
Xiang-Chuan Gao, Jian-Kang Zhang, He Chen, Zheng Dong, and Branka Vucetic

Abstract—To enable ultra-reliable low-latency wireless com-
munications required in the industrial Internet of Things, in this
paper we develop an energy-based modulation (i.e., nonnegative
pulse amplitude modulation (PAM)) constellation design frame-
work for noncoherent detection in massive single-input multiple-
output (SIMO) systems. We consider that one single-antenna
transmitter communicates to a receiver with a large number
of antennas over a Rayleigh fading channel, and the receiver
decodes the transmitted information at the end of every symbol.
For such a SIMO system with nonnegative PAM modulation,
we first propose a fast noncoherent maximum likelihood (ML)
decoding algorithm and derive a closed-form expression of its
symbol error probability (SEP). We then enhance the system
energy efficiency by finding the optimal PAM constellation that
minimizes the exact SEP subject to a total signal power constraint
for such a system with an arbitrary number of receiver antennas,
signal-to-noise ratio (SNR), and constellation size. Furthermore,
the closed-form upper and lower bounds on the optimal SEP
are derived. Based on these bounds, the exact expression for
coding gain of the dominant term of the SEP is presented
for such an optimal massive SIMO system. We also present
an asymptotic SEP expression at a high signal-to-noise ratio
(SNR) regime and the approximate diversity gain of the system.
Simulation results for the proposed optimal PAM constellation
validate the theoretical analysis, and show that our presented
optimal constellation attains significant performance gains over
the currently available minimum-distance based constellation
systems.

Index Terms—Ultra-reliable low-latency communications, mas-
sive SIMO, noncoherent ML detection, energy-based modulation,
industrial Internet of Things.

I. INTRODUCTION

The Internet of Things (IoT) is changing our daily life, and
transforming businesses and industries. As the most important
part of the IoT, industrial IoT (IIoT) has been attracting
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tremendous attention from governments, researchers, and busi-
ness leaders due to the unprecedented opportunities it can
potentially bring to business and society. Generally speaking,
the IIoT is “a new industrial ecosystem that combines intelli-
gent and autonomous machines, advanced predictive analytics,
and machine-human collaboration to improve productivity,
efficiency and reliability” [1]. While the conventional IoT is
mostly targeted for low-power consumer usage scenarios [2],
[3], IIoT mainly focuses on the mission-critical industrial use
cases, such as manufacturing, supply chain, transportation, and
medical sectors. The intelligent industrial operations largely
count on the information collected by various sensors and
the analysis of the gathered information [4]. In this sense,
connectivity is critical to the successful implementation of the
IIoT [5].

To provide network connectivity for IIoT devices such as
sensors, actuators, and controllers, wireless communications
have a number of merits over the currently-used wired commu-
nications: low deployment and maintenance cost, easier imple-
mentation in scenarios where cables are difficult to deploy, and
high long-term reliability by avoiding the wear and tear issues
[6]. Wireless technologies have made remarkable advances and
have been deployed widely to provide ubiquitous human-to-
human connectivity to the people during the past decades.
However, until now, wireless networks have not been widely
applied in industrial environments: wireless technologies have
been mainly used in noncritical applications (e.g., condition
monitoring), where a failure of communication does not result
in serious economic losses and safety problems; the adoption
of wireless in more crucial scenarios, e.g., closed-loop control
where an unsuccessful delivery of data may lead to serious
accidents, has been rare [5]. The main reason behind this is that
current standardized industrial wireless protocols are unable
to meet the stringent performance requirements of mission-
critical industrial use cases, with high reliability of packet
error rate down to 10−9 and ultra-low latency at the level of
sub-microsecond [7], [8]. More specifically, current industrial
wireless technologies have been reusing the physical layers
designed for human-oriented communications and modifying
the upper layers [7]. These physical layers have been designed
to achieve higher and higher data rate with the reliability
and latency suited to human perception; and critical industrial
applications need reliability and latencies several orders of
magnitude better than what is achievable in today’s networks.
As such, a dedicated physical layer design with superior
reliability and latency performance is crucial to fully unlock
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the potential of the IIoT.
Achieving ultra-reliable low-latency communications

(URLLC) over wireless links is highly challenging, since
wireless channels are unstable and susceptible to fading,
path-loss, shadowing, and interferences. It has been shown
that a high-order diversity is critical to realize ultra-reliable
communication within very low latency budget [9], [10].
In theory, diversity in wireless communications can be
achieved in the time, frequency and/or space domains [11].
In particular, time diversity adds redundant symbols to the
original data to increase its successful decoding probability
at the receiver side. However, time diversity is not preferable
in URLLC, since it enhances the communication reliability
at the cost of latency. On the other hand, to harness the
frequency diversity, the information symbols should be
transmitted over uncorrelated frequency channels. This
can be costly since IIoT devices typically operate in the
frequency band between 100 MHz to 6 GHz due to cost,
power, and size constraints, where the spectrum resource is
scarce [12], [13]. The frequency band above 6 GHz is mainly
reserved for fixed links or satellite communications [14],
where the propagation loss is too high for IIoT applications.
Therefore, spatial diversity, also known as space/antenna
diversity, has been regarded as the most desirable diversity
scheme to enable the URLLC [10]. To obtain spatial
diversity gains, multiple antennas need to be equipped at
the transmitters and/or the receivers of wireless systems. In
fact, multiple-antenna technologies have been extensively
investigated during the last two decades and applied to
various wireless standards, for example LTE-Advanced [15].
According to the number of antennas at the transmitter
and receiver, multiple-antenna technologies consist of three
formats: single-input multiple-output (SIMO), multiple-input
single-output (MISO) and multiple-input multiple-output
(MIMO). The use of multiple antennas yields additional
spatial degrees of freedom that enhance system reliability for
a given throughput through spatial diversity, or increase the
throughput for a given reliability requirement through the
exploitation of spatial multiplexing. These two effects cannot
be maximized concurrently, but can be used simultaneously
at some sub-optimum levels and there exists a fundamental
tradeoff between diversity and multiplexing [16]. In current
wireless systems offering human-oriented mobile broadband
services, multiple-antenna technologies have typically been
designed and optimized so as to maximize the system
throughput [17]. These designs and optimizations are no
longer suitable for URLLC applications, in which the amount
of data to be transmitted (e.g., status updates and control
commands) is normally small, and the reliability and latency
performance has a higher priority than the throughput.

To achieve more dramatic gains as well as to simplify
the required signal processing, large-scale multiple-antenna
systems, also termed massive MIMO, have been proposed,
in which a large number of antennas are used at both the
transmitters and receivers [18]–[22]. It has been shown that
massive MIMO has several benefits over its conventional
version: the effects of uncorrelated noise and small-scale
fading are eliminated, and even simple linear signal processing

approaches perform well in the asymptotic limit. With the
capability to create a large number of spatial diversity paths,
massive MIMO has very recently been treated as one of the
most promising techniques for enabling URLLC [23], [24].
However, the aforementioned benefits of massive MIMO are
conditioned on the acquisition of the instantaneous channel
state information (CSI) and the implementation of coherent
detection at the receiver. The estimation of instantaneous
CSI may introduce a “long” training symbols (delay) with
a size comparable to that of short data payload in the IIoT
use cases [25], especially in low signal-to-noise ratio (SNR)
regime that is the case for most battery-powered industrial
sensors and devices. On the other hand, for those mobile
IIoT devices (e.g., automated guided vehicle), estimating the
CSI can be ineffective since the channel changes quickly
due to their mobility. Considering these facts, the authors in
[24] envisioned that “in high-mobility or low-SNR scenarios,
fulfilling the requirements of URLLC might require shifting
to a basic time-division multiple access (TDMA) system with
noncoherent receivers based on energy detection (ED)”. The
initial simulation performed in [24] has validated this vision.
Specifically, for a SIMO system with 128 antenna with user
mobility, the symbol-error probability (SEP) of the ED-based
noncoherent receiver can be orders of magnitude better than
that of its coherent maximum ratio combining counterpart.

There have been some recent efforts on designing mas-
sive SIMO systems using ED-based noncoherent receivers,
in which no instantaneous CSI is needed at either the trans-
mitter or the receiver, and the receiver decodes transmitted
information after each received symbol by measuring only the
average signal energy across all receiver antennas [26]–[29].
Among them, the authors in [26] characterized the scaling law
of the noncoherent massive SIMO systems with energy-based
detectors over independent and identically distributed channel
fading when the number of receiver antenna goes to infinity.
The results in [26] showed that energy-based noncoherent
schemes are able to achieve the same scaling behavior in
terms of achievable rates as optimal coherent schemes with an
increasing number of antennas. A simple constellation design
scheme was also proposed for one-user and two-user cases,
which was based on maximizing the minimum Euclidean
distance of the sum constellation at the energy-based detector
[26]. However, for the two-user case, the closed-form solution
to the constellation design problem was only obtained for some
specific channels and low-order modulations, and numerical
search is needed otherwise. Recently, Zhang et al. have
generalized the results attained in [26] to the scenarios with
arbitrary numbers of users and channel fading models in [27].
A more comprehensive analysis of the constellation design
of noncoherent energy-based massive SIMO systems was
conducted in [28], where the constellation design problem was
formulated as the maximization of the error exponent of the
SEP with respect to the number of receiver antennas, and the
formulated problem was resolved under different assumptions
on the availability and imperfection of CSI statistics. A similar
constellation design problem was also considered in [29],
which applied the central limit theorem, instead of the law of
large numbers used in the previous papers, to attain a Gaussian
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approximation of the instantaneous received signal energy,
which further leads to a closed-form expression of the detec-
tion threshold for the adopted energy-based detector. However,
all the aforementioned designs applied certain approximation
to the distribution of the received signal by resorting to the
asymptotic channel orthogonality and hardening properties of
massive MIMO systems. In practice, due to a finite number of
receiver antennas, these properties are not strictly satisfied. As
such, the approximations will result in error in the performance
analysis and the associated constellation design. Furthermore,
to the best knowledge of the authors, the optimal diversity and
multiplexing tradeoff for noncoherent SIMO systems has not
been well investigated. Besides, the condition for achieving
the full diversity in noncoherent SIMO systems needs to be
better understood.

In this paper, as in [28], [29], we consider an energy-
based massive SIMO system having a single-antenna user
communicating to an access point (AP) equipped with a
large number of antennas over Rayleigh fading channels. The
user transmitter modulates its information on the amplitude
of transmitted symbols and the AP adopts the noncoherent
maximum-likelihood (ML) detector for the symbol-by-symbol
estimation of the user information symbols from the received
signal. This model can represent typical IIoT use cases,
wherein multiple sensors transmit their measurements to a
central controller in a TDMA manner. Different from the
existing approaches, we will derive the exact decision region
of the noncoherent ML detector as well as the corresponding
exact SEP, which will be subsequently used for the optimal
constellation design. The main contributions of this paper can
be summarized as follows:

• A fast closed-form noncoherent ML detector for any
energy-based modulation (i.e., nonnegative PAM) con-
stellation is developed and its average SEP is derived.
This enables us to enhance the system energy efficiency
by finding the SEP-optimal constellation by solving a
convex optimization problem.

• For the case when SNR goes to infinity, we prove that
the optimal received constellation that maximizes the
noncoherent diversity gain is the constellation consisting
of the geometrical sequence with the noise variance as
the initial term. In addition, an asymptotic series of
the resulting optimal SEP is derived. Thus, the optimal
tradeoff between the multiplexing gain and the diversity
gain is also found for the noncoherent SIMO system.

• For a massive SIMO system with a large number of
antennas, a new concept of receiver diversity gain and
geometrical coding gain is introduced. When the number
of the received antennas goes to infinity, we establish
lower and upper bounds on SEP and then, prove that
any nonnegative PAM signalling enables full receiver
diversity with the noncoherent ML detector. Again and
very interestingly, we find that the optimal received
constellation that maximizes the geometrical coding gain
is also the same geometrical constellation. Furthermore,
we quantitatively characterize two important asymptotic
behaviours of the resulting optimal geometrical coding

gains.
1) The first is the asymptotic behaviour when SNR

goes to infinity and the transmission data rate is
fixed, showing that the optimal geometrical coding
gain tends to infinity with a certain diversity gain.
Therefore, unlike currently available constellation
designs resulting from directly using the central
limit theorem for massive MIMO systems in which
there is error floor when SNR goes to infinity, there
is no longer error floor in our optimal design.

2) The second is the asymptotic behaviour when the
transmission data rate varies with the number of
the received antennas and goes to infinity, but SNR
is fixed. Hence, a novel error performance metric
on multiplexing-receiver diversity gain tradeoff, fol-
lowing Zheng and Tse’s concept on multiplexing-
diversity gain tradeoff for the coherent MIMO sys-
tems [16], is proposed for the noncoherent massive
SIMO system.

II. SYSTEM MODEL AND NONCOHERENT ML DETECTION

We consider a point-to-point massive single-input multiple-
output (SIMO) system for IIoT communications, where a
single-antenna user1 (e.g., sensor) transmits to the receiver
(e.g., controller) equipped with N antennas. For such a system,
the input and output relationship can be written as

y = hs+ n, (1)

where y = [y1, · · · , yN ]T denotes the N × 1 received signal
vector, and h = [h1, · · · , hN ]T , n = [n1, · · · , nN ]T represent
N × 1 channel coefficient and noise vectors, respectively. We
also assume that the transmitted symbol s is a scalar which
is randomly and equally likely drawn from a finite-alphabet
constellation to be designed later. Throughout this paper, we
make the following two assumptions:

1) The instantaneous channel coefficient vector h, with
all elements independently and identically circularly-
symmetric complex Gaussian distributed with zero mean
and unit variance (i.e., Rayleigh fading), is not available
at either the transmitter or the receiver and may change
to other independent values in the next time slot [30]–
[32]. This assumption is to eliminate the channel estima-
tion/feedback overhead for achieving ultra-low latency
required by the IIoT communications, especially for fast
fading channels. Nevertheless, the mean and variance of
the channel are assumed to be known for the optimal
constellation design.

2) The noise vector n is circularly-symmetric complex
Gaussian distributed with zero mean and covariance
matrix being σ2IN , and σ2 is assumed to be known.

Under the above assumptions, for given transmitted signal
s, the output y is also circularly-symmetric complex Gaus-
sian distributed with zero mean, whose covariance matrix is
determined by

E[yyH ] = E[(hs+ n)(hs+ n)H ] = (|s|2 + σ2)IN .

1Note that the considered system can have multiple users working in a
TDMA manner.

IT 8.1
Typewritten text
IEEE Internet of Things Journal Volume: 6 , Issue: 4 , Aug 2019 



Then, the probability density function (PDF) of y conditioned
on s, f(y|s) is given by

f(y|s) =
1

πN (|s|2 + σ2)N
exp
(
− ‖y‖2
|s|2 + σ2

)
, (2)

from which we note that the phase information of the trans-
mitted signal is lost. Therefore, we will focus on an energy-
based transceiver design: the information is modulated on the
energy of transmitted symbols, and the receiver estimates the
transmitted information bits based on the energy of received
signals. In this paper, we consider a normalized symbol dura-
tion and we thus use “energy” and “power” interchangeably
hereafter.

We consider that the power of transmitted information
symbol |s|2 is chosen from one of the L power levels from
PAM constellation E =

{
Ei : Ei > 0

}L
i=1

subject to an
instantaneous average power constraint such that

1

L

L∑

i=1

Ei ≤ Es.

Without loss of generality, the power levels are taken to be in
an ascending order with Ei < Ei+1, for i = 1, . . . , L− 1.

For such a noncoherent SIMO system, it is known that the
optimal decoder is a noncoherent maximum-likelihood (ML)
decoder, which is to find s such that f(y|s) is maximized [28],
[29]. That is to solve the following optimization problem:

ŝ = arg max
|s|2∈E

ln
(
f(y|s)

)
. (3)

Combing (2) and (3), the original optimization problem for a
noncoherent ML decoder is simplified as

â = arg min
a∈A

‖y‖2
a

+N ln a, (4)

where A denotes the resulting received constellation given by

A = {ai}Li=1 = {Ei + σ2}Li=1. (5)

From (4), we notice that the noncoherent ML decoder cor-
responds to specifying the decision regions for the sufficient
statistic ‖y‖2. In order to further simplify the ML detector (4)
and to analyze its error performance, we need to establish the
following lemma, which can help us to simplify the decision
region of the noncoherent ML receiver.

Lemma 1: For r > 1, the two functions defined by

u(r) =
ln r

r − 1
, v(r) =

r ln r

r − 1
, (6)

have the following properties:

1) 0 < u(r) < 1 and v(r) > 1;
2) u(r) and v(r) are monotonically decreasing and increas-

ing functions of r, respectively.

�
The proof is provided in Appendix A.
With the preceding lemma, we are now in a position to pro-

pose the following fast noncoherent ML decoding algorithm

for the considered SIMO system, which can be implemented
by a quantization operation2.

Algorithm 1: Fast Noncoherent ML Detector: Consider
constellation set A = {ai}Li=1 defined in (5), and decision
threshold set B = {bi}L−1i=1 with bi given by

bi =
aiai+1 ln

(ai+1

ai

)

ai+1 − ai
, i = 1, · · · , L− 1. (7)

Then, the optimal estimates of the transmitted signals using
the noncoherent ML detector are determined as follows:

â =





a1, if ‖y‖
2

N ≤ b1;

ai, if bi−1 <
‖y‖2
N ≤ bi, i = 2, . . . , L− 1;

aL, if ‖y‖
2

N > bL−1.

(8)

�
The proof is provided in Appendix B.

III. SYMBOL ERROR PROBABILITY ANALYSIS AND
OPTIMAL CONSTELLATION DESIGN

In this section, we first analyze the exact average SEP of
the noncoherent ML detector for the considered SIMO system,
and then find the optimal constellation that minimizes the
average SEP.

A. Exact Average SEP Analysis

We notice that the random variable X = ‖y‖2
ai

follows a Chi-
squared distribution [33] with PDF and cumulative distribution
function (CDF) determined respectively by

fX(x) =
1

Γ(N)
xN−1e−x, (9a)

G(x) = 1− e−x
N−1∑

k=0

xk

k!
, x > 0. (9b)

For notation simplicity, we define

ui = u(ri) =
ln ri
ri − 1

, vi = v(ri) =
ri ln ri
ri − 1

, (10)

where ri = ai+1

ai
with ai defined in (5), and then by the

definition of bi in (7), we have bi−1 = aiui−1 and bi = aivi.
As a consequence, the decision rule given in (8) can be
reformulated in terms of X = ‖y‖2

ai
by

â =





a1, if ‖y‖
2

a1
≤ Nv1;

ai, if Nui−1 <
‖y‖2
ai
≤ Nvi, i = 2, . . . , L− 1;

aL, if ‖y‖
2

aL
> NuL−1.

(11)

Now, using the CDF in (9b) and decision region in terms of
X = ‖y‖2

ai
given in (11), we can obtain the expression of the

2Since the quantization levels are not uniform, the quantization algorithm
can be performed by using a bisection search with a complexity O

(
ln(L)

)
while the original ML method has a complexity of O(L).
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probability of correct decision on the i-th symbol ai, denoted
by Pc,i, as follows:

Pc,i =





G(Nv1), i = 1;

G(Nvi)−G(Nui−1), i = 2, · · · , L− 1;

1−G(NuL−1), i = L.

(12)

As each symbol is drawn with equal probability, the average
SEP denoted by Pe can be represented by

Pe = 1− 1

L

L∑

i=1

Pc,i

=
1

L

L−1∑

i=1

(
G(Nui) + 1−G(Nvi)

)
. (13)

All the above discussions can be summarized as the follow-
ing theorem:

Theorem 1: The average SEP for Rayleigh fading SIMO
channels using an L-levels constellation E = {E1, . . . , EL}
and the noncoherent ML detector is given by

Pe =
1

L

L−1∑

i=1

(
G(Nui) + 1−G(Nvi)

)
, (14)

where ui = u(ri) and vi = v(ri) are defined in (10) with
ri = ai+1

ai
= Ei+1+σ

2

Ei+σ2 . �

B. Optimal Constellation Design

Our primary purpose in this subsection is to propose an
optimal constellation design that minimizes the average SEP
subject to an average power constraint. Mathematically, the
optimization problem can be formally stated as below:

min
E

Pe s.t.

{
1
L

∑L
i=1Ei ≤ Es,

0 ≤ E1 < · · · < EL.
(15)

In order to solve this optimization problem, we now replace
the original design variables of the transmitted signal points
by the ratios between any two adjacent received constellation
signal points, i.e., ri = Ei+1+σ

2

Ei+σ2 = ai+1

ai
, i = 1, · · · , L− 1. In

this case, the optimization problem (15) can be rewritten as

min
a1,{ri}L−1

i=1

Pe s.t.

{
1 +

∑L−1
j=1

∏j
i=1 ri ≤

L(Es+σ
2)

a1
,

ri > 1, i = 1, · · · , L− 1.

(16)

We note that (16) is a constrained multivariate optimization
problem and in order to efficiently solve this problem, we
first establish the following lemma, which helps us to identify
the convexity of the objective function.

Lemma 2: Consider functions u(r) and v(r) defined in
Lemma 1. If we let function F (t) be defined by F (t) =
G(Nu(et)) + 1 − G(Nv(et)), t > 0, where G(t) is defined
in (9b), then F (t) is convex for t > 0. �

The proof has been provided in Appendix C.

We restate the optimization problem (16) in terms of vari-
ables ti = ln ri as follows:

min
a1,{ti}L−1

i=1

Pe =
1

L

L−1∑

i=1

F (ti) (17a)

s.t.

{
1 +

∑L−1
j=1 exp(

∑j
i=1 ti) ≤

L(Es+σ
2)

a1
,

ti > 0, i = 1, 2, . . . , L− 1.
(17b)

We note that a1 is only included in the constraint (17b). As
such, we should let ã1 = σ2 to maximize the feasible region
of ti, i = 1, . . . , L − 1, and remove it from the optimization
problem (17). In this case, we denote the system SNR as

SNR =
Es
σ2
. (18)

As a consequence, (17) can be stated formally in the following
problem:

Problem 1: Given constellation size L ≥ 2, find L − 1
positive numbers ti for i = 1, . . . , L− 1 such that

min
{ti}L−1

i=1 ,{wj}
L−1
j=1

Pe =
1

L

L−1∑

i=1

F (ti) (19a)

s.t. 1 +
L−1∑

j=1

exp(wj) ≤ L(1 + SNR), (19b)

j∑

i=1

ti = wj , ti > 0, i, j = 1, . . . , L− 1. (19c)

�
By Lemma 2, we know that the objective function in (19a)

is a sum of L − 1 convex functions F (ti), i = 1, . . . , L − 1,
and hence is convex for {ti}L−1i=1 . Moreover, we note that the
left hand side of (19b) is a sum of L − 1 convex functions
exp(wj), j = 1, . . . , L − 1 plus 1, which is convex for
{wj}L−1j=1 . Also, the constraint in (19c) is a linear constraint,
which is also convex. In other words, Problem 1 has now
been reformulated as a convex optimization problem, and
therefore can be efficiently solved by using the interior-point
method [34].

Though the problem is convex, a closed-form optimal solu-
tion to Problem 1 is hard to obtain since the expression of the
objective function contains high-order polynomials, where we
cannot have a closed-form expression using the Karush-Kuhn-
Tucker (KKT) conditions. However, when L = 2, we can
immediately attain that the optimal solution t̃1 is t̃1 = ln SNR
and thus, the corresponding optimal ratio r̃1 = SNR. We have
Ẽ1 = ã1 − σ2 = 0, and Ẽ2 = ã1r̃1 − σ2 = σ2(SNR − 1).
Therefore, in this case, the optimal transmitted binary con-
stellation that minimizes the exact bit error probability is
Ẽ = {0, σ2(SNR− 1)}.

C. Optimal Constellation in Large SNR Regime

In this subsection, we propose an optimal constellation
design that maximizes the diversity gain for the considered
noncoherent SIMO system when the value of SNR goes
asymptomatically large. The analysis can provide us with
useful insight of the constellation design when the transmitter
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is allowed to transmit at a relatively high power. Furthermore,
it also serves as a benchmark for the subsequent asymptotic
study for the case when the number of receiver antennas
goes to infinity. Essentially, the diversity gain quantitatively
characterizes how quickly SEP decays when SNR goes to
infinity and its formal definition is given as follows [16]:

Dsnr = − lim
SNR→∞

log Pe

log SNR
. (20)

Recall that Pe = 1
L

∑L−1
i=1 F (ri), where F (r) = G

(
Nu(r)

)
+

1−G
(
Nv(r)

)
, r > 1. We denote rmin = min {ri}L−1i=1 . By

Lemma 1, we know that F (r) is a monotonically decreasing
function of r > 1, and hence Pe is lower and upper bounded
by

1

L
F (rmin) ≤ Pe ≤

L− 1

L
F (rmin). (21)

By the definition of the diversity gain given in (20), we have
Dsnr = − limSNR→∞

logF (rmin)
log SNR . Therefore, maximizing the

diversity gain is reduced to maximizing rmin = min {ri}L−1i=1

as F (r) is a decreasing function for r > 1. That is, Problem
described in (17) can be re-written as

Problem 2: Given constellation size L ≥ 2, find r̃ such that

r̃ = max
{ri}L−1

i=1

min {ri}L−1i=1 (22a)

s.t.

{
1 +

∑L−1
j=1

∏j
i=1 ri ≤ L(1 + SNR),

ri > 1, i = 1, · · · , L− 1.
(22b)

�
As Ei < Ei+1 for i = 1, . . . , L − 1, we always have ri =
Ei+1+σ

2

Ei+σ2 > 1 and hence rmin = min {ri}L−1i=1 > 1. By (22b)
and denoting r0min = 1, we can conclude that

L−1∑

j=0

rjmin

(a)

≤ 1 +
L−1∑

j=1

j∏

i=1

ri
(b)

≤ L(SNR + 1), (23)

where rjmin denotes the jth power of rmin. As
∑L−1
j=0 r

j
min is an

increasing function of rmin, then we have r̃ = max rmin when
inequalities (a) and (b) in (23) are achieved simultaneously.
In other words, the maximum of rmin is achieved if and only
if the following conditions are satisfied simultaneously:

ã1 = σ2, r1 = · · · = rL−1 = r̃, (24)

where r̃ can be obtained by solving the following equation

L−1∑

j=0

r̃j = L(SNR + 1). (25)

As SNR > 0, then from (25), we always have r̃ > 1.
Remark 1: The solution given in (24) shows that the optimal

received constellation maximizing the diversity gain is the
constellation consisting of the geometrical sequence with the
noise variance as the initial term and r̃ as a ratio implicitly
determined by (25). �

We proceed to characterize the asymptotic behavior of the
average SEP more accurately for the constellation determined

by (24) when SNR goes to infinity, and the results can be
summarized as the following theorem:

Theorem 2: Given constellation size L and the noise vari-
ance σ2, the optimal L-level constellation Ẽ maximizing the
diversity gain for the Rayleigh fading SIMO channels using
the noncoherent ML detection is given by

Ẽ =
{

0, σ2(r̃ − 1), σ2(r̃2 − 1), · · · , σ2(r̃L−1 − 1)
}
,

where r̃ > 1 is attained by numerically solving (25). Corre-
spondingly, the resulting SEP is determined by

P̃e =
L− 1

L

{
G
(
Nũ
)

+ 1−G
(
Nṽ
)}
, (26)

where ũ = u(r̃) and ṽ = v(r̃). Moreover, when SNR goes
to infinity, the SEP for such optimal constellation has the
following asymptotic formula

P̃e = P̃∞e +O
(

(SNR)−
N+1
L−1 (ln SNR)N+1

)
, (27)

where P̃∞e is given by

P̃∞e =
L− 1

L
(L SNR)−

N
L−1

N∑

k=0

(
N ln(LSNR)

)k

(L− 1)kk!
. (28)

�
The proof is given in Appendix D.
From (28), we can observe that, if we let L = (ln SNR)α

with 0 < α < 1, then we have

lim
SNR→∞

ln ln P̃−1e
ln ln SNR

= lim
SNR→∞

ln ln
(
L−1
L (L SNR)−

N
L−1

∑N
k=0

(
N ln(LSNR)

)k
(L−1)kk!

)−1

ln ln SNR

= lim
SNR→∞

ln ln(L SNR)
N
L−1

ln ln SNR
+ lim

SNR→∞

ln ln
(

L−1
ln(LSNR)

)N

ln ln SNR

= lim
SNR→∞

ln ln
(
(ln SNR)α SNR

)

ln ln SNR
− lim

SNR→∞

ln(ln SNR)α

ln ln SNR

+ lim
SNR→∞

ln ln
(

(ln SNR)α

ln
(
(ln SNR)αSNR

)
)N

ln ln SNR
= 1− α. (29)

Remark 2: Three important remarks on Theorem 2 can be
made as follows:

1) Diversity Gain. It can be observed from Theorem 2 that
for a fixed transmission rate R = lnL nats/channel use,
the diversity gain for the optimal system is N

L−1 . In
particular, the optimal binary modulation (i.e. L = 2)
enables full diversity gain N for the noncoherent ML
detector. This result is fundamentally different from
that for a noncoherent generalized likelihood ratio test
(GLRT) receiver analyzed in [35], where in order to
achieve full diversity, the number of channel uses is at
least twice as large as the number of transmit antennas
(i.e., 2 in our considered SIMO system).
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Fig. 1. Comparison of SEP of the optimal constellation (i.e., the solution to
Problem 1) and the asymptotically optimal constellation for high SNR given
in Theorem 2 versus SNR.

2) Multiplexing-Diversity Gain Tradeoff for Large SNR. If
we let the transmission rate R varies with SNR such
that R = lnL = ln(ln SNR)α = α ln ln SNR, where
0 < α < 1, then by Theorem 2 we can attain
limSNR→∞

ln ln P̃−1
e

ln ln SNR = 1 − α, as derived in (29).
Following the concept of diversity-multiplexing tradeoff
for coherent MIMO communications developed in [16],
we can term α and 1 − α as multiplexing gain and
diversity gain for the considered noncoherent SIMO
system, respectively. As far as we know, this is for the
first time that such a diversity-multiplexing tradeoff is
characterized for non-coherent SIMO systems with the
CSI not available at both the transmitter and receiver.

3) Understanding of the Diversity-Multiplexing Tradeoff.
From (29), we can observe that, we should keep α < 1
in order to make sure that P̃e can be arbitrarily small
when SNR goes arbitrarily large. That in turn means
the maximum transmission rate when SNR goes to
infinity is dominated by R = α ln ln SNR < ln ln SNR,
which coincide with the information-theoretical study
in [32] on the memoryless (i.e., channel coherence time
Tc = 1 as assumed in our channel model) noncoherent
SIMO systems.

In Fig. 1, we illustrate the SEP curves of the optimal constel-
lation (i.e., the solution to Problem 1) and the asymptotically
optimal constellation for high SNR, given in Theorem 2.
We can see that for various values of L, the latter quickly
matches the former, which verifies the correctness of our
asymptotic analysis in this subsection. In Fig. 2, we also plot
the asymptotic SEP against SNR with different number of
receiver antennas and α to show the multiplexing-diversity
tradeoff given in Remark 2. It can be observed that extreme
low SEPs can be achieved by reducing the transmission rate,
i.e., decrease α in a high SNR regime.

D. Optimal Constellation Design for Massive SIMO Systems

In this subsection, we first quantitatively characterize how
quickly the SEP decays when the number of the receiver anten-
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Fig. 2. The asymptotic SEP against SNR with different number of receiver
antennas N and α.

nas goes to infinity, and then design an optimal constellation
that maximizes the geometrical coding gain. To that end, we
first establish the following Lemma, which plays an important
role in simplifying the expression of the SEP bounds.

Lemma 3: Let function ρ(t) be defined by ρ(t) = t
et−1 , and

then ρ(t) monotonically increases for t < 1, and monotoni-
cally decreases for t > 1. Moreover, ρ

(
u(r)

)
= ρ
(
v(r)

)
holds

for r > 0 and r 6= 1, where the functions u(r) and v(r) are
defined in Lemma 1. �

The proof is provided in Appendix E.
We are now ready to establish the following bounds on the

average SEP when the number of receiver antennas N goes
to infinity.

Theorem 3: The SEP derived in Theorem 1 is lower and
upper bounded by PLe < Pe < PUe , where

PUe =
4(L− 1)

√
N

L
√

2π
ρNmin, (30a)

PLe =
2
√
N − 1/6

L
√

2πNv(rmin)
ρNmin, (30b)

with ρmin defined by

ρmin = ρ (v(rmin)) =
v(rmin)

ev(rmin)−1
. (31)

�
The proof is provided in Appendix F.

Theorem 3 naturally allow us to unveil the significant
asymptotic behavior of the noncoherent massive SIMO sys-
tems. Before formally stating it, let us first introduce the
following new concept on full-receiver diversity, which is in
parallel to [16].

Definition 1: A transmission scheme is said to enable full-
receiver diversity N for a detector D if, for any given positive
numbers εL and εU , there exist positive constants C1, C2 and
GD(SNR, R) > 1 independent of N such that the probability
of detection error, PD satisfies the following condition:

C1G−N(1+εL)
D (SNR,R) ≤ PD ≤ C2G−N(1−εU )

D (SNR,R).
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Here, the constant GD(SNR,R), for presentation convenience,
is called geometrical coding gain and relies on both SNR and
the transmission data rate R. �

From Definition 1 and Theorem 3, we conclude that any
energy-based signalling enables full receiver diversity N for
the noncoherent ML detector. In addition, we can obtain
limN→∞ P

1
N
e = ρmin and thus, the corresponding geometrical

coding gain is GML(SNR,R) = ρ−1min with ρmin defined in
(31), which essentially characterizes how rapidly SEP decays
when the number of the received antennas goes to infinity.
Therefore, we should maximize it. Following the same argu-
ment as that of maximizing diversity gain in Sec. III-C when
SNR tends to infinity, we can arrive at the following theorem.

Theorem 4: Any energy-based constellation E enables the
full-receiver diversity gain for the massive SIMO systems
using non-coherent ML detector, and the geometrical coding
gain is determined by

GML(SNR,R) =
u(rmin)

eu(rmin)−1
=

v(rmin)

ev(rmin)−1
.

Moreover, the optimal constellation that optimizes the geo-
metrical coding gain is the same as one given in Theorem 2,
i.e.,

Ẽ =
{

0, σ2(r̃ − 1), · · · , σ2(r̃L−1 − 1)
}
,

where r̃ > 1 is obtained by numerically solving (25). Corre-
spondingly, the optimal SEP is determined by

P̃e =
L− 1

L

{
G
(
Nũ
)

+ 1−G
(
Nṽ
)}
, (32)

with ũ = u(r̃) and ṽ = v(r̃), and it is lower and upper
bounded by

2(L− 1)
√
N − 1/6

L
√

2πNv(r̃)
ρ̃N ≤ P̃e ≤

4(L− 1)
√
N

L
√

2π
ρ̃N (33)

with the optimal geometrical coding gain expressed by

G̃(SNR,R) = ρ̃−1 =
eu(r̃)−1

u(r̃)
=
ev(r̃)−1

v(r̃)
. (34)

�
As shown in Fig. 3, the SEP curve of the asymptotically

optimal constellation for high N , given in Theorem 4, quickly
approaches that of the optimal constellation (i.e., the solution
to Problem 1) as N increases.

We now see clearly that the optimal SEP decays geometri-
cally when the number of the receiver antennas goes to infinity.
However, it not clear yet that for a fixed N , how fast the
decaying speed is when either SNR or R = lnL goes to
infinity, since the geometrical coding gain is a function of r̃,
which is implicitly determined by (25), and thus an implicit
function of SNR and R. To make it more clear, let us now
investigate the asymptotic behaviour of the geometrical coding
gain when either SNR or R becomes large.
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Fig. 3. Comparison of SEP of the optimal constellation (i.e., the solution to
Problem 1) and the asymptotically optimal constellation for high SNR given
in Theorem 4 versus N .
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Fig. 4. The optimal geometrical coding gain (34) and its asymptotic
expression (35) for high SNR versus SNR, with different values of fixed
L.

1) Asymptotic Behaviour of G̃ML(SNR,R) for Large SNR:
For the case that R (i.e., L) is fixed and SNR goes to infinity,
using (45) given in Appendix D, we have

G̃−1ML(SNR,R) = eũ e−ũ

= e
( ln (LSNR)

L− 1
(LSNR)−

1
L−1 +O

(
(LSNR)−

2
L−1 ln SNR

))

×
(
1 +O((LSNR)−

1
L−1 ln SNR

))

=
e ln (LSNR)

L− 1
(LSNR)−

1
L−1 +O

(
(LSNR)−

2
L−1 ln2 SNR

)

=
e ln (LSNR)

L− 1
(LSNR)−

1
L−1

(
1 +O

(
(LSNR)

− 1
L−1 ln SNR

))

which is equivalent to giving us:
Proposition 1: The optimal geometrical coding gain has the

following asymptotic formula:

G̃ML(SNR,R) =
(L− 1)(LSNR)

1
L−1

e ln (LSNR)

+O
(
(LSNR)−

1
L−1 ln SNR

)
. (35)

�
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Fig. 5. The optimal geometrical coding gain (34) and its asymptotic
expression (38) for large R (i.e., L) versus R, with different values of fixed
SNR.

We can see from Proposition 1 that the geometrical coding
gain goes to infinity when SNR tends to infinity. As a
consequence, it is expected to see that there is no error floor
in the SEP curve when SNR tends to infinity. Our asymptotic
analysis of the geometrical coding gain G̃ML(SNR,R) when
SNR goes large is validated in Fig. 4.

2) Asymptotic Behavior of G̃ML(SNR,R) for Large R:
On the other hand, in order to investigate an asymptotic
behaviour of the optimal geometrical coding gain when the
transmission rate R or equivalently the constellation size L
tends to infinity, and SNR is fixed, we need to establish the
following two lemmas.

Lemma 4: For any given value of SNR, the equation

t = ln
(
1 + t(1 + SNR)

)
(36)

always has a unique positive solution for t > ln(1 + SNR),
and the resulting unique solution is denoted by τ(SNR). �

The proof is provided in Appendix G.
Lemma 5: Let r̃ be determined by (25). Then, if L goes to

infinity, r̃ has the following asymptotic formula

r̃ = 1 + τ(SNR)L−1+(
1 + τ(SNR)(1 + SNR)

)
ln2
(
1 + τ(SNR)(1 + SNR)

)

τ(SNR)(1 + SNR)
L−2

+O
(
L−3

)
, (37)

where τ(SNR) is determined by (36). �
The proof is provided in Appendix H.
Proposition 2: Let r̃ be determined by (25). Then, the opti-

mal geometrical coding gain G̃(SNR,R) defined in Theorem 4
has the following asymptotic formula,

G̃(SNR,R) = 1 +
τ2(SNR)

8L2
+O

(
L−3

)
. (38)

when L goes to infinity, where τ(SNR) is determined
by (36). �

The proof is provided in Appendix I.
In Figure 5, we plot the curves of the geometrical coding

gain and its asymptotic expression when R approaches infinity.
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Fig. 6. The array multiplexing gain and diversity gain tradeoff for large N
with different β.

We can see from the figure that the curves of the asymptotic
results quickly coincide with that of the exact results, which
verifies the effectiveness of our asymptotic analysis.

3) Diversity-Multiplexing Gain Tradeoff for Large N : To
characterize the new diversity-multiplexing gain tradeoff for
large N , we let the rate R = lnL varies with N . To model this
relationship, we introduce a new concept of array-multiplexing
gain defined as follows:

Definition 2: The array-multiplexing gain 0 < rarray < 1
describes how the rate R increases as the number of antenna
N approaches to infinity. Mathematically,

rarray = lim
N→∞

R(N)
1
2 lnN

,

in which the factor 1
2 is due to the usage of real signalling. �

We now derive the diversity gain by investigating the asymp-
totic behavior of the error performance P̃e given in (32) as
the transmission rate R tends to infinity together with N for
any fixed SNR. We then attain the following important result
on the tradeoff between the array-multiplexing gain and the
diversity gain.

Theorem 5: For any fixed SNR, if we set the array multi-
plexing gain as β, then the corresponding geometrical coding
gain is exp

( τ2(SNR)
8

)
and the diversity gain is N1−β . �

The proof is given in Appendix J.
Theorem 5 reveals such a significant fact that if about Nβ

receiving antennas are used for enhancing the transmission
data rate, then there are about N1−β receiving antennas left for
reliably recovering the information symbols. The asymptotic
SEP performance against the number of receiver antennas
is plotted in Fig. 6 with different β to show the array
multiplexing and diversity gain tradeoff given in Theorem 5.
As can be found that, with the increase of the number of
receiver antennas, we can achieve very low SEP as targeted
in IIoT.

IV. SIMULATION RESULTS

In this section, we carry out computer simulations to verify
our theoretical results. We also compare our proposed opti-
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mal system with the minimum-distance constellation design
scheme in [26], i.e., a unipolar L-level PAM constellation
(L-PAM) with equal power distance, in which the average
received signal energy is approximated as Gaussian random
variable with constant variance in the large-antenna limit by
the central limit theorem. Therefore, it leads to a suboptimal
detector. For fair comparisons and simplicity, we estimate the
transmitted signals using the proposed fast ML detector in
Algorithm 1 for both constellations.

Figs. 7(a) and 7(b) show the SEP in the noncoherent SIMO
system over Rayleigh fading channels with the number of
receiver antennas increasing and various constellation sizes
at SNR = 0dB and SNR = 10dB, respectively. In order to
examine the derived closed-form expression on SEP in (13),
we carry out Monte Carlo simulations to compare the sim-
ulated average SEP results with the theoretical expression in
these two figures. The results show that they match well with
each other, which verifies the correctness of our analysis.
Therefore, in the following, we only use the theoretical result
to show some properties. We can also see that the SEP of both
schemes approximately exhibits exponential decay as the num-
ber of receiver antenna increases, and the proposed optimal
constellation yields much better error performance gain than
the minimum-distance PAM constellation. Specifically, we can
observe from Figs. 7(a) and 7(b) that the performance gain
also depends on the number of receiver antennas and SNR.
Furthermore, the performance gain enlarges as the number of
receiver antennas or SNR increases.

The SEP of the both constellations when SNR increases is
depicted in Figs. 8(a) and 8(b), where the number of receiver
antennas is fixed at N = 32 and N = 64, respectively.
We can observe from these two figures that the SEP of
the proposed optimal constellation approximately exhibits a
polynomial decay as SNR increases, whereas the minimum-
distance PAM constellation yields error performance floors
at the medium and high SNR regime. The reason for this
phenomenon is that the proposed optimal constellation adapts
to SNR, while the PAM constellation is fixed for any SNR.

V. CONCLUSIONS

In this paper, we have devised an optimal energy-based
modulation (i.e., nonnegative PAM) constellation for nonco-
herent SIMO systems over Rayleigh fading, which is de-
signed to enable the ultra-reliable low-latency communications
required by critical industrial IoT use cases. Specifically,
we first derive a fast noncoherent ML detection algorithm
and the closed-form expression of its SEP, and then find
an optimal geometrical received nonnegative PAM constel-
lation that can maximize the diversity gain for large SNR.
In addition, the lower and upper bounds of SEP have been
derived to quantitatively characterize how fast SEP decays as
the number of receiver antennas tends to large, which show
that any nonnegative PAM constellation enables full receiver
diversity for the large number of antennas. Again, the optimal
received constellation that maximizes the geometrical coding
gain has been found to be geometrical for the considered
noncoherent massive SIMO system. Moreover, for this optimal

constellation, two kinds of multiplexing and diversity gain
tradeoffs in terms of SNR and the number of the received
antennas have been characterized. Simulation results have cor-
roborated our analytical analysis and showed that the efficient
utilization of the statistics of the channels at the transceiver
leads to significant performance enhancement, particularly for
the massive SIMO system or the high SNR regime. As a future
work, we will extend the design framework developed in this
paper to the multi-user scenario with more than one users
accessing the channel at the same time. More importantly, we
will also implement the developed algorithms on a real-world
software-defined radio (SDR) platform.

APPENDIX

A. Proof of Lemma 1

First, we note that the fundamental inequality in information
theory [36, Lemma 2.29] is

t− 1− ln t ≥ 0, t > 0, (39)

where the equality holds if and only if t = 1.
1) For r > 1, we note that ln r > 0, r ln r > 0, and r−1 >

0. Hence, we have u(r) > 0 and v(r) > 0. Now, to
show u(r) < 1 and v(r) > 1 for r > 1 is equivalent
to show that: (r − 1) − ln r > 0, r ln r − (r − 1) =

r
(

1
r − 1 − ln

(
1
r

))
> 0, which are both true for r > 1

by the fundamental inequality (39).
2) By using the fundamental inequality (39) again, we can

show that, for r > 1, the first-order derivatives of u(r)
and v(r) have the following properties:

u′(r) = −
1
r − 1− ln 1

r

(r − 1)2
< 0, v′(r) =

r − 1− ln r

(r − 1)2
> 0,

Hence, u(r) and v(r) are monotonically decreasing and
increasing functions of r, for r > 1, respectively.

This completes the proof of Lemma 1. �

B. Proof of Algorithm 1

We first consider then case when bi−1 <
‖y‖2
N ≤ bi, for

i = 2, . . . , L − 1. By definition (7), for k = 1, . . . , i − 1, we
have:

‖y‖2
N

> bi−1 =
ai−1ai ln

(
ai
ai−1

)

ai − ai−1
=
ai ln

(
ai
ai−1

)

ai
ai−1
− 1

= aiu
( ai
ai−1

) (a)

≥ aiu
( ai
ak

)
=
akai ln

(
ai
ak

)

ai − ak
. (40)

where inequality (a) holds since u
(
ai
ai−1

)
≥ u

(
ai
ak

)
for ak ≤

ai−1, as shown by Lemma 1. Likewise, for ` = i+ 1, . . . , L,
we have that:

‖y‖2
N
≤ bi =

aiai+1 ln
(ai+1

ai

)

ai+1 − ai
=
ai
ai+1

ai
ln
(ai+1

ai

)
ai+1

ai
− 1

= aiv
(ai+1

ai

) (b)

≤ aiv
(a`
ai

)
=
aia` ln

(
a`
ai

)

a` − ai
. (41)
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Fig. 7. Performance comparison for 1-bit (L = 2), 2-bit (L = 4), 3-bit (L = 8) and 4-bit (L = 16) against the number of receiver antennas N. (a) SNR =
0dB, (b) SNR = 10dB.

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

S
E

P

N=32

 

 

2−PAM
Asymptotic optimal 2−PAM
4−PAM
Asymptotic optimal 4−PAM
8−PAM
Asymptotic optimal 8−PAM
16−PAM
Asymptotic optimal 16−PAM

(a) N = 32

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

S
E

P

N=64

 

 

2−PAM
Asymptotic optimal 2−PAM
4−PAM
Asymptotic optimal 4−PAM
8−PAM
Asymptotic optimal 8−PAM
16−PAM
Asymptotic optimal16−PAM

(b) N = 64

Fig. 8. Performance comparison for 1-bit (L = 2), 2-bit (L = 4), 3-bit (L = 8) and 4-bit (L = 16) versus SNR. (a) N = 32 , (b) N = 64.

where (b) is true since v
(
a`
ai

)
≥ v

(ai+1

ai

)
for a` ≥ ai+1 as

indicated in Lemma 1. Then, by Eqs. (40) and (41), we have

‖y‖2
ai

+N ln ai <
‖y‖2
ak

+N ln ak, k = 1, . . . , i− 1,

‖y‖2
ai

+N ln ai ≤
‖y‖2
a`

+N ln a`, ` = i+ 1, . . . , L.

Now, according to the ML decision rule in (4), we conclude
that for bi−1 <

‖y‖2
N ≤ bi, we have â = ai, i = 2, . . . , L− 1.

The cases when ‖y‖
2

N ≤ b1 and ‖y‖
2

N > bL−1 can be proved
in a similar fashion, and hence they are omitted for brevity.
This completes the proof of Algorithm 1. �

C. Proof of Lemma 2

It is sufficient to prove that the second-order derivative of
F (t) is always positive for t > 0. To that end, we denote
u1(t) = u(et) and v1(t) = v(et). Now, using the PDF in (9a)

and its CDF in (9b), we have

G′(Nu1(t)) = fX(Nu1(t))Nu′1(t)

=
NNuN−11 (t)e−Nu1(t)u′1(t)

(N − 1)!
, (42a)

G′(Nv1(t)) = fX(Nv1(t))Nv′1(t)

=
NNvN−11 (t)e−Nv1(t)v′1(t)

(N − 1)!
. (42b)

Since v1(t) = t+u1(t) = etu1(t), where u1(t) is determined
by u1(t) = t

et−1 , we can obtain vN−11 (t) = e−teNtuN−11 (t),
v′1(t) = et(u1(t) + u′1(t)), and e−Nv1(t) = e−Nte−Nu1(t).
Thus, (42a) and (42b) have the following relationship:

G′(Nv1(t)) =
NNuN−11 (t)e−Nu1(t)(u1(t) + u′1(t))

(N − 1)!

= G′(Nu1(t)) +
NNuN1 (t)e−Nu1(t)

(N − 1)!
.
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Now, the first-order derivative of F (t) can be reformulated by

F ′(t) = G′(Nu1(t))−G′(Nv1(t))

= −N
NuN1 (t)e−Nu1(t)

(N − 1)!
.

As a consequence, the second-order derivative of F (t) can be
calculated by

F ′′(t) = −N
N+1uN−11 (t)u′1(t)(1− u1(t))e−Nu1(t)

(N − 1)!
.

By Lemma 1 and the definition of u1(t), we have 0 < u1(t) <
1. Also, we let r = et, then we have u′1(t) = u′(r)et < 0.
Now, we can conclude that F ′′(t) > 0 for t > 0.

This completes the proof of Lemma 2. �

D. Proof of Theorem 2

First, starting from the optimal ratio r̃ determined by (25),
we can attain that r̃L−1 is lower and upper bounded by

SNR + 1 < r̃L−1 < L(SNR + 1). (43)

Hence, we can obtain the following asymptotic formula of r̃
when SNR tends to infinity:

r̃ =
(
L(SNR + 1) +O(r̃L−2)

) 1
L−1

= (LSNR)
1

L−1
(
1 +O(SNR−

1
L−1 )

) 1
L−1

= (LSNR)
1

L−1 +O(1). (44)

Now, substituting (44) into ũ and ṽ produces

ũ = ln r̃
(1

r̃
+

1

r̃2
+ · · ·

)

=
ln(LSNR)

L− 1
(LSNR)−

1
L−1 +O

(
(LSNR)−

2
L−1 ln SNR

)
,

(45)

ṽ = r̃ũ =
ln(LSNR)

L− 1
+O

(
(LSNR)−

1
L−1 ln SNR

)
. (46)

Then, by expanding et into the Taylor series at t = 0 with the
Lagrange remainder term, we obtain

eNũ =
N∑

k=0

(Nũ)k

k!
+

(Nũ)N+1eξ

(N + 1)!
, (47)

where 0 ≤ ξ ≤ Nũ. Hence, we have

G
(
Nũ
)

= 1− e−Nũ
N−1∑

k=0

(Nũ)k

k!

= e−Nũ
(
eNũ −

N−1∑

k=0

(Nũ)k

k!

)

(a)
=

(Nũ)Ne−Nũ

N !
+

(Nũ)N+1e−(Nũ−ξ)

(N + 1)!

(b)
=

(N ln(LSNR)
L−1

)N

N !
(LSNR)−

N
L−1

+O
(
(SNR)−

N+1
L−1 (ln SNR)N+1

)
,

where we have used (47) in (a) and (45) in (b).

Likewise, utilizing (44), and (46), we can have

1−G
(
Nṽ
)

= e−Nṽ
N−1∑

k=0

(Nṽ)k

k!

= e−Nṽ
(N−1∑

k=0

(N ln(LSNR)
L−1 )k

k!
+O

(
(SNR)−

1
L−1 (ln SNR)N−1

))

=
(

(LSNR)−
N
L−1 +O

(
SNR−

N+1
L−1
))

×
(N−1∑

k=0

(N ln(LSNR)
L−1 )k

k!
+O

(
(SNR)−

1
L−1 (ln SNR)N−1

))
.

Therefore, we have

P̃e =
L− 1

L

{
G
(
Nũ
)

+ 1−G
(
Nṽ
)}
,

= P̃∞e +O
(
(SNR)−

N+1
L−1 (ln SNR)N+1

)
,

where notation P̃∞e denotes the dominant term of P̃e at high
SNR regime given by:

P̃∞e =
L− 1

L
(L SNR)−

N
L−1

N∑

k=0

(N ln(LSNR))k

(L− 1)kk!
.

We completes the proof of Theorem 2. �

E. Proof of Lemma 3

Since ρ′(t) = 1−t
et−1 , we have ρ′(t) > 0 for t < 1 and ρ′(t) <

0 for t > 1, i.e., with the increases of t, ρ(t) monotonically
increases for t < 1 and monotonically decreases for t > 1.
In addition, for r > 0 and r 6= 1, it can be verified directly
that ρ(v(r))ρ(u(r)) = v(r)

u(r) exp
(
u(r)−v(r)

)
= r exp

(
ln r
r−1− r ln r

r−1
)

=

r exp(− ln r) = 1, and hence we have ρ
(
u(r)

)
= ρ
(
v(r)

)
.

This completes the proof of Lemma 3. �

F. Proof of Theroem 3

Let us prove the upper bound first. On the one hand, similar
to (47), by using Taylor series at t = 0, we know that eNu

can be expanded as

eNu =
3N−1∑

k=0

(Nu)k

k!
+

(Nu)3Neξ

(3N)!
. (48)

where 0 ≤ ξ ≤ 3Nu. Therefore, according to (9b), we can
rewrite G

(
Nu
)

as

G
(
Nu
)

= 1−
( 3N−1∑

k=0

(Nu)k

k!
−

3N−1∑

k=N

(Nu)k

k!

)
e−Nu

(a)
= 1−

(
eNu − (Nu)3Neξ

(3N)!
−

3N−1∑

k=N

(Nu)k

k!

)
e−Nu

=
(Nu)3Ne−(Nu−ξ)

(3N)!
+ e−Nu

3N−1∑

k=N

(Nu)k

k!
, (49)

where we have used (48) in step (a). On the other hand, for
0 < u < 1, we consider sequence ck = (Nu)k

k! where ck+1

ck
=

Nu
k ≤ u < 1 for k = N, . . . , 3N − 1. Hence, we have

(Nu)k

k!
≤ (Nu)N

N !
, k = N, · · · , 3N − 1. (50)
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Now, combining (49) with (50) yields

G
(
Nu
)
≤ (Nu)3N

(3N)!
+

2N(Nu)N

N !
e−Nu (51)

Then, using the upper bound of the Stirling’s inequality in [37],
i.e.,

NN

N !
≤ eN√

2πN
. (52)

We can further give the upper bound of G
(
Nu) in (51) by

G
(
Nu
)
<

1√
6πN

(ue
3

)3N
+

√
2N√
π

( u

eu−1

)N

<
3
√
N√

2π

( u

eu−1

)N
, (53)

where we have used the fact that ue
3 < u

eu−1 for 0 < u < 1.
Regarding the second term of Pe, we notice that

1−G
(
Nv
)

= e−Nv
N−1∑

k=0

(Nv)k

k!
. (54)

From Lemma 1 we know that v > 1. In this case, we consider
sequence dk = (Nv)k

k! , where dk+1

dk
= Nv

k+1 ≥ v > 1 for k =
0, 1, · · · , N − 1, we have that

(Nv)k

k!
≤ (Nv)N−1

(N − 1)!
, k = 0, . . . , N − 1. (55)

Now, combining (54) with (55), we can upper bound 1 −
G
(
Nv
)

by

1−G
(
Nv
)
≤ e−NvN(Nv)N−1

(N − 1)!
. (56)

Using the upper bound of the Stirling inequality (52)
again, (56) can be further upper bounded by

1−G
(
Nv
)
≤
√
N

v
√
2π

(
v

ev−1

)N
<
√
N√
2π

(
v

ev−1

)N
, (57)

By Lemma 3, we know

ρ =
u

eu−1
=

v

ev−1
. (58)

Combing (53), (57), (58) with (21), we conclude that

Pe =
L− 1

L
G
(
Nu(rmin)

)
+ 1−G

(
Nv(rmin)

)

≤ 4(L− 1)
√
N

L
√

2π
ρNmin

This completes the proof of Proposition 3 on the upper bound.
Now, we consider to prove the lower bound of Lemma (3)

and by (21) again, we have

Pe =
1

L

L−1∑

i=1

(
G(Nui) + 1−G(Nvi)

)

≥ 1

L

(
e−Numin

(Numin)N

N !
+ e−Nvmin

(Nvmin)N−1

(N − 1)!

)

(a)

≥ 1

L

(√
N − 1/6√
2πNvmin

( umin

eumin−1

)N
+

√
N − 1/6√
2πNvmin

( vmin

evmin−1

)N)

(b)
=

2
√
N − 1/6

L
√

2πNvmin

( vmin

evmin−1

)N
.

where (a) is true by using the lower bound of Stirling’s
inequality in [38], i.e.,

NN

N !
≥ eN

√
N − 1/6√
2πN

. (59)

Also, in (b), we have used (58). Now, we complete the proof
of the lower bound, and thus Theorem 3. �

G. Proof of Lemma 4
Consider a function f(t) = et −

(
1 + t(1 + SNR)

)
for

t > ln(1 + SNR). Since its first-order derivative f ′(t) =
et− (1 + SNR) > 0 when t > ln(1 + SNR), it monotonically
increases. In order to prove f(ln(1+SNR)) < 0, we consider
a function g(t) = t − (1 + t ln t) for t > 1. Notice its
first-order derivative g′(t) = − ln t < 0 for t > 1. Hence,
g(t) monotonically decreases. Since g(1) = 0, we have
g(t) < 0 for t > 1. Therefore, we attain f(ln(1 + SNR)) =
(1 + SNR) −

(
1 + (1 + SNR) ln((1 + SNR))

)
< 0. In

addition, it is not difficult to see that f(∞) = ∞. Hence,
there exists a unique positive number τ(SNR) dependent
of SNR satisfying eτ(SNR) = 1 + τ(SNR)(1 + SNR), i.e.,
τ(SNR) = ln (1 + τ(SNR)(1 + SNR)). This completes the
proof of Lemma 4. �

H. Proof of Lemma 5

Substituting the identity
L−1∑
j=0

r̃j = r̃L−1
r̃−1 into (25), we obtain

r̃L = L(1 + SNR)(r̃ − 1) + 1. Hence, we have

r̃ =
(
L(1 + SNR)(r̃ − 1) + 1

) 1
L

= exp
( ln

(
L(1 + SNR)(r̃ − 1) + 1

)

L

)

= 1 +
ln
(
L(1 + SNR)(r̃ − 1) + 1

)

L

+
ln2
(
L(1 + SNR)(r̃ − 1) + 1

)

2L2
+O(L−3). (60)

On the other hand, from (25) we know r̃L−1 > 1 + SNR.
Therefore, we have r̃ > (1 + SNR)1/(L−1) > 1 + ln(1+SNR)

L
and thus, limL→∞ L(r̃ − 1) ≥ ln(1 + SNR). Combining this
with Lemma 4 and (60) yields τ(SNR) = limL→∞ L(r̃− 1).
Hence, we can write

r̃ = 1 + τ(SNR)L−1 +AL−2 +O(L−3), (61)

so that ln
(
L(1 + SNR)(r̃− 1) + 1

)
can be represented using

its Taylor expansion by

ln
(
L(1 + SNR)(r̃ − 1) + 1

)
= ln τ(SNR)

+ ln
(
1 +

A

(1 + τ(SNR)(1 + SNR))L
+O(L−2)

)

= ln τ(SNR) +
A

(1 + τ(SNR)(1 + SNR))L
+O(L−2)

(62)

Now, substituting (61) and (62) into the respective left side
and the right side of (60) produces

A =

(
1 + τ(SNR)(1 + SNR)

)
ln2
(
1 + τ(SNR)(1 + SNR)

)

τ(SNR)(1 + SNR)
.

This completes the proof of Lemma 5. �
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I. Proof of Proposition 2

Using the Taylor expansion of function ln(1 + t) and
Lemma 5 gives us

u(r̃) =
ln r̃

r̃ − 1
=

ln
(
1 + (r̃ − 1)

)

r̃ − 1

= 1− r̃ − 1

2
+

(r̃ − 1)2

3
+O(L−3). (63)

Then, using the Taylor expansion of function et and (63), we
have

e1−u(r̃) = 1 + (1− u(r̃)) +
(1− u(r̃))2

2
+O(L−3)

= 1 +
r̃ − 1

2
− 5(r̃ − 1)2

24
+O(L−3). (64)

Now, combining (60) and (64) with the definition of ρ̃ in
Theorem 4 results in

ρ̃ = u(r̃)e1−u(r̃) = 1− (r̃ − 1)2

8
+O(L−3)

= 1− τ2(SNR)

8L2
+O(L−3). (65)

Therefore, we obtain

G̃(SNR,R) = ρ̃−1 = 1 +
τ2(SNR)

8L2
+O(L−3).

This completes the proof of Proposition 2. �

J. Proof of Theorem 5

First of all, by Definition 2, we have β = limN→∞
R

1
2 lnN

.

Recall that R = lnL, then we have L = N
β
2 + o(N

β
2 ). As

β > 0 by definition, L increases without bound when N goes
to infinity.

We now consider how the error performance changes when
N (as well as L) goes to infinity. We first study the geometrical
coding gain defined in (34). By (38) in Proposition 2, we notice
that

lim
N→∞

ρ̃N
β (a)

= lim
N→∞

G̃(SNR,R)
−Nβ

(a)
= lim

N→∞

(
1 +

τ2(SNR)

8Nβ

)−Nβ

(b)
= lim

N→∞

(
1 +

τ2(SNR)

8Nβ

) 8Nβ

τ2(SNR)

−τ2(SNR)
8

(c)
= exp

(
− τ2(SNR)

8

)
.

where (a) is due to (34), while we used (38) and the fact that
L = N

β
2 + o(N

β
2 ) in (b), and (c) results from the definition

of Euler’s number.
Then, with the help of (37) in Lemma 5, we know

limN→∞ r̃ = 1. In addition, from (63) we have
limN→∞ u(r̃) = 1. Furthermore, as v(r̃) = r̃u(r̃), we obtain
limN→∞ v(r̃) = 1. Now, by (33) in Theorem 4, we have

exp
(
− τ2(SNR)

8

)
≤ limN→∞ P̃

1

N1−β
e ≤ exp

(
− τ2(SNR)

8

)
.

Therefore, by Definition 1, we conclude that the geometrical
coding gain is exp

( τ2(SNR)
8

)
and the diversity gain is N1−β .

This completes the proof of Theorem 5. �

REFERENCES

[1] M. N. Sadiku, Y. Wang, S. Cui, and S. M. Musa, “Industrial internet of
things,” Int. J. Adv. Sci. Res. Eng., vol. 3, 2017.

[2] S. H. Alsamhi, O. Ma, M. S. Ansari, and Q. Meng, “Greening internet
of things for smart everythings with a green-environment life: A survey
and future prospects,” eprint arXiv:1805.00844, May 2018.

[3] C. Zhu, V. C. M. Leung, L. Shu, and E. C. . Ngai, “Green internet of
things for smart world,” IEEE Access, vol. 3, pp. 2151–2162, 2015.

[4] T. Sauter, S. Soucek, W. Kastner, and D. Dietrich, “The evolution of
factory and building automation,” IEEE Ind. Electron. Mag., vol. 5,
pp. 35–48, Sept. 2011.

[5] V. K. L. Huang, Z. Pang, C. J. A. Chen, and K. F. Tsang, “New trends
in the practical deployment of industrial wireless: From noncritical to
critical use cases,” IEEE Ind. Electron. Mag., vol. 12, pp. 50–58, June
2018.

[6] M. Luvisotto, Z. Pang, and D. Dzung, “Ultra high performance wireless
control for critical applications: Challenges and directions,” IEEE Trans.
Ind. Informat., vol. 13, pp. 1448–1459, June 2017.

[7] M. Luvisotto, Z. Pang, D. Dzung, M. Zhan, and X. Jiang, “Physical layer
design of high-performance wireless transmission for critical control
applications,” IEEE Trans. Ind. Informat., vol. 13, pp. 2844–2854, Dec.
2017.

[8] H. Chen, R. Abbas, P. Cheng, M. Shirvanimoghaddam, W. Hardjawana,
W. Bao, Y. Li, and B. Vucetic, “Ultra-reliable low latency cellular
networks: Use cases, challenges and approaches,” to appear in IEEE
Commun. Mag., 2018.

[9] N. A. Johansson, Y. P. E. Wang, E. Eriksson, and M. Hessler, “Radio
access for ultra-reliable and low-latency 5g communications,” in 2015
IEEE International Conference on Communication Workshop (ICCW),
pp. 1184–1189, June 2015.

[10] N. Brahmi, O. N. C. Yilmaz, K. W. Helmersson, S. A. Ashraf, and
J. Torsner, “Deployment strategies for ultra-reliable and low-latency
communication in factory automation,” in 2015 IEEE Globecom Work-
shops (GC Wkshps), pp. 1–6, Dec. 2015.

[11] D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge university press, 2005.

[12] ITU-R RSG1SG5-IOT-16 Information Document 8, “Brief summary of
the ITU-R study group 1 related studies (incl. RA-15 and WRC-15
related outcomes,” Nov. 2016.

[13] ACMA, “The internet of things and the ACMA’s areas of focus emerging
issues in media and communications occasional paper,” Nov. 2015.

[14] Ofcom, “Spectrum above 6 GHz for future mobile communications,”
Feb. 2015.

[15] H. Holma and A. Toskala, LTE advanced: 3GPP solution for IMT
advanced. New York, NY, USA:Wiley, 1st ed., 2012.

[16] L. Zheng and D. Tse, “Diversity and multiplexing: a fundamental
tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49,
pp. 1073–1096, May 2003.

[17] A. Lozano and N. Jindal, “Transmit diversity vs. spatial multiplexing
in modern MIMO systems,” IEEE Trans. Wireless Commun., vol. 9,
pp. 186–197, Jan. 2010.

[18] T.Marzetta, “Noncooperative cellular wireless with unlimited numbers
of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11,
pp. 3590–3600, Nov. 2010.

[19] J. Jose, A. Ashikhmin, T. Marzetta, and S. Vishwanath, “Pilot contamina-
tion and precoding in multi-cell TDD systems,” IEEE Trans. Commun.,
vol. 10, no. 8, pp. 2640–2651, Aug. 2011.

[20] R. Baldemair, E. Dahlman, G. Fodor, G. Mildh, S. Parkvall, Y. Selen,
H. Tullberg, and K. Balachandran, “Evolving wireless communications:
Addressing the challenges and expectations of the future,” IEEE Veh.
Technol. Mag., vol. 8, no. 1, pp. 24–30, Mar. 2013.

[21] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral effi-
ciency of very large multiuser MIMO systems,” IEEE Trans. Commun.,
vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[22] E. Larsson, F. Tufvesson, O. Edfors, and T. Marzetta, “Massive MIMO
for next generation wireless systems,” IEEE Commun. Mag., vol. 52,
no. 2, pp. 186–195, Feb. 2014.

[23] T. K. Vu, C. F. Liu, M. Bennis, M. Debbah, M. Latva-aho, and C. S.
Hong, “Ultra-reliable and low latency communication in mmwave-
enabled massive MIMO networks,” IEEE Commun. Lett., vol. 21,
pp. 2041–2044, Sept. 2017.

[24] P. Popovski, J. J. Nielsen, C. Stefanovic, E. d. Carvalho, E. Strom,
K. F. Trillingsgaard, A. S. Bana, D. M. Kim, R. Kotaba, J. Park,
and R. B. Sorensen, “Wireless access for ultra-reliable low-latency
communication: Principles and building blocks,” IEEE Netw., vol. 32,
pp. 16–23, Mar. 2018.

IT 8.1
Typewritten text
IEEE Internet of Things Journal Volume: 6 , Issue: 4 , Aug 2019 



[25] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable,
and low-latency wireless communication with short packets,” Proc. of
the IEEE, vol. 104, pp. 1711–1726, Sept. 2016.

[26] M. Chowdhury, A. Manolakos, and A. Goldsmith, “Scaling laws for
noncoherent energy-based communications in the SIMO MAC,” IEEE
Trans. Inf. Theory, vol. 62, no. 4, pp. 1980–1992, Apr. 2016.

[27] Y.-Y. Zhang, J.-K. Zhang, and H.-Y. Yu, “Physically securing energy-
based massive MIMO MAC via joint alignment of multi-user constel-
lations and artificial noise,” IEEE J. Sel. Areas Commun., vol. 36, Apr.
2018.

[28] A. Manolakos, M. Chowdhury, and A. Goldsmith, “Energy-based mod-
ulation for noncoherent massive SIMO systems,” IEEE Trans. Wireless
Commun., vol. 15, pp. 7831–7846, Nov. 2016.

[29] L. Jing, E. De Carvalho, P. Popovski, and A. O. Martinez, “Design and
performance analysis of noncoherent detection systems with massive
receiver arrays,” IEEE Trans. Signal Processing, vol. 64, pp. 5000–5010,
Oct. 2016.

[30] I. C. Abou-Faycal, M. D. Trott, and S. Shamai, “The capacity of discrete-
time memoryless Rayleigh-fading channels,” IEEE Trans. Inf. Theory,
vol. 47, pp. 1290–1301, May 2001.

[31] M. C. Gursoy, H. V. Poor, and S. Verdu, “The noncoherent Rician fading
channel-part I: Structure of the capacity-achieving input,” IEEE Trans.
Wireless Commun., vol. 4, pp. 2193–2206, Sept. 2005.

[32] A. Lapidoth and S. M. Moser, “Capacity bounds via duality with
applications to multiple-antenna systems on flat-fading channels,” IEEE
Trans. Inf. Theory, vol. 49, pp. 2426–2467, Oct 2003.

[33] R. J. Muirhead, Aspects of multivariate statistical theory. New York:
John Wiley & Sons, INC, 1982.

[34] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ.
Press, 2004.

[35] M. Brehler and M. K. Varanasi, “Asymptotic error probability analysis
of quadratic receiver in Rayleigh-fading channels with applications to
a unified analysis of coherent and noncoherent space-time receivers,”
IEEE Trans. Inform. Theory, vol. 47, pp. 2383–2399, Sept. 2001.

[36] R. W. Yeung, Information Theory and Network Coding. Springer, 2008.
[37] S. Jozsef and L. Debnath, “On certain inequalities involving the constant

e and their applications,” J. Math. Anal. Appl., vol. 249, no. 2, pp. 569–
582, 2000.

[38] N. Batir, “Sharp inequalities for factorial n,” Proyecciones, vol. 27, no. 1,
pp. 97–102, 2008.

Xiang-Chuan Gao received the B.Sc. and M.Eng.
degrees from Zhengzhou University, Zhengzhou,
China, in 2005 and 2008, respectively, and the
Ph.D. degree from Beijing University of Posts and
Telecommunications, Beijing, China, in 2011. His
research interests include massive MIMO, coopera-
tive communications, and visible light communica-
tion.

Jian-Kang Zhang (SM’09) received the B.S. de-
gree in information science (math.) from Shaanxi
Normal University, Xian, China, the M.S. degree
in information and computational science (math.)
from Northwest University, Xian, China, and the
Ph.D. degree in electrical engineering from Xidian
University, Xian, China, in 1983, 1988, and 1999, re-
spectively. He is currently Associate Professor in the
Department of Electrical and Computer Engineering
at McMaster University, Hamilton, ON, Canada. He
has hold research positions in McMaster University

and Harvard University.
His research interests are in the general area of signal processing, digital

communications, signal detection and estimation. Dr. Zhang is the coauthor
of the paper that received the IEEE Signal Processing Society Best Young
Author Award in 2008. He has served as Associate Editors for the IEEE SIG-
NAL PROCESSING LETTERS and IEEE TRANSACTIONS ON SIGNAL
PROCESSING. He is currently serving as an Associate Editor for the Journal
of Electrical and Computer Engineering.

He (Henry) Chen (S’10-M’16) received the Ph.D.
degree in Electrical Engineering from the University
of Sydney, Sydney, Australia, in 2015. He is cur-
rently a Research Fellow at the School of Electrical
and Information Engineering, University of Sydney.
His current research interests are in the field of
industrial Internet of Things, with a particular fo-
cus on ultra-reliable low latency wireless, real-time
industrial Ethernet, lightweight authentication and
encryption, and anomaly detection. He received the
Outstanding Bachelor Thesis of Shandong Univer-

sity, the Outstanding Master Thesis of Shandong Province, and the Chinese
Government Award for Outstanding Self-Financed Students Abroad.

Zheng Dong (M’18) received his B.Sc. and M.Eng.
degrees from the School of Information Science and
Engineering, Shandong University, Jinan, China, in
2009 and 2012, respectively. He received the Ph.D.
degree from the Department of Electrical and Com-
puter Engineering, McMaster University, Hamilton,
Canada, in 2016. He is currently a Research Fellow
at the School of Electrical and Information Engineer-
ing, The University of Sydney. His research interests
include Industrial Internet of Things (IIoT), Ultra-
Reliable Low-Latency Communications (URLLC),

Non-Orthogonal Multiple Access (NOMA), and Information Theory and
Coding. He received the Outstanding Bachelor Thesis of Shandong University,
the Outstanding Master Thesis of Shandong Province.

Branka Vucetic (SM’00-F’03) is an ARC Laureate
Fellow and Professor of Telecommunications, Direc-
tor of the Centre of Excellence in Telecommunica-
tions at the University of Sydney. During her career
she has held research and academic positions in
Yugoslavia, Australia, UK and China. Her research
interests include coding, communication theory and
signal processing and their applications in wireless
networks and industrial internet of things.

Prof Vucetic co-authored four books and more
than four hundred papers in telecommunications

journals and conference proceedings. She is a Fellow of the Australian
Academy of Technological Sciences and Engineering and a Fellow of the
IEEE.

IT 8.1
Typewritten text
IEEE Internet of Things Journal Volume: 6 , Issue: 4 , Aug 2019 


