
1

Haiquan Wang, Member, IEEE, Guobin Li, Sisi Zheng, Shaoshi Yang, Member, IEEE,
and Peng Pan, Member, IEEE

Abstract—In frequency-division duplexing (FDD) massive
multiple-input multiple-output (MIMO) systems, a large number
of antennas are equipped at the base station (BS). In order to
accurately estimate the downlink channel state information (CSI),
a significant portion of time slots are usually invoked to send
training sequences. To reduce the training time slots, we propose
a dimension reduction method, which uses a matrix to divide
and combine the transmit antennas into several groups. Noticed
that the matrix is only related to the parameters of system and
independent of CSI. As a beneficial result, a new equivalent
system is created, where the training time slots can be decreased
dramatically. Simulation results show that the new equivalent
system can provide higher throughput than the original system
because of the dimension reduction.

Index Terms—Massive MIMO, downlink, overhead, training
sequence, dimension reduction

I. INTRODUCTION

Compared to the conventional multiple-input multiple-
output (MIMO) systems, a massive MIMO system is ca-
pable of providing services for more users simultaneously
on the same time-frequency resource blocks, thereby greatly
improving the spectrum efficiency [1]. Furthermore, in the
context of massive MIMO, the simple linear precoding and
linear detectors become near-optimal, and both noise and
uncorrelated interference become minor.

The above benefits are based on the assumption that the
accurate channel state information (CSI) is available to the
transmitter or the receiver. For a frequency-division duplexing
(FDD) massive MIMO system, in order to obtain the downlink
CSI at the base station (BS), the BS needs to send training
sequences to users, and then each user feeds the estimated
CSI back to the BS. Existing research shows that in order to
obtain accurate channel estimation, the length of the training
sequences should be no less than the number of transmit
antennas [2]- [5]. Thus, the overhead of training sequences is
proportional to the number of antennas at the BS. Therefore,
in massive MIMO systems, the BS has to expend a significant
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fraction of the limited coherent time resource to transmit the
training sequences.

How to reduce the overhead of training sequences in
massive MIMO systems is an important research topic. The
authors of [6] first demonstrated the capacity limit of multi-
antenna systems, that use training sequence based channel
estimation. The authors of [7] proposed a design that uses time
correlation to predict the channel, thereby reducing the over-
head of training sequences. In [8], [9], under the assumption
of no feedback, the concept of low-dimensional space-time
code was proposed, and different training sequences along
with different space-time block codes were studied. In [10], a
generalized low-complexity beamspace approach is proposed,
and the received signal vectors in the antenna-element space
are transformed into the beamspace by employing beamform-
ing vectors. In [11], a antenna group beamforming algorithm
is proposed, which can reduce the overhead of CSI feedback.
However, the method of [11] unable to reduce the cost of
training sequences because the structure of grouping matrix is
related to CSI.

In this paper, based on the basic parameters of the system
and the statistic properties of the channel only, a dimension
reduction method for reducing the overhead of training se-
quences is proposed. More specifically, we design a fixed
transformation matrix, say W, to divide and combine the M
transmit antennas into N groups, and the training sequences
can be designed for each group, not for each antenna. There-
fore, on one hand, the signals of multiple antennas in each
group are combined into a single beam, and the spatial gains of
multiple individual antennas are effectively integrated. On the
other hand, as a beneficial result of our scheme, the length of
the training sequences can be reduced from M to N , while the
total throughput of the system can even be increased in contrast
to that of the system without using the matrix W, based on the
optimal design of number N . The optimal N can be obtained
by numerical calculations to maximize the total throughput.
The proposed method is also effective in limited feedback
MIMO systems. It should be noticed that the selection of
matrix W is independent of the CSI. It is only related to
the number of the transmitting antenna and the statistical
characteristics of the channel. Our simulation results show
that compared with the method without dimension reduction,
the proposed method can effectively reduce the overhead of
training sequences and improve the performance of massive
MIMO systems.

An Approach to Reduce the Overhead of Training
Sequences in FDD Massive MIMO Downlink

Systems
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This paper is organized as follows. In Section II, the system
model is given. In Section III, the proposed dimensionality
reduction method is presented. Our simulation results are
shown in Section IV, and the conclusions are offered in
Section V.

II. SYSTEM MODEL

We consider a massive MIMO downlink system, where
the BS is equipped with M transmit antennas and serves K
randomly distributed single-antenna users. Then, the training
signals and data signals received by the k-th user can be
expressed as

ykp =
√
ρhHk Xp + zkp (1)

and
ykd =

√
ρhHk Xd + zkd, (2)

where ykp is a 1×Tp received training signal vector and ykd
is a 1 × Td received data signal vector. Tp and Td are the
length of training signals and data signals, respectively, while
ρ is the normalized signal-to-noise ratio (SNR). By following
the assumption of channel given in [1], hk ∈ CM×1 is the
complex Gaussian channel vector, in which each element has
a zero mean and unit variance. Xp ∈ CM×Tp is a training
sequence matrix, and Xd = GS ∈ CM×Td is the signal
matrix transmitted by the BS, where G ∈ CM×K is typically
a precoding matrix, and S ∈ CK×Td is the data matrix
composed of zero-mean unit-variance entries. zkp ∈ C1×Tp

and zkd ∈ C1×Td are standard additive white Gaussian
noise(AWGN) obeying CN (0, 1), respectively.

When the CSI has no error, the total throughput (i.e., the
achievable sum rate) can be expressed as

C = E
{

(1− Tp/T )
∑K

k=1
log2[1 + ρ‖hHk G‖2]

}
, (3)

where T is the coherent time, and T = Tp + Td. When using
traditional methods to estimate the CSI, Tp should be no less
than M .

It can be seen from (3) that the total throughput is related to
the length of the training sequences. Under the condition that
the coherence time remains unchanged, increasing the length
of the training sequences can make the data transmission more
reliable. On the other hand, as the length of the training
sequences increases, more coherent time is occupied, and
the time for transmitting data signals is shortened. Therefore,
increasing the overhead of the training sequences also causes
the total throughput to decrease. There is a trade-off between
the overhead of training sequences and the total throughput.

III. DIMENSION REDUCTION METHOD

In this section, we propose a dimension reduction scheme
and optimize related parameters. Firstly, two cases based on
Gaussian channel are considered: CSI without error and CSI
with error. Then we propose a dimension reduction method
based on the uniform planar array (UPA) model. Finally, We
also apply the method into limited feedback MIMO systems.

A. Dimension Reduction Matrix
Assume that N is a positive integer, a power of 2 and a

factor of M . Let eM/N be an M/N -dimensional vector, whose
each component is one. Define

W ,
(
eM/N ⊗ FN

)
/
√
M/N, (4)

where ⊗ is the Kronecker product and FN is the N -point
discrete Fourier transform (DFT) matrix with FHNFN = IN .
Here FN can also be replaced by unit matrix IN . Thus, W
is an M ×N matrix, satisfying WHW = IN . Note that for
a given massive MIMO system, W is relative to M and N
only.

We use W and precoding matrix P to process the data
before sending the data signals S ∈ CK×Td , where P is an
N ×K matrix. Thus, we have Ḡ = WP and X̄d = WPS.

The data signals received by the k-th user can be expressed
as

ȳkd =
√
ρhHk WPS + zkd. (5)

By comparing P with the matrix G ∈ CM×K used in Eq. (3),
the row dimension of precoding matrix is reduced from M to
N because of using W. Let h̄k , hHk W ∈ C1×N represent
the equivalent channel. The dimension of the equivalent chan-
nel is reduced from M to N , hence the length of the training
sequence can be reduced from M to N .

B. CSI without Error

We first assume that the CSI is accurate and there is no
error in the feedback process. Suppose that the BS adopts the
zero-forcing (ZF) precoding. Then we have

P = H̄H
(
H̄H̄H

)−1
B, (6)

where H̄ =
[
h̄H1 h̄H2 · · · h̄HK

]H
, and B is the normalized

factor matrix. Furthermore, let A , H̄H
(
H̄H̄H

)−1
,[

a1 a2 · · · aK
]

and bk , 1/‖ak‖, k = 1, 2, · · · ,K.
Then B = diag(b1, b2, · · · , bK), where diag(·) represents a
diagonal matrix.

Rewrite the data signals received by all K users as

Y =
√
ρH̄PS + Z =

√
ρBS + Z, (7)

where S =
[
sT1 sT2 · · · sTK

]T
,Z =[

zT1d zT2d · · · zTKd
]T
,Y =

[
ȳT1d ȳT2d · · · ȳTKd

]T
.

Hence, the data signals received by the k-th user can be
rewritten as

ȳkd =
√
ρbksk + zkd, (8)

where bk = 1/
√

[AHA]k,k = 1/
√

[(H̄H̄H)−1]k,k.

Because E[HHH] = MIK , E[HHH ] = KIM and H̄ =
HHW, we have E[H̄H̄H ] = NIK and E[H̄HH̄] = KIN .

Hence, we can see that all elements in H and H̄ are zero-
mean complex Gaussian random variables with unit variance.

Define a random variable X , 1/[(H̄H̄H)−1]k,k, where
[A]k,k represents the element in the k-th row and the k-th
column of the matrix A. Use the conclusion of [12], the
probability density function of the random variable X is

f(x) = xN−Ke−x/(N −K)!. (9)

Consequently, since the training time is N , the total through-
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put is

C = E
[
(1−N/T )

∑K

k=1
log2

(
1 + ρ/[(H̄H̄H)−1]k,k

)]
= (1−N/T )K

∫ ∞
0

log2(1 + ρx)
xN−Ke−x

(N −K)!
dx.

(10)
In the above equation, T and K are parameters of the

system, while N should be designed to maximize the C.
However, it is difficult to get the optimal value of N in the
above equation. Thus, in order to make the problem tractable,
the Jensen inequality is used to approximate the right side of
the above equation. The calculation process is as follows:

C = E
[
(1−N/T )

∑K

k=1
log2(1 + ρX)

]
6

[
(1−N/T )

∑K

k=1
log2(1 + E(ρX))

]
= (1−N/T )K log2[1 + ρ(N −K + 1)].

(11)

We try to find the optimal solution of N based on the last
formula of (11). Setting ∂C

∂N = 0, yields

(T −N)ρ− [1 + ρ(N −K + 1)] ln 2

· log2[1 + ρ(N −K + 1)] = 0.
(12)

It is still difficult to get a closed-form solution of N from
(12). But we can easily obtain numerical solutions. Some
calculation results are shown in Table I.

TABLE I
OPTIMAL N WHEN CSI HAS NO ERROR

Coherent
time T

Number of
users K

optimalN (By
Eq. (10))

optimalN (By
Eq. (12))

values of other pa-
rameters

256

1˜10 32 32

The number of antennas
M is 128;
The SNR
ρ is 10dB;

K 6 N 6 M ;
N = 2n, n ∈ Z

11 64 32
12˜56 64 64
57 128 64
others 128 128

512
1˜26 64 64
27 128 64
others 128 128

1024 1˜128 128 128

It should be noticed that the optimal points based on (10)
and (12) are highly consistent. Hence, we believe that the
search for the optimal value of N based on (12) is reasonable.
When the coherent time and the number of users are not so
large, the optimal number of N is less than M . It means that
not only the length of training sequences can be reduced, but
also the throughput can be increased.
C. CSI with Error

Now let us consider the case that the CSI estimated by
uesrs has error. First, the BS transmits the training signals
X̄p to the users. X̄p can be expressed as X̄p = WΦ, where
Φ ∈ CN×N is the training sequence matrix and satisfies the
condition ΦHΦ = IN .

The training signal received by the k-th user is

ȳkp =
√
ρh̄kΦ + zkp. (13)

We assume the user estmates the channel by using the
MMSE method [2], i.e.,

ˆ̄hk = ȳkp
√

1/ρ
(
IN/ρ+ ΦHΦ

)−1
ΦH . (14)

The data signals received by the k-th user is then expressed
as

ỹkd =
√
ρˆ̄hkPeS +

√
ρ
(
h̄k − ˆ̄hk

)
PeS + zkd. (15)

In the above equation, the second term is the interference
caused by the channel estimation error, and the third term
is the AWGN during the transmission. ˜̄hk , h̄k − ˆ̄hk is
defined as the channel estimation error and its variance is
E
[
˜̄h
H

k
˜̄hk

]
= IN/(1 + ρ), Pe is the corresponding ZF

precoding matrix, which is similar to (6).
Further simplifying Eq. (15), yields

ỹkd =
√
ρˆ̄hkPeksk +

∑
i6=k

√
ρˆ̄hkPeisi +

√
ρ
(
h̄k − ˆ̄hk

)
·Peksk +

∑
i6=k

√
ρ
(
h̄k − ˆ̄hk

)
Peisi + zkd

=
√
ρˆ̄hkPeksk +

∑K

i=1

√
ρ˜̄hkPeisi + zkd.

(16)
In Eq. (16), the first term is related to the data signals that
the k-th user expects to obtain, the second term represents the
interference imposed by the other users on the k-th user and
the impact imposed by the channel estimation error, while the
third term denotes the AWGN. Thus, the total throughput of
the system can be expressed as

Ce = E

[
(1−N/T )

K∑
i=1

log2

(
1 +

ρ‖ˆ̄hkPek‖2

1 + ρ
∑K
i=1 ‖

˜̄hkPei‖2

)]
.

(17)
Thus, the optimal selection of the number N can be

expressed as the following optimization problem:

max
N

Ce, s.t.

{
K 6 N 6M

N = 2n, n ∈ Z.
(18)

The numerical solutions to this optimization problem are
shown in Table II. It can be seen that, when there is channel
estimation error and the number of users is not so large, the
optimal value of N is less than the number of antennas M . So
the overhead caused by the training sequence can be reduced.

TABLE II
OPTIMAL N WHEN CSI HAS ERROR

Number of users K optimal N values of other parameters

1˜5 32 The number of antennas M is 128;
The ρ is 10dB; Coherent time T is 256
K 6 N 6 M ; N = 2n, n ∈ Z

6˜48 64
others 128

D. Dimension Reduction Matrix Based on UPA Channel

Here we consider the dimension reduction matrix based on
UPA channel. By following the assumption of channel given
in [13], the UPA channel can be expressed as

hu =
∑P

p=1
dM (ψvp , ψ

h
p )αp = Da, (19)

where D =
[
dM (ψv1 , ψ

h
1 ) · · · dM (ψvP , ψ

h
P )
]
∈ CM×P

is the set of radio paths and a =
[
α1 · · · αP

]
∈

CP×1 is the set of complex channel gains. More specifically,
dM (ψv, ψh) can be obtained by Kronecker product between
radiation paths in vertical direction and horizontal direction,
i.e., dM (ψv, ψh) = dMv

(ψv) ⊗ dMh
(ψh), where the array
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response vector dMa
(ψa) is expressed as

dMa
(ψa) =

[
1 ej

2πda
λc

ψa · · · ej
2πda
λc

(Ma−1)ψa
]T

(20)

for a ∈ {v, h}, where ψv = sinφv and ψh = sinφhcosφv . da
is the antennas spacing, and φa is the angle for array vector.
fc and λc is the carrier frequency and carrier wavelength,
respectively, satisfying c = fcλc with the speed of light c.

Based on matrix W defined by (4), we can obtain a N -
dimensional equivalent channel h̄u = WHhu of the UPA
model. In order to find the optimal N in this case, we further
calculate the equivalent channel h̄u based on the UPA model,
yields

h̄u = WHhu

=
P∑
p=1

αp√
M /N

(eM/N ⊗ IN )H [dMv
(ψv

p )⊗ dMh
(ψh

p )]

(a)
=

P∑
p=1

αp√
M /N

[eHM/N · dMv (ψvp)]⊗ [IN · dMh
(ψh

p )],

(21)
where (a) holds iff M/N = Mv . So we set the value of N to

N = M/Mv. (22)

Formulas above mean that, after the dimension reduction,
all antennas in the vertical direction are combined into an
antenna unit. In order to increase the gain after combining,
the radiation angle of each vertical antenna component should
be limited to a certain range, i.e.,

|2πdvψvl/λc| ≤ Ω, l ∈ {0, 1, · · · ,Mv − 1}, (23)

where Ω can be called angular resolution. Obviously, the
smaller this angular resolution is, the larger the gain of the
superimposed antenna components is. Thus, the value of dv
should be as small as possible. Simulations given in next
section will confirm this judgement.
E. Application in Limited Feedback MIMO Systems

We apply the above method to a limited feedback MIMO
system. For simplification, we assume K = 1. Thus, the signal
received by the user can be written as

ȳ =
√
ρh̄Hu fs+ n, (24)

where h̄u = WHhu is the N -dimensional equivalent channel
and hu ∈ CM×1 is the UPA model. f is a precoding vector,
s is the data signal satisfying E[s] = 0 and E[|s|2] = 1, and
n is the standard AWGN.

For the N -dimensional equivalent channel, the codebook
generation and codeword selection in the limited feedback
MIMO system can adopt the methods given in [14], which
are detailed as follows.

Step 1: Let
H̄u =

[
h̄u[1:Nh] h̄u[Nh+1:2Nh] · · · h̄u[Nh(Nv−1)+1:NvNh]

]T
,

where h̄u[a:b] represents the vector that is extracted from the
a-th element to the b-th element in h̄u. Here the channel
h̄u is rearranged to get an Nv ×Nh channel matrix H̄u and
N = Nv × Nh. The singular value decomposition (SVD) of
matrix H̄u is H̄u = UDVH .

Step 2: Use the DFT codebook to quantize channels. The
quantization criterion is as follows:

fv = argmax
fvi∈FBvNv

‖uH1 fvi‖
2, fh = argmax

fhi∈F
Bh
Nh

‖vH1 fhi‖
2,

where u1 and v1 are the first column of U and V, respectively.
FBaNa is the Ba-bit DFT codebook, and a ∈ {v, h}, where the
i-th codeword is defined as

fai =
[
1 ej2π

i

2Ba ej2π
2i

2Ba · · · ej2π
(Na−1)i

2Ba

]T
/
√
Na,

i = 1, 2, · · · , 2Ba .
Step 3: The precoding codeword is fo = fv ⊗ f∗h .
As a result, the throughput is given as

C̄ = E
{

(1−N/T ) log2[1 + ρ‖h̄Hfo‖
2
]
}
. (25)

Obviously, when N = M , this formula gives the throughput
of the scheme without using dimension reduction method , and
when N < M , (25) represents the throughput of our proposed
scheme. It is further pointed out that the dimension of equiv-
alent channel decreases, which can reduce the complexity of
codebook construction and the overhead of feedback.

IV. SIMULATIONS RESULTS AND DISCUSSIONS

In this section, three simulations are implemented to confirm
the analytical results given in the previous sections.

Simulation 1: Here we assume K is 2. We aim to show
the optimal value of N and the benefits of using the proposed
method under the Gaussian channel environment.

2 4 8 16 32 64 128

N

4

6

8

10

12

14

16

T
hr

ou
gh

pu
t/(

bi
ts

/s
/H

z)

M= 128, T=256, SNR=10dB

based on (11), CSI without error
based on (10), CSI without error
based on (17), CSI with error

Fig. 1. The influences of N on the total throughput

We observe from Fig. 1 that the upper bound based on (11)
is close to the numerical calculation of (10). In particular,
the optimal values of N are the same in the three cases
considered, which confirms that the method of calculating the
optimal value of N based on (12) is reliable. It also shows
that the optimal value of N is not equal to M . In this specific
configuration, the optimal value of N is 32, which is much
smaller than 128. Therefore, the length of training sequences
can be reduced from 128 to 32, while the corresponding
throughput increases about 5 bits per channel use (pcu).
Similarily, we also simulated the cases of K = 4, 16, and
the optimal values of N are 32 and 64, respectively.

Simulation 2: We try to confirm the results given in III.D.
The parameters of UPA model are shown in Table III.

Fig. 2 shows the influences of N on the total throughput
based on UPA model. Here the SNR ρ is 20dB. When CSI
has error, we use MMSE method to estmate the channel, i.e.,

ĥue =
∑P

p=1
dM (ψ̂vp , ψ̂

h
p )α̂p, (26)
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TABLE III
SIMULATION PARAMETERS

Parameter Assumotion

Transmitting antennas 8× 16, 4× 8 co-polarized
Receiving antennas 1× 1 co-polarized
Carrier frequency 2GHz
dv 0.2λc
dh 0.5λc

2 4 8 16 32 64 128

N

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

T
hr

ou
gh

pu
t/(

bi
ts

/s
/H

z)

Mv x Mh = 8 x 16, T=256, SNR=20dB

CSI without error
CSI with error

(a) Mv ×Mh = 8× 16

2 4 8 16 32

N

3.5

4

4.5

5

5.5

6

6.5

7

T
hr

ou
gh

pu
t/(

bi
ts

/s
/H

z)

Mv x Mh = 4 x 8, T=64, SNR=20dB

CSI without error
CSI with error

(b) Mv ×Mh = 4× 8

Fig. 2. The influences of N on the total throughput based on UPA model

where ψ̂vp = ψvp + ψ̃vp , ψ̂hp = ψhp + ψ̃hp and α̂p = αp + α̃p.
Here ψ̃vp , ψ̃hp and α̃p all are the complex Gaussian distribution
according to CN (0, 1/(1+ρ)). In fig. 2(a), we can find that the
optimal numbers of N in both cases are 16, which is equal
to the number calculated by (22). The same conclusion can
also deduced form Fig. 2(b), where the optimal number of N
obtained by the figure and the calculation of (22) are the same.

Simulation 3: We show the benefits of using the proposed
method in limited feedback MIMO system. The parameters of
UPA model are shown in Table III.

Fig. 3 shows the throughput comparison between proposed
method with dimension reduction (N = 16 < M ) and
the method without dimension reduction (N = 128 = M ).
Additionally, we assume Bv = Bh = 4. It can be seen that,
when dv = 0.5λc, our method does not have advantages,
since the value of dv is too large for the method. However,
dv = 0.2λc is a suitable value, and the throughput of proposed
method is apparently higher than that of the method without
dimension reduction. As the SNR increases, the gap between
them is getting larger. Thus, our dimension reduction method
is also valuable in the limited feedback MIMO systems based
on UPA model when the number of dv is appropriate.

8 12 16 20 24 28

SNR/dB

1

2

3

4

5

6

7

8

T
hr

ou
gh

pu
t/(

bi
ts

/s
/H

z)

Mv x Mh = 8 x 16, T=256

Prop. method (with dimension reduction), d
v
=0.2λ

c

Method without dimension reduction, d
v
=0.2λ

c

Prop. method (with dimension reduction), d
v
=0.5λ

c

Method without dimension reduction, d
v
=0.5λ

c

Fig. 3. Throughput comparison in limited feedback MIMO systems

V. CONCLUSIONS

For the FDD massive MIMO downlink systems, the training
sequence imposes a large overhead. We propose a dimension
reduction method to divide and combine the transmit antennas
into several groups. The number of groups is smaller than
the original number of antennas, hence the proposed method
is capable of reducing the length of the training sequences
while improving the system performance. Our method is also
applicable to limited feedback MIMO systems.
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