
for any matrix Σ ∈ CM ×NI .

Since M is full-rank, there are at most NI number of
non-zero eigenvalues in Φ. Let us further develop F as F =
M−1/2V1Σ1 + M−1/2V2Σ2 where Σ1 ∈ CNI ×NI and Σ2 ∈
C(M −NI )×NI are the associated sub-matrices of Σ = [ΣT

1 ΣT
2 ]T.

Then, it is true that M−1/2V2Σ2 = 0 since it only increases
L̄P 4 in (24), which leads to

F = M−1/2V1Σ1 . (34)

Finally, by substituting F in (24) with (34), we obtain a modified
Lagrangian as

L̃P 4 = Tr
(
W(ΣH

1 Φ1Σ1 + INI
)−1) + e(W) + Tr

(
ΣH

1 Σ1
)

− νPT +
∑

i

λiEth,i −
∑

j

μj Ith,j . (35)

Now, we can verify from Lemma 1 and 2 below that the La-
grangian in (35) touches its minimal point when Σ1 forms a
diagonal matrix because in this case W in (26) is given by a
diagonal matrix and the first and third terms of (35) can be simul-
taneously minimized. Then, L̃P 4 becomes convex with respect
to |σk |2 where σk denotes the kth diagonal element of Σ1 . Thus,

by setting ∂ L̃P 4
∂ |σk |2 = 0, we obtain |σk |2 = (w1/2

k φ
−1/2
k − φ−1

k )+

with φk being the kth diagonal element of Φ1 . Finally, we have

F = M−1/2V1(W1/2Φ−1/2
1 − Φ−1

1 )1/2
+ .

Lemma 1 ([22]): For any square matrix A, it is true that
Tr(AAH) ≥ ∑

i |ai |2 where ai stands for the ith diagonal ele-
ment of A.

Lemma 2 ([29]): For any positive definite matrix B, we have
Tr(B−1) ≥ ∑M

i=1 b−1
i where bi stands for the ith diagonal ele-

ment of B.
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